
Volume 4, No. 2, Jan-Feb 2013

International Journal of Advanced Research in Computer Science

CASE STUDY AND REPORT

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 88

ISSN No. 0976-5697

Late Acceptance Heuristic for University Course Timetabling Problem

Yohana Marwa
Department of Mathematics, Mwenge University College of

Education, Box 1226, Moshi, Tanzania
yohanamarwa@yahoo.com

Allen Rangia Mushi*

Department of Mathematics, University of Dar es salaam,
Box 35062, DSM, Tanzania

allen.mushi@gmail.com

Abstract: This paper describes a Late Acceptance Heuristic for University Course Timetabling Problem, using a case study of a University
College in Tanzania. Late Acceptance is one of relatively new heuristic procedures that try to improve searching by delaying acceptance of latest
solutions. The results are compared with an implementation on Simulated Annealing heuristic, which is a well documented and successful
heuristic procedure for similar problems. It is shown that Late Acceptance Procedure is a good procedure for Course timetabling problem and
compares well with Simulated Annealing.

Keywords— Late Acceptance, Simulated Annealing, Course Timetabling, Combinatorial Optimization, heuristics

I. INTRODUCTION

Timetabling Problem is a Combinatorial Optimisation
Problem which has captured the interest of many researchers
in Operations Research and Artificial Intelligence domains.
University Course Timetabling Problem (UCTP) is the
problem of allocating resources such as courses, teachers
and teaching space over time (usually a week) while
satisfying a number of constraints over those resources. The
constraints are normally divided into hard and soft. While
hard constraints must be satisfied, soft constraints are to be
satisfied as much as possible but can be tolerated when
necessary. Over the years, constructing a timetable at a
university has become more and more complex, mainly due
to the growing number of students and courses under limited
resources. No optimal algorithm is known for their solutions
within reasonable time [1]. However, several solution
techniques have been employed in trying to find good
solutions. These techniques include graph colouring, Integer
Programming, Global heuristics such as Tabu search,
Simulated Annealing, Genetic Algorithms [2] and Fuzzy
Logic [3].

A good number of papers have been published on UCTP
for specific Universities. Finding good quality solutions to
these problems depends on the technique itself and the
structure employed during the search. Artificial Intelligence
has been used with some success. One of the recent works
include Asaju et al [4] who applied Artificial Bee Colony on
Course timetabling and Socha et al [5] who applied a variant
of Ant-Colony called min-max Ant system. Hybrid methods
are also common in the literature such as the work by
Chiarandini et al [6]. The most popular and traditional
heuristic techniques includes Simulated Annealing and Tabu
Search. Mushi applied Simulated Annealing [7] and Tabu
Search [8] for a case study of the University of Dar es
salaam with recorded success. However, it was found that
the quality of solution depends on the selection of the set of
parameters to be used.

One of the challenges in heuristic algorithms therefore is
the dependency on selection of parameters for their
performances. The more the number of parameters required
the more unstable is the technique. Consequently, there is
demand for designs of good algorithms which requires less

number of parameters and therefore more stable. Burke and
Bykov [9] introduced a time-predefined approach for course
timetabling. This method requires the definition of only two
parameters which are; search time and an estimation of
desired solution quality. A work by Orbit et al [10],
introduces a Great Deluge algorithm which is another stable
procedure. This method tries to avoid the fall into local
solution and increase the chance of reaching a global
optimal solution by using a ‘water level’ parameter which is
slowly increased from lower levels. Recently, a new
approach on timetabling problems based on basic local
search had been proposed by Burke and Bykov [11]. This
works by delaying acceptance of solution during local
search and therefore named “Late Acceptance”.

The technique requires only one parameter, making it
more stable. A few papers have been reported on the
performance of this approach in different case studies
despite of its stability structure. Abuhamdah and Ayob [12]
extended Late Acceptance, by introducing the so called,
Average Late Acceptance Randomized Descent (ALARD)
to solve university course timetabling problem. In their work,
they only dealt with students’ satisfaction and did not
consider the lecturers allocation. This paper reports on a
case study of the Late Acceptance heuristic as implemented
to Mwenge University College of Education (MWUCE) in
Tanzania.

The paper starts by describing the course timetabling
problem at MWUCE, followed by mathematical
formulations. Late Acceptance Heuristic is then described
with its adaptation to MWUCE problem. A summary of
results is presented before giving a conclusion and
suggestions for future research.

