
Volume 4, No. 3, March 2013 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 183 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

Learner Motivation and E-Learning: Fabricating and Analysing Graphs through
JGraphEd Tool

Jitendra Sharma
M.Tech. Scholar, Dept. of Computer Science & Engg.

Swami Keshvanand Institute of Technology
Jaipur, India

jitendra0511@gmail.com

Shubhra Saxena
Reader, Dept. of Computer Science & Engg.
Swami Keshvanand Institute of Technology

Jaipur, India
shubhrasaxena123@gmail.com

Abstract: At present, learning and understanding graph algorithms is a great confrontation for researchers. Instructors are always looking
for such kind of application that is especially designed to attest the algorithms and enable users to learn algorithms efficiently. Although,
there are few software’s which are capable of solving these problems as the availability and compatibility with various environments has
been quite a hard task. The graph drawing and analyzing software JGraphEd is easily available and provides better environment, so that
users are capable to study and review the algorithm, resolve a hard-headed practical problem and study the functional process via graphical
display environment. This can be accessed via any Internet browser anytime, anywhere, without downloading and setting up any software.

Keywords: Graph, Algorithm, Environments, JGraphEd, Software.

I. INTRODUCTION

This paper describes the design, implantation and some
development to the Java Graph Editing application and
Graph Drawing framework called JGraphEd. [1] It was
designed to allow user to draw a graph step by step by
adding, removing and modifying nodes and edges. It has a
variety of independent algorithms provided for
manipulating and visualizing graphs. This paper also
suggest what more can be added to JGraphEd to make it
better. Section II describes the introduction about menu,
toolbar, graph editor modes and visualization of the
graph. Section III describes about the code structure of
JGraphEd. Section IV gives fairly extensive description of
the operation and algorithms that are packaged with
JGraphEd. Section V, describes about new application
implementation.

II. JGRAPHED

JGraphEd is a Java graph redaction software and graph
drawing model. It is contrived for users to create graphs
stepwise by adding, removing or modifying nodes or
edges. There are many reasons for the question that why
JGraphEd was chosen. Some of the reasons are listed
below: [1]
a. Most important reason for choosing JGraphEd is that

it can be executed online which makes the software
platform independent.

b. It is concerned with Java and is compatible with
JDK 1.5 or later version of it.

c. A variety of algorithms are implemented in
JGraphEd.

d. The code structure is very neat and clean which
makes it extensible.

e. Last but not the least, the documentation and graph
data structures used in JGraphEd is easy to
understand.

JGraphEd operates for simple graphs. It has various
features which were found more prominent than other
graph drawing tools which include modifying graphs in
any way. Graphs can be rotated, resized, even one node
can be selected and shifted to some other place, nodes can
be labeled, edges can be selected and edges can be curved
for all the algorithms to implement on them. [1][2]

A. Usage and User Interface:

JGraphEd is useful in analyzing graph algorithm by
implementing it on various graphs. It is helpful in drawing
a graph and applying different algorithms to the graph to
understand the basic properties of the algorithm. Figure 1.
shows the user interface which allows the user to interact
and handle JGraphEd easily and also shows different
algorithms in the form of menu and icon which is used by
the user.

Figure 1. User Interface of JGraphEd Menu and Toolbar

Jitendra Sharma et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 183-187

© 2010, IJARCS All Rights Reserved 184 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

The below Table I shows various types of identifiers used
in JGraphEd to provide amend functionality between its
algorithms.

Table 1 Various Types of Identifiers used in JGraphEd

M Describes a menu header.
S Describes a single action for creating

individual menu items and toolbar buttons.
P Describes a group of actions, for creating a

group of radio button menu items and button
chooser buttons.

Separator Denotes that a separator should be placed on
the toolbar.

cursorLocationLabel Used to determine the relative location of the
cursor location label.

B. Graph Editor:

This section describes all the features which JGraphEd
has for creating a graph on the graph editor. It is
responsible for displaying what has been done by the user
at any point of time. For example, when the user is
making an edge, the graph editor will delineate a line
from starting node to ending node. The following list of
things shows the user can do with graph editor to draw a
graph: [1]
a. There is a feature like rotating a graph and resizing a

graph. So graph editor is responsible for putting a
center point along which the graph is being rotated
and shows a boundary box when the graph is being
resized.

b. It is used to store the image which is created by user.
c. It is also used to store special kind of nodes that has

been used as input to operations because some
algorithm requires some input nodes to be selected.
For example, for calculating shortest path between
two nodes, the start node and destination node
should be selected before applying the algorithm.[5]

d. Changing the cursor of the mouse when moved to
graph editor area. For example, when user wants to
rotate the graph, the cursor changes to a circular
double arrow rather than a single arrow.

