
Volume 4, No. 2, Jan-Feb 2013

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 146

ISSN No. 0976-5697

A Systematic Review of Software Reliability and Software Cost Models

Poonam Panwar*
Assistant Professor

Department of Computer Science & Engineering
Ambala College of Engineering & Applied Research

Ambala, India
rana.poonam1@gmail.com

Ankur Garg
M.Tech Research Scholar

Department of Computer Science & Engineering
Ambala College of Engineering & Applied Research

Ambala, India
ankurgarg.garg10@gmail.com

Abstract: Software reliability assessment is important to evaluate and predict the reliability and performance of software system. The models
applicable to the assessment of software reliability are called Software Reliability Growth Models (SRGMs). An SRGM provides a mathematical
relationship between time span of testing or using the software and the cumulative number of faults detected. It is used to assess the reliability of the
software during testing and operational phases. An important class of SRGM that has been widely studied is Non Homogeneous Poisson Process
(NHPP). NHPP models are useful in describing failure processes, providing trends such as reliability growth and fault-content. Different NHPP
models have been developed for different applications. In this paper, we described several existing software reliability growth models based on Non
Homogeneous Poisson processes (NHPPs). This paper also addresses cost estimation models and cost functions that can be used to evaluate the cost
of software during its development.

Keywords: Software Engineering; Software Reliability; SRGM; NHPP; MVF.

I. INTRODAUCTION

Software reliability is the probability that software will
provide failure free operation in a fixed environment for a fixed
interval of time. Probability of failure is the probability that the
software will fail on the next selected input. Software
reliability is typically measured per units of time. Software
Reliability is also an important factor affecting system
reliability. Software Reliability assessment is important to
evaluate and predict the reliability and performance of software
system. The models applicable to the assessment of software
reliability are called software reliability growth models.
Software reliability growth models have been discussed
abundantly in the literature. SRGMS can estimate the number
of initial faults, the software reliability, the failure intensity, the
mean time interval between failures, etc. An important class of
SRGM that has been widely studied is Non Homogeneous
Poisson Process. NHPP models are useful in describing failure
processes, providing trends such as reliability growth and fault
content [1]. Cost estimation models are mathematical
algorithms or parametric equations used to estimate the costs of
a product or project. The results of the models are typically
necessary to obtain approval to proceed, and are factored into
business plans, budgets, and other financial planning and
tracking mechanisms. The costs of developing software and
software failure have entailed great expenses in a system
development. Therefore, it is important to determine when to
stop testing or when to release the software to the users so that
the total system cost is minimized, subject to a desired
reliability level and other constraints [2].

II. NON HOMOGENEOUS POISSON PROCESS MODEL

The non-homogeneous Poisson Process group of models
provides an analytical framework for describing the software

failure phenomenon during testing. The main issue in the
NHPP model is to estimate the mean value function of the
cumulative number of failures experienced up to a certain point
in time. The NHPP represents the number of failures
experienced up to time t as an NHPP, {N(t),t≥0} denote a
counting process representing the cumulative number of faults
detected by the time t. An SRGM based on an NHPP with the
mean value function (MVF), m(t) can be formulated as in
equation 1[3].

Where m(t) represents the expected cumulative number of

faults detected by the time t. The MVF m(t) is non decreasing
with respect to testing time t under the bounded condition
m()=a, where a is the expected total number of faults to be
eventually detected. Knowing its value can help us to
determine whether the software is ready to be released to the
customers and how much more testing resources are required.
It can also provide an estimate of the number of failures that
will eventually be encountered by the customers. Generally, we
can get distinct NHPP models by using different non-
decreasing mean value functions [3]. The failure intensity
function at testing time t is given in equation 2.

The software reliability, i.e., the probability that no failures

occur in (s, s+t) given that the last failure occurred at testing
time s(s≥0, t>0), is given below in equation 3[4].

The fault detection rate per fault at testing time t is given by

equation 4.