II. COURSE TIMETABLING AT MWUCE

MWUCE is a young growing institution, which
continues to grow and expand in her structures and
programmes of study. The expansion of student enrolment
currently stands at approximately 1,700 students. There are
two semesters per each academic year with approximately
121 courses per semester, 22 rooms which includes
classrooms and laboratories, 91 lecturers, and 1,700 students
to be scheduled on a five days week. Each day is made up of

Allen Rangia Mushi et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 88-92

© 2010, IJARCS All Rights Reserved 89

10 one- hour timeslots starting from 8.00 a.m. to 6.00 p.m.,
giving a total of 50 timeslots for the whole timetabling
period. The necessary data includes students-course
registrations, lecturer-course assignments, course sizes,
room sizes and room types. Timetabling constraints are
normally divided into two, namely hard and soft. Hard
constraints must be satisfied for a feasible timetable, while
soft constraints are to be satisfied as much as possible
although their violation is tolerable. The following is the
situation at MWUCE in terms of hard and soft constraints;

A. Hard Constraints:
a. No student can attend more than one lecture at the

same time,
b. No lecturer can teach more than one lecture at the

same time,
c. No room can occupy more than one lecture at the

same time,
d. No room can be assigned a lecture with more

students than its capacity.

B. Soft Constraints:
a. Minimize the use of Friday midday and evening

timeslots to allow for Muslim prayers and Adventists
Sabbath Day (SDA) respectively.

b. Minimize the use of evening timeslots throughout the
week. These times are not very popular because of
shortage of accommodation in the college for both
students and lecturers, where most of them live far
away from the college.

c. Spread lectures of the same course over the week. It
is not desirable to have all lectures on the same day
or close days.

C. Model Formulation:
Consider the following definitions;
A= {1,…,K} is a set of courses
B= {1,…,T} is a set of timeslots
C= {1,…,R} is a set of rooms

=kx Timeslot of course k
=ky Room of course k

rC = Capacity of room r

ka = Number of students in course k
And collision matrix;





=
otherwise0

 k course with collides k course if1 21

21kkm ,

Hard constraints are then formulated as follows;

a. Course collision:

We say that courses k1 and k 2 collides if they have at
least one student or lecturer in common. Note that when the
two courses collide then collision matrix associated with the
two courses will have a value of 1 (i.e.

 21kkm =1). To
constrain this case, we must make sure that when the two
courses collide then they are not slotted in the same timeslot
i.e.

21 ,1
221121

kkxmxm kkkkkk ≠∀≤+

b. Room collision:
No room can have more than one course at the same

timeslot i.e. given any two courses k1 and k2, then

2121
)(kkkk yyxx ≠⇒=

And

2121
)(kkkk xxyy ≠⇒= 2121, kkkk ≠∋∀

Let 

 ≠

=
otherwise0

 yy if1
21 kk

1α



 =

=
otherwise0

 x xif1
21 kk

2α

Then we have 021 ≤−αα

c. Room capacity:
No room can have more students than its capacity i.e.

kyk Ca ≤ for all rooms ky
Soft constraints in this application make up the objective

function. This is found by minimizing the cost associated
with penalties on violations of soft constraints. The
formulation of each soft constraint is explained as follows;

d. Minimize the use of religion and evening periods;

Let


 =

=
 Otherwise 0

 xif 1 k i
uki

then
∑∑

∈

=
k Gi

kiuxf 11)(λ
 and

∑∑
∈

=
k Hi

kiuxf 22)(λ

Where 1λ = weight given to evening timeslots,

2λ = weight given to religion timeslots,
G= timeslots of the evening periods of the week,
H= timeslots of the religion periods of the Fridays

e. Spread consecutive course lectures over the week:
If ()axk =

1
 and ()bxk =

2
 then

||||
12 kk xxab −=− should be as large as possible.

And ()2
12

1

kk xx
t

−
= should be as small as possible

Hence, ()2
12

1

kk xx
t

−
= is to be minimized

The resulting objective function is therefore;

()()
∑ ∑

∑ ∑∑∑

≠
∈

∈∈

−

++=

21

21
12

,
26

21

1

kk

kk

xx
Txx kk

k k Hi
ki

Gi
ki

xx

uuzMinimize

λ

λλ

Where λ6= weight given to the constraint on distance
between events.