C. Graph Editor Modes:

A graph editor operates in one of the five modes namely:
a. Edit Mode - The edit mode is designed to allow the

user to use extensive range of options for making
and modifying graphs. It mainly uses a graph
structure namely "Node-split tree" which is carried
out in KD-Tree to speed up the searching of nodes at
specific editing locations. [3][4] The set of things
that can be done with Edit Mode includes node
creation, node selection, node movement, node
deletion, node labeling, node colorings, edge
initiation, edge sequential display, edge veering,
edge unbending, edge directing, edge undirecting,
edge pick, edge deletion and edge coloring.

b. Grid Mode - The grid mode is like edit mode, except
that nodes are not allowed to move in any direction.
It is only allowed to move along the grids. When
grid mode is activated, users insert the number of
rows and columns in the grid field, and also insert
the height and width of the grid cells. [3] In grid

mode, it allows application involves node creation,
edge orthogonalization, and node selection.

c. Move, Resize and Rotate Modes - The three modes
move, resize and rotate are all similar in property
with few different mappings. It mainly allows the
functionality such as move mode for translating,
resize mode for scaling and rotate mode for rotating
the graph severally. These are the sole functions that
the user can perform with these three modes
respectively. The move mode mainly changes the
display of mouse cursor to hand icon, and interpret
the whole graph in the direction as the user wants it
to be. Rotate mode puts a circular arrow mark on the
center of the graph and the graph can be rotated
along with the circular arrow.

III. CODE STRUCTURE

The code structure is basically demonstration of Java
codes of JGraphEd; in other words it’s higher than
program label. [3][4] The following section describes the
basic packages that form the source code of JGraphEd,
describes the inner java files, the relationship between
them, methods inside the java files. There are some
packages and sub packages in JGraphEd source code.
Figure 2. shows the UML diagram of all the packages of
JGraphEd and the relationship between them.

Figure 2. UML Diagram showing all packages of JGraphEd

A. Operation:

The operation class provides static methods that take a
graph as input and any other required data as parameters.
The pqTree, nodeSplitTree, binaryHeap are sub-packages
of Data Structure package and menuAndToolbar, modes,
fileUtils are sub-packages of user Interface. [4]

B. DataStructure:

The package dataStructure contains two files,
DoublyLinkedList.java and Queue.java. Since JGraphEd
requires to the doubly linked list data structure it has been
written, because there is nothing like java predefined
doublylinkedlist. The UML diagram of dataStructure
package is shown in Figure 3. As shown in diagram the
package contains two classes DoublyLinkedList and
Queue.[6]

Jitendra Sharma et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 183-187

© 2010, IJARCS All Rights Reserved 185 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

As written in the Queue.java file, the private variables are
QueueNode head which is a QueueNode appearing at the
head of the queue, QueueNode tail which is also a
QueueNode appearing at the tail of the queue and an
integer variable called size which is of the size of the
queue. QueueNode is one of the sequences of object in
Queue class which contains one Object and pointer to the
next Object. [5] The method enqueue is responsible for
adding an element to the queue and the method dequeue is
responsible for removing the element which appears at the
head of the queue and the method size returns the size of
the queue.
The file DoublyLinkedList.java has three
DoublyLinkedListNode variable called head, tail and
current and their meaning are obvious from their names.
There exists standard enqueue and dequeue operations in
DoublyLinkedList.java file which is responsible for
adding and removing the element. [5] The enqueue
operation takes an object as an input, then creates a
doublylinkedlist with the input alone which is of length
zero, and then checks the length of the doublylinkedlist
for which enqueue operation is called and if the length is
zero then it just inserts the newly created doublylinkedlist
of length zero in between the head and tail. If the length is
not zero it inserts the newly created doublylinkedlist at the
end of the given doublylinkedlist

Figure 3. UML Diagram of the package dataStructure

IV. ALGORITHMS IMPLEMENTED ON JGRAPHED

There are many applications implemented on JGraphEd
which makes it one of the most useful graph algorithm
tools. The applications which are implemented on
JGraphEd are creating a random graph, depth first search
on a graph, Checking connectivity of a graph, Checking
the Biconnectivity of a graph, Making a graph Maximal
Planar, Checking the planarity of the graph, performing

an embedding of a planar graph, canonical ordering of a
graph, normal labelling of a graph, straight line grid
embedding of a graph, making tree of a graph, Calculating
Dijkstra’s shortest path between a pair of vertices of a
graph, displaying minimum spanning tree of a graph.
There are three types of applications of JGraphEd. [1]
a. Test Application- It tests various properties of a

graph and gives a Boolean result.
b. Operation Application- This applies some algorithm

to a Graph.
c. Display Application - This displays the graph after

applying some algorithm and giving the desired
result.