Poonam Panwar et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 146-150

© 2010, IJARCS All Rights Reserved 147

There are several existing well-known NHPP models with
different MVFs. Some of them are described below.
a. Nhpp Exponential Model: The exponential NHPP model

is based on the following assumptions[5]:
a) All faults in a program are mutually independent from the

failure detection point of view.
b) The number of failure detected at any time is proportional

to the current number of faults in a program. This means
that the probability of the failure for faults actually
occurring i.e., detected, is constant.

c) The isolated faults are removed prior to future test
occasions.

d) Each time a software failure occurs, the software error
which caused it is immediately removed, and no new
errors are introduced.

where a is the expected total number of faults that exist in

the software before testing and b is the failure detection rate or
the failure intensity of a fault. This model is also known as
Goel-Okumoto model.
b. Musa Exponential Model: Musa proposed a similar

model to the Goel-Okumoto model by considering the
relationship between execution time and calendar time
[6]. Let m(t) be the number of the failures discovered as a
result of test case runs up to the time of observation.
Mean value function obtained by Musa is given in
equation 6.

c. Hyper-exponential Growth Model: The hyper

exponential growth model is based on the assumption that
a program has a number of clusters of modules, each
having a different initial number of errors and a different
failure rate. The mean value function of the hyper
exponential class NHPP model is given in equation 7 [7].

d. Yamada And Osaki Model: A similar extension of the
exponential growth model has been suggested by Yamada
and Osaki by dividing software into k modules. The
failure intensity of faults within different modules are
assumed to be different, while the failure intensity of
faults within the same module are assumed to be the
same. The mean value function is given in equation 8 [8].

e. Connective NHPP Model: Nakagawa (1994) proposed a
model, called connective NHPP model, where the basic
shape of the growth curve is exponential and that an S-
curve forms due to the test. The mean value function is
given in equation 9 [9].

f. NHPP S-Shaped Model: In the NHPP s-shaped model,

the software reliability growth curve is an S-shaped curve
which means that the curve crosses the exponential curve
from below and the crossing occurs once and only once.
The NHPP s-shaped model is based on the following

assumptions and the mean value function is given in
equation 10[10]:

a) The error detection rate differs among faults.
b) Each time a software failure occurs, the software error

which caused it is immediately removed, and no new
errors are introduced.

g. NHPP Inflection S-Shaped Model: The inflection S-

shaped model is based on the dependency of faults by
postulating the following assumptions and the m(t) is
given in equation 11 [11].

a) Some of the faults are not detectable before some other
faults are removed.

b) The probability of failure detection at any time is
proportional to the current number of detectable faults in
the software.

c) Failure rate of each detectable fault is constant and
identical.

d) The isolated faults can be entirely removed.

h. NHPP Delayed S-Shaped Model: The delayed S-Shaped
model is based on the following assumptions and the
mean value function is given in equation 12 [12]

a) All faults in a program are mutually independent from the
failure detection point of view.

b) The probability of failure detection at any time is
proportional to the current number of faults in software.

c) The proportionality of failure detection is constant.
d) The initial error content of the software is a random

variable.
e) A software system is subject to failure at random times

caused by errors present in the system.
f) The time between failures (i-1)th and ith depends on the

time to the (i-1)th failure.
g) Each time a failure occurs, the error which caused it is

immediately removed and no other errors are introduced.

i. NHPP Imperfect Debugging Model. NHPP Imperfect
debugging model is based on the following assumptions
and mean value function is given by equation 13 [13]

a) When detected errors are removed, it is possible to
introduce new errors.

b) The probability of finding an error in a program is
proportional to the number of remaining errors in the
program.

c) The probability of introducing a new error is constant.
d) Three type of errors exist:
Type 1 errors (critical): very difficult to detect
Type 2 errors (major): difficult to detect.
Type 3 errors (minor): easy to detect.
e) The parameters a and for i=1, 2, 3 are unknown

constants.
f) The error detection phenomenon in the software is

modeled by an NHPP.

Poonam Panwar et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 146-150

© 2010, IJARCS All Rights Reserved 148

j. NHPP Imperfect Debugging S-Shaped Model: NHPP

Imperfect debugging S-Shaped model is based on the
following assumptions and the model can be formulated
by the differential equation 15[14]

a) The error detection rate differs among faults.
b) Each time a software failure occurs, the software error

which caused it is immediately removed, and new faults
can be introduced.

k. Pham Exponential Imperfect Debugging Model: The

model is based on the following assumptions and the
mean value function is given by equation 16 [15]

a) The introduction rate is an exponential function of testing
time, and

b) The error detection rate function is non-decreasing with
an inflection S-shaped model.

l. Pham-Zhang NHPP Model : This mean value function
of the model is given in equation 17 and the model is
based on following assumptions [16].

a) The error introduction rate is an exponential function of
the testing time in other words, the number of errors
increases quicker at the beginning of the testing process
than at the end. This reflects the fact that more errors are
introduced into the software at the beginning, while at the
end, testers posses more knowledge and therefore
introduce fewer errors into the program.

b) The error detection rate function is non-decreasing with
an inflection S-shaped model.