Since we are using heuristics in the implementation, we
have decided to have all constraints in the objective function
and penalize higher on the hard constraints. The objective
function is therefore presented by combining all equations
as follows;

++= ∑∑∑∑
∈∈ k Hi

ki
k Gi

ki uuuyxf
Minimize

21),,(

λλ ()
∑

∈

−+
Kkk

kkkk xxm
21

2121
,

3)1(λ





=
0
1

21kkm
{=

21 kkm

Allen Rangia Mushi et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 88-92

© 2010, IJARCS All Rights Reserved 90

 ()
()∑ ∑∑ +−++

=k k
ky

i
k acy

ki 5
2,1

4 λλ
()()

∑ ∑
≠

∈ −k
xx

Txx kk
kk

kk xx
21

21
12

,
26

1λ

Where),,(1 uyxf is the use of special times for evening
timeslots,),,(2 uyxf is the use of special times for religion
timeslots,),,(3 uyxf represents students lecturer collisions,

),,(4 uyxf is for room clashes,),,(5 uyxf is for room size
violations and),,(6 uyxf is the distance between events of
the same course.

III. LATE ACCEPTANCE HEURISTIC

Late Acceptance heuristic tries to avoid falling into local
optima by instituting various strategies which involves
careful acceptance of bad solution (moves) in anticipation
for better results in future. It accepts a candidate solution if
it is not worse than that solution which was “current’’
several steps before. The work by [11]; gives a
comprehensive description of the technique. The algorithm
only requires one parameter L and is as presented in Fig.1.

Given an initial solution 0S and)(0Sf)

Set bestS = 0S ,)(bestSf =)(0Sf

Set all initial values in L=)(0Sf)

I=0;
for n=0 to N

Generate some feasible neighbour solutions of 0S and choose the best

neighbour (*S)

If)(*Sf)<)(bestSf)

bestS = *S ,)(bestSf)=)(*Sf);

0S = *S ;

Else
V = I mod L

If)(*Sf)(vSf≤)

0S = *S ;)(vSf)=)(*Sf ; I = I+1;

End if
End if
End for
Return the best obtained feasible solution

Figure. 1 Late Acceptance Algorithm

A. Adapting Late Acceptance to MWUCE:
To apply Late acceptance to MWUCE Timetabling, one

needs to make a number of decisions with respect to the
general algorithm; these are the kind of initial solution,
neighbourhood structure, length of the list L, initial values,
cooling function and stopping criteria.

a. Initial Solution:
It is preferable to start with an initial solution which

satisfies all the hard constraints to give an initial feasible
solution. This can be used to ensure that the selected
solution neighbourhood is always feasible. However,
finding an initial feasible solution may be expensive in
terms of time. It may not be a very good idea to spend most

of the reasonable time in finding initial feasible solution; the
whole process may be too time-consuming. The chosen
strategy is to start with the simple initial solution which is
infeasible and penalise all infeasibilities in the objective
function. The following simple algorithm was therefore
applied to obtain an initial solution;

Sort the courses and rooms in descending order of capacity
For all courses starting from the beginning;
Assign a course to the latest available timeslot and room
If timeslots or rooms have been exhausted;

go to the beginning of the list
End if
End for

Figure. 2: Initial Solution Algorithm

Though simple but it is helpful since it reduces the
possibility of course collisions; neighbouring courses are
more likely to be assigned into different timeslots.

b. Neighbourhood Structure:
In this work, we have used different neighbourhood

structures as follows:
NS1: Randomly select two courses and swap their

timeslots if feasible (and swap their rooms if necessary).
NS2: Pick a course randomly; find a neighbourhood to

the left and right then change timeslots randomly for courses
in the neighbourhood and check for both course collision
and room capacity collision.

NS3: Pick a course randomly and replace its timeslot
with a randomly selected timeslot.

NS4: Randomly select four courses and swap their
timeslots if feasible (and swap their rooms if necessary).

c. Length of the list L:
We have applied different values of L in anticipation for

better results. From experiments with the algorithm, the best
values of L were found to be between 6 and 12. Note that
this is the only parameter required in the Late Acceptance
heuristic.

d. Stopping criteria :
The stopping criteria used in this study is a pre-

determined value N. The best values for this are obtained
experimentally and found to be in the range from 100,000 to
100,000,000. It is worth noting that this criterion does not
have to be pre-determined as can be related to the quality of
solution.