A. Random Graph Creation:

Create random graph operation is defined in the
CreateRandomGraphOperation class. It is a primitive
operation that distributes a number of nodes at random
locations in the graph. The user is prompted for the
number of nodes to create, and these nodes are
subsequently distributed at uniform x coordinate intervals,
and random y coordinates across the current graph editor
canvas. The intent is that the user may then create edges
between these nodes using other operations such as make
connected, make biconnected or make maximal.

B. Depth First Search:

The depth first search operation is defined in the
DepthFirstSearchOperation class. This operation builds a
tree of the nodes, based on the order that they are visited
by the search. Table II shows the depth first search
operation requires the following additional fields for the
nodes and edges: [5]

Table 2 DFS Operation with Nodes & Edges

Node- Integer Depth First Search Number

Node- Integer Depth First Search Low

Node-Node Depth First Search Parent

Edge-Boolean Is Back Edge

Edge-Boolean Is Used (has been traversed)

These fields are defined in the DFSNodeEx and
DFSEdgeEx extender classes. The depth first search
number of a node is set incrementally as it is visited by
the search. The low number of a node is the smallest
depth first search number that can be reached by the node
using non-back edges followed by at most one back edge.
There is back edge' flag is used to mark edges that are
traversed during the search and result in the visitation of a
node that was already searched. The “is used” flag is used
to keep track of the edges that have already been traversed
during the search.

C. Connectivity

The ConnectivityOperation class provides a variety
of methods for performing connectivity operations related
to graphs, such as returning all of the connected sub-
graphs of a graph, returning all of the nodes connected to

Jitendra Sharma et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 183-187

© 2010, IJARCS All Rights Reserved 186 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

a node, testing a graph for connectivity, and making a
graph connected. A graph is connected if all of its nodes
can be reached from every other node using a sequence of
the graph's edges. [6]
Input: A graph G.
Output: whether the graph is connected or not? How
many connected components the graph has?

To make the graph connected in case it's not connected.
[3] For example there is a function which takes a graph as
Input and returns the number of connected parts of the
graph which the user can see in case it's not a huge graph.
To get all of the connected sub-graphs of a graph, the
Connectivity class makes repeated use of the depth first
search node operation. The graph's copy method is
invoked on all of the nodes visited by a depth first search
from an arbitrary node. This process is then repeated
using a depth first search from any node that was not
visited by the last depth first search.
Testing a graph for connectivity is also a trivial operation,
it simply determines whether or not there is exactly one
connected sub-graph of the input graph. [3] Making a
graph connected involves retrieving all of the connected
sub-graphs of the input graph. Each of the connected sub-
graphs is linked with a new edge to the next connected
sub-graph until all of the sub-graphs are linked.

D. Biconnectivity:

The BiconnectivityOperation class provides a variety of
method for performing biconnectivity operations related
to graph, such as returning all of the biconnected sub-
graphs of a graph, finding all separator nodes, testing a
graph for biconnectivity and making a graph biconnected.
A biconnected graph is a graph which does not contain
any separator nodes. A separator node is a node whose
removal from the graph results in the graph being split
into two non-connected graphs. [3]
Input: A graph G.
Output: whether the graph is biconnected or not?
To make the graph connected in case it's not connected.

V. NEW ALGORITHMS IMPLEMENTED

This section describes about the new applications that is
added to JGraphEd, The below three sub-sections
describes about some of the additional applications that
has been made and implemented in JGraphEd.

A. Checking for Cycles:

There is always a difference in property between a graph
having cycles and a graph having no cycles. It affects the

bi-partiteness of the graph, Minimum Spanning Tree of
the graph and also few others. It is always important to
know whether the graph contains a cycle or not, although
it is obvious for graphs having less size, the problem may
occur for huge size graphs. The
CycleCheckOperation.java file in Operation Package
checks for every connected graph of a graph G, and
applies depth first search and eventually checks for any
back edges giving desired result. Figure 4 shows the demo
of checking cycles in the graph and the resulted graph
contains cycle.

Figure 4. Result showing the Graph contains Cycle

B. Checking of Bi-Partiteness of a Graph:

A graph is said to be bipartite graph only when it does not
contain any odd-length cycles in a graph. Because if effort
is made to put one node of the cycle of odd length in one
set and then on adding the next node in the other set, the
final node will appear in the same set, which is not
allowed as per the definition of Bi-partiteness which says
there can't be any node between the elements of same set.
Input: A Graph G
Output: Whether G is bipartite or not.
Equivalently, a bipartite graph is a graph that does not
contain any odd-length cycles. That’s because if we try to
put one node of the cycle of odd length in one set and then
go on adding the next node in the other set the final node
will appear in the same set, which is not allowed as per
the definition of Bi-partiteness which says there can't be
any node between the elements of same set. Figure 5
shows the demo of bi-partiteness in a graph and the given
graph is not Bi-Partite.