III. SOFTWARE COST MODELS

In the recent years, the costs of developing software and
software failure have entailed great expenses in a system
development. Therefore it is important to determine when to
stop testing or when to release the software to the users so that
the total system cost is minimized, subject to the desired level
of reliability and other constraints. In this section we present
cost models and cost functions that can be used to formulate
realistic total software cost projects in many applications and
to determine the optimal release policies of the software
system.
a. SOFTWARE COST MODEL WITH RISK FACTOR: this cost

model addresses the risk level and the time to remove
errors and the optimal release policies that minimize the
expected total software cost. The expected software
system cost, E (T), is defined as [17]:

a) The cost to perform testing.
b) The cost incurred in removing errors during the testing

phase.
c) A risk cost due to software failure.

The cost to perform testing is given by:
=

The expected total time to remove all errors is

Hence, the expected cost to remove a errors detected by
time T can be expressed as

The risk cost due to software failure after releasing the
software is

where is the cost due to software failure.
The expected total software cost can be expressed as

b. Generalized Software Cost Model: It considers the cost

of removing errors detected during the warranty period
and risk cost due to software failure. Additional
assumptions [18]

a) There is set up cost at the beginning of the software
development process.

b) The cost of testing is a power function of the testing time.
This means that at the beginning of the testing, the cost
increases at higher gradient, slowing down later.

c) The time to remove each error during the warranty period
follows a truncated exponential distribution.

d) The cost to remove errors during the warranty period is
proportional to the total error of removing all errors
detected between the intervals of (T,).

c. Cost Model with Multiple Failure Errors: In this section

a cost model with is presented with following
assumptions [19]:

a) The cost of debugging an error during the development
phase is lower than in the operational phase.

b) The cost of removing a particular type of error is constant
during the debugging phase.

c) The cost of removing a particular type of error is constant
during the operational phase.

d) The cost of removing critical errors is more expensive
than major errors, and the cost of removing major errors
more expensive than minor errors.

e) There is a continuous cost incurred during the entire time
of the debugging period.

The expected software cost

Poonam Panwar et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 146-150

© 2010, IJARCS All Rights Reserved 149

E (T)=

+

IV. SOFTWARE COMPONENT COST FAILURE
INTENSITY FUNCTIONS

a. Linear cost function: The linear form can be used in
the absence of knowledge about the relative nonlinear
characteristics of cost to attain reliability, or when this
relationship is thought to be indeed linear. The
advantage of linear cost function is simplicity.
Disadvantage is that solution might not be practical
for large or complex systems. The linear cost function
is given in equation 26 [20].

b. Logarithmic Exponential Cost Function: LnExp
function is in nonlinear form. An advantage of the
Lnexp cost function is that only a single parameter β
needs to be specified for each component. A
disadvantage of the LnExp function is that there is
little flexibility for changing the shape of the curve.
The LnExp cost function is given in equation 27 [21].

c. Inverse Power Cost Function: Another nonlinear
function that satisfies the desired characteristics is that
inverse power (InvPow) cost function. The advantage
of the InvPow cost function is that it is a
generalization of the basic COCOMO introduced by
Bohem. A disadvantage of the the InvPow cost
function is that either two or three parameters per
component must be specified, depending on whether
the location parameter is assumed to be nonzero as
given in equation 28 [22].

V. CONCLUSION

This paper reviews software reliability papers published in
journals classified according to research topic, research
approach, and study context. In this paper, we described
software reliability and software cost models that can be used
to predict the optimal release time of software. Hence, it would
help a software vendor to calculate the total software product
cost and its reliability.

VI. REFERENCES

[1] B. Littlewood, “Software Reliability Modeling:
Achievements and Limitations”, Proc. of Fifth Ann.
European Computer Conf. on Advanced Computer
Technology, Reliable system, and Applications
(CompEuro’91), May1991, pp. 36-344.