During experimentation, the algorithm output was
compared to that of Simulated Annealing. We present here
the Simulated Annealing algorithm and show how it was
implemented in the study.

e. Simulated Annealing Algorithm:
The algorithm is a simulation of the physical cooling

process called “annealing”, where the physical objects cools
slowly down by following a particular cooling schedule. A
temperature value is defined initially, and cools slowly until
an equilibrium point is achieved. The work by Collin [13],
gives a comprehensive description of the technique. The
algorithm is as presented below;

Allen Rangia Mushi et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 88-92

© 2010, IJARCS All Rights Reserved 91

Simulated_Annealing
Select an initial solution so;
Select an initial temperature 00 >t ;
Select a temperature reduction function f;
While (Not Freezing_Condition)
 Randomly select)(0SNS ∈ ;

)()(0SfSf −=σ ;

 If(0<σ) SS =0 ;
 else
 generate random x uniformly in range (0, 1)

 if(x < exp(t
σ−) SS =0 ; end if

 end if
 Update temperature)(tft = ;
 Check_Freezing_Condition (t);
End while

0S is the approximate solution
End Simulated Annealing

Figure. 3: Simulated Annealing Algorithm

Same initial solution strategy and neighbourhood
structures were used in Simulated Annealing. The most
common temperature reduction function is geometric
function; ttf α=)(where 99.08.0 ≤≤α .

IV. SUMMARY OF RESULTS

In this chapter, we present and discuss results of the
algorithms using data from MWUCE whose properties are
summarised in Table I.

Table 1: Summary of Data

Number of
students

Number of
courses

Number of
rooms

Number of
lecturers

1700 121 22 91

The algorithm was implemented on C++ compiler and
test run on Intel(R) core(TM) i3 CPU M370@2.40GHz
machine. The results are as presented in Table II with
varying values of L, iteration J and using different
neighbourhood structures. ‘Cc’ is the total number of course
collisions in the solution, while ‘Rc’ is the total number of
room collisions in the solution and, ‘Cp’ is the total number
of Capacity collisions.
Table 2: Results obtained using Late Acceptance at iteration j=10,000,000

Neighborhood Length L Cc Rc Cp Final
solution

Time(s)

NS1

7 0 0 9 7914 4185.75

8 0 0 9 7914 4185.34

10 0 0 9 7914 4186.34

12 0 0 9 7914 4189.07

NS4
7 4 0 4 7834 4199.57
12 4 0 4 7834 4178.11

NS2

7 19 0 1 8797 4214.04
8 19 0 1 8797 4135.72
9 23 0 1 9090 4198.36
10 11 12 1 9068 4203.43
11 13 2 1 8459 4188.8

NS3
7 8 2 1 8034 4198.84
8 8 2 1 8034 4198.66
10 8 2 1 8034 4180.32

After experimentation with varying values of
neighbourhood, L and J, the best results were obtained when
J=10,000,000. The best value is obtained at neighbourhood
NS4 with L=12. However, this corresponds to 4 course
collisions and 4 capacity collisions. Due to the importance
of having course collision-free timetable, it is preferable to
have a solution which has no course or room collisions. The
most preferable timetable is therefore corresponding to NS1
with L=8, where Cc=0, Rc=0 and Cp=9.

A comparison was done with Simulated Annealing
solution where the best results are presented in Table III
with NBR4.

Table 3: Results obtained after using Geometric Cooling Function

T
em

pe
ra

tu
r

e α C
c

R
c

C
p

Fi
na

l
so

lu
tio

n

T
im

e(
se

c)

100000 0.995 19 0 3 8954 1.451

100000 0.998 21 0 4 9194 3.682

100000 0.999 18 0 5 9034 7.878

1000000 0.995 19 0 3 8934 1.591

1000000 0.998 18 0 3 8874 4.025

1000000 0.999 12 0 6 8634 8.58

10000000 0.995 17 0 3 8794 1.81

10000000 0.998 18 0 5 9034 4.461

10000000 0.999 16 0 3 8714 9.235

100000000 0.9999 7 0 9 8474 117.85

The parameters freezing point 0.00005, alpha (α)

=0.9999 and temperature of 100,000,000 produced the
solution of 8,474 at running time of 117.85. This set gives
the best solution for Simulated Annealing with Cc=7, Rc-0
and Cp=9. The quality of solution in this case is lower than
that of Late Acceptance.

V. CONCLUSION

The study experimented on Late Acceptance heuristic
which is one of recent strategies and compared results with
those of Simulated Annealing which is a well known
efficient technique. This was done purposely because this is
the first study on the MWUCE data set and therefore no
previous results are available for comparison.