Figure 5. Result showing the Graph is not Bi-Partite

For every connected subgraph g of the graph G
{
Apply Depth first search on g

If an edge e E where E = set of edges of
g such that e is a backedge, the graph G
contains one or more cycle
 Else G doesn't have any cycle.
}

Jitendra Sharma et al, International Journal of Advanced Research in Computer Science, 4 (3) Special Issue, March 2013, 183-187

© 2010, IJARCS All Rights Reserved 187 CONFERENCE PAPER II International Conference on
“Advance Computing and Creating Entrepreneurs (ACCE2013)”

On 19-20 Feb 2013
Organized by

2nd SIG-WNs, Div IV & Udaipur Chapter , CSI , IEEE Computer Society Chapter India Council ,
IEEE Student Chapter Geetanjali Institute of Technical Studies, Udaipur, Rajasthan, India

Algorithm of finding whether a graph is bi-partite or not
exactly finding whether a graph contains a graph of odd
length or not. Also there exist various algorithms to check
whether the graph is bi-partite or not. To find whether
there exists a graph with cycles having odd length, first of
all we have to check whether there exists any circle for
which we have to check whether there exists any back
edge in dfs tree of the graph. [6]
To calculate the length of a circle one has to traverse from
starting node of back edge through the parents of each
node until it reaches the ending node of the back edge.

C. Checking for Isomorphism of Two Graphs:

It is more difficult to identify the isomorphism of two
graphs because there are n! potential ways to find out one-
to-one correspondence relation between the vertex sets of
the given two graphs with ‘n’ vertices. The checking of
one-to-one correspondence relation between the graphs is
more difficult when the value of ‘n’ is large.
The proof that the two simple graphs are not isomorphic
is by giving the detail description about the common
property that is not shared by both the simple two graphs,
if they do not share any property between them, the graph
is not isomorphic.
Input: Two graphs G1 and G2
Output: Whether G1 and G2 are isomers or not?
For example, if there are same numbers of vertex in the
given isomorphic graphs, there must be a one-to-one
relation between the sets of vertices of the graph.
Isomorphic graphs also must have the same number of
edges, because the one-to-one relation between vertices
establishes a one-to-one relation between edges. In
addition, the degree of the vertices in isomorphic simple
graphs must be same.

Figure 6. Result showing the Graph is Not Isomorphism

As seen in Fig. 5.3 the two graphs have same number of
vertices and edges but they are not isomorphic because
the first graph has a vertex of degree one and the second
one doesn't. The number of vertices, the number of edges,
and the degree of the vertices are all invariants under
isomorphism, if any of these quantities differ in two
simple graphs, these graphs can't be called isomorphic.

VI. CONCLUSION

This paper has depicted the entire designed views and
characteristics of JGraphEd. It also describes the structure
and framework for its redaction and drawing
potentialities, the execution of algorithms or operations,
the different data structures which are furnished with
JGraphEd. JGraphEd also assist its use in different graphs
and structure and also provides detailing of various
algorithms.

VII. FUTURE SCOPE

In the future work some more test and analysis algorithm
for example making a ‘non-planar graph’ planar by
deleting some selected edges, implementation of
‘Minimum spanning tree’ using krushal's algorithm,
converting a ‘Graph’ into orthogonal, calculation of
‘Breadth first search’ of a graph could be included in
present JGraphEd to provide better understanding of
graph algorithm.

VIII. REFERENCES

[1] Jon Harris: JGraphEd - A Java Graph Editor and
Graph Drawing Framework

[2] Rosen: Discrete Mathematics and its Applications
New Delhi: Tata McGraw-Hill Publishing Company
Limited Chapter 8: Graphs: 560 – 563

[3] Gary Chartrand, Ping Zhang: Introduction to Graph
Theory

[4] Herman, Ivan, Melançon, Guy, Marshall, M. Scott,
“Graph Visualization and Navigation in Information
Visualization: A Survey”, IEEE Transactions on
Visualization and Computer Graphics, 2000

[5] Di Battista, Giuseppe, Eades, Peter, Tamassia,
Roberto, Tollis, Ioannis G., “Algorithms for Drawing
Graphs: an Annotated Bibliography”, Computational
Geometry: Theory and Applications 4, pp. 235–282,
1994

[6] Caccetta and K. Vijayan, “Applications of Graph
Theory”, Fourteenth Australasian Conference on
Combinatorial Mathematics and Computing, vol.-23,
pp. 21-77, 1987