[2] R.H. Hou, S.Y. Kuo, and Y.P. Chang, “On a Unified Theory
of Some Nonhomogenous Poisson Process Models for
Software Reliability”, Proc. of International Conf. on
Software Eng., Education & Practice (SEEP ’98), Jan. 1998,
pp. 60-67.

[3] M. Trachtenberg, “A General Theory of Software-Reliability
Modeling,” IEEE Trans. Reliability, vol. 39, no. 1, Jan. 1990,
pp. 92-96.

[4] A.L. Goel, “Software Reliability Models: Assumptions,
Limitations, and Applicability,” IEEE Trans. Software Eng.,
vol. 11, no. 12, Dec. 1985.

[5] Y.K. Malaiya and P.K. Srimani, “Software Reliability
Models: Theoretical Developments, Evaluation and
Applications,” IEEE Press, 1990.

[6] L. Goel and K. Okumoto, “A Time Dependent Error
Detection Rate Model for Software Reliability and Other
Performance Measures,” IEEE Trans. on Reliability, vol. 28.
no. 3, 1979, pp 206—211.

[7] M. Ohba, “Software Reliability Analysis Models,” IBM J.
Research and Development, vol. 28, no. 4, July 1984, pp.
428-443.

[8] N. Langberg and N.D. Singpurwalla, “A Unification of Some
Software Reliability Models,” SIAM J. Scientific and
Statistical Computing, vol. 6, no. 3, Mar. 1985, pp. 781-790.

[9] Yamada S. and Osaki S., “Discrete Software Reliability
Growth Models,” Applied Stochastic Models and Data
Analysis, vol. 1, no.1, 1985, pp. 65-77.

[10] S. Yamada M. Ohba, and S. Osaki, “S-Shaped Reliability
Growth Modeling for Software Error Detection,” IEEE Trans.
On Reliability, vol. R-32, no. 12, 1983, pp 475-478.

[11] Helander, M.E., Zhao,M., Ohlsson, N. “PlanningModels for
Software Reliability and Cost,” IEEE Trans. in Software
Engineering, vol. 24, no. 6, June 1998.

[12] W. Wang, Y. Wu, and M.H Chen,”An Architecture –Based
Software Reliability Model,” Proc. Pacific Rim
Dependability Symp., 1999.

[13] S.Gokhale And K.S Trivedi, ”Time/Structure Based Software
Reliability Model,” Annals of Software Eng., vol.8, 1999,
pp.85-121.

[14] S.S Gokhale, T.Philip, P.N.Marinos, and K.S
Trivedi,”Unification of Finite Failure Non-Homogeneous
Poisson Process Models Through Test Coverage,” Proc.
Seventh Int’l Symp. on Software Reliability Eng.,1996.

[15] H. Pham, “Software Reliability,” Springer-Verlag, 2000.

[16] Hui Guan, Wei-Ru Chen, Ning Huang and Hong-Ji Yang
”Estimation Of Reliability And Cost Relationship For

Poonam Panwar et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 146-150

© 2010, IJARCS All Rights Reserved 150

Architecture Based Software,” International Journal of
Automation and Computing, November 2010.

[17] J. D. Musa, and K. Okumoto, “Software Reliability
Measurement, Prediction, Application,” McGraw Hill, 1987.

[18] M.R. Lyu, “Handbook of Software Reliability Engineering,”
McGraw-Hill, 1996.

[19] A. D. Denton, "Accurate Software Reliability Estimation,"
Master of Science Thesis, Colorado State University, Fort
Collins, Colorado, Fall 1999.

[20] Q. P. Hu,M. Xie,S.H. Ng,and G. Levitin,” Robust recurrent
neutral network modeling for Software Fault Detection and
Correction Prediction,” Reliability Engineering and System
Safety, vol 92 no.3,2007,pp. 332-340.

[21] D. R. Jeske, and X. Zhang,”Some successful approaches to
software reliability modeling in industry,” J. Syst. Softw.,
vol. 74, no. 1, 2005, pp.85-99.

[22] C. Y. Huang, and C. T. Lin, “Software reliability analysis by
considering fault dependency and debugging time lag,” IEEE
Trans. Reliability, vol.55, no. 3, 2006, pp. 436–450.

	INTRODAUCTION
	NON HOMOGENEOUS POISSON PROCESS MODEL
	SOFTWARE COST MODELS
	REFERENCES