It has been concluded that Late Acceptance is a good
strategy for MWUCE course timetabling. Although no
feasible solution was found, the best solution greatly
reduced infeasibilities in the original problem. In the best
solution, both values of L gave a solution with zero values
of course collisions and room collisions with a
neighbourhood of NS1. In this case, a feasible solution can
be easily obtained by fixing other resources and just expand
slightly the room capacities. Although neighbourhood NS4
provided the lowest value of final solution, it failed to
achieve collision-free courses which are more complex
constraint. With these results it has also been observed that
the neighbourhood NS1 outperforms all other
neighbourhood structures. Furthermore, Late Acceptance
demonstrated better results than Simulated Annealing
technique for the tested data set.

mailto:M370@2.40GHz�

Allen Rangia Mushi et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 88-92

© 2010, IJARCS All Rights Reserved 92

The results indicate that the current timetabling system at
MWUCE operates under constraints on room capacities.
Some candidates may be studying under unfavourable
conditions.

VI. FUTURE RESEARCH DIRECTIONS

There is a need to search for better stable algorithms
which do not greatly depend on the choice of parameters.
Other soft constraints were not considered in this paper such
as such lecturer’s preferences and academic institution’s
regulations. Exploration of more neighbourhood structures
might improve performance. Furthermore, it would be
interesting to simulate room sizes and test the algorithm so
as to advise management on the extent of room extension
required that would lead to good feasible solution.

VII. REFERENCES

[1] Cooper T., Kingston J. “The Complexity of Timetable
Construction Problems”, 1996, Springer Lecture Notes in
Computer Science 1153, pages 283-295

[2] A. Schaerf, “A survey of Automated Timetabling”,
Technical Report CS - R9567, CW1, Amsterdam, NL, 1995.

[3] A. Chaudhuri1 and Kajal De, “Fuzzy Genetic Heuristic for
University Course Timetable Problem”, Int. J. Advance.
Soft Comput. Appl., Vol. 2, No. 1, March 2010, pages 100-
123.

[4] L. Asaju, T. Ahamad, and A. Mohammed, “Tackling
University Course Timetabling Problem using Artificial
Bee Colony”, Frontiers in information technology by Al-
Dahoud Ali, Masaum Network 2012 chapter twelve.

[5] K. Socha, J.D. Knowles, and M. Samples, “A max - min
ant system for the university course timetabling problems”,

In: Ant Algorithms: Proceedings of the Third International
Workshop (ANTS 2002), LNCS 2463, pp. 1 - 13, Springer

[6] M. Chiarandini, M. Birattari, and K. Socha “An effective
hybrid algorithm for university course timetabling”,
Journal of Scheduling, Vol. 9, Issue 5, pp. 403- 432, 2006.

[7] A. R. Mushi, “Two-phase Heuristic algorithm for
University Course Timetabling problem: The case of
University of Dar es salaam”, Tanzania Journal of Science.
Vol.37, pp 73-83, 2011.

[8] A. R. Mushi, “Tabu Search Heuristics for University
Course Timetabling problem”, African Journal of Science
and Technology.Vol.7, No.1, pp 34-40, 2006.

[9] E. K. Burke and Y. Bykov, A time-predefined approach to
course timetabling, Yugoslav J. Operations Res., (YUJOR),
13(2):139-151, 2003.

[10] J. H. Orbit, D.L. Silva, D. Ouelhadj, and M. Sevaux, “Non-
Linear Great Deluge with learning Mechanism for Solving
the Course timetabling problem”, MIC 2009: The VIII
Meta - heuristics International Conference, Hamburg,
Germany, pp. Id1 - id10.

[11] E. K. Burke and Y. Bykov, “A late acceptance strategy in
Hill-climbing for Examinations Timetabling”, In PATAT
'08 Proceedings of the 7th International Conference on the
Practice and Theory of Automated Timetabling, 2008.

[12] A. Abuhamdah and M. Ayob, “Average Late Acceptance
Randomized Descent Algorithm for solving course
timetabling problems”, Proceeding in 4th International
symposium on information technology, Selangor, Malaysia,
IEEE, 2(15-7), 748-753, 2010.

[13] Colin R. Reeves (Ed.) “Modern Heuristic Techniques for
Combinatorial Problems”, Blackwell Scientific
Publications, Oxford, 1993.

	Course collision:
	Room collision:
	Room capacity:
	Minimize the use of religion and evening periods;
	Spread consecutive course lectures over the week:
	Length of the list L:
	Stopping criteria :

