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Abstract: This paper describes a Late Acceptance Heuristic for University Course Timetabling Problem, using a case study of a University 
College in Tanzania. Late Acceptance is one of relatively new heuristic procedures that try to improve searching by delaying acceptance of latest 
solutions. The results are compared with an implementation on Simulated Annealing heuristic, which is a well documented and successful 
heuristic procedure for similar problems. It is shown that Late Acceptance Procedure is a good procedure for Course timetabling problem and 
compares well with Simulated Annealing.  
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I. INTRODUCTION 

Timetabling Problem is a Combinatorial Optimisation 
Problem which has captured the interest of many researchers 
in Operations Research and Artificial Intelligence domains. 
University Course Timetabling Problem (UCTP) is the 
problem of allocating resources such as courses, teachers 
and teaching space over time (usually a week) while 
satisfying a number of constraints over those resources. The 
constraints are normally divided into hard and soft. While 
hard constraints must be satisfied, soft constraints are to be 
satisfied as much as possible but can be tolerated when 
necessary. Over the years, constructing a timetable at a 
university has become more and more complex, mainly due 
to the growing number of students and courses under limited 
resources. No optimal algorithm is known for their solutions 
within reasonable time [1]. However, several solution 
techniques have been employed in trying to find good 
solutions. These techniques include graph colouring, Integer 
Programming, Global heuristics such as Tabu search, 
Simulated Annealing, Genetic Algorithms [2] and Fuzzy 
Logic [3].  

A good number of papers have been published on UCTP 
for specific Universities. Finding good quality solutions to 
these problems depends on the technique itself and the 
structure employed during the search. Artificial Intelligence 
has been used with some success. One of the recent works 
include Asaju et al [4] who applied Artificial Bee Colony on 
Course timetabling and Socha et al [5] who applied a variant 
of Ant-Colony called min-max Ant system. Hybrid methods 
are also common in the literature such as the work by 
Chiarandini et al [6]. The most popular and traditional 
heuristic techniques includes Simulated Annealing and Tabu 
Search. Mushi applied Simulated Annealing [7] and Tabu 
Search [8] for a case study of the University of Dar es 
salaam with recorded success. However, it was found that 
the quality of solution depends on the selection of the set of 
parameters to be used.  

One of the challenges in heuristic algorithms therefore is 
the dependency on selection of parameters for their 
performances. The more the number of parameters required 
the more unstable is the technique. Consequently, there is 
demand for designs of good algorithms which requires less 

number of parameters and therefore more stable. Burke and 
Bykov [9] introduced a time-predefined approach for course 
timetabling. This method requires the definition of only two 
parameters which are; search time and an estimation of 
desired solution quality. A work by Orbit et al [10], 
introduces a Great Deluge algorithm which is another stable 
procedure. This method tries to avoid the fall into local 
solution and increase the chance of reaching a global 
optimal solution by using a ‘water level’ parameter which is 
slowly increased from lower levels. Recently, a new 
approach on timetabling problems based on basic local 
search had been proposed by Burke and Bykov [11]. This 
works by delaying acceptance of solution during local 
search and therefore named “Late Acceptance”.  

The technique requires only one parameter, making it 
more stable. A few papers have been reported on the 
performance of this approach in different case studies 
despite of its stability structure. Abuhamdah and Ayob [12] 
extended Late Acceptance, by introducing the so called, 
Average Late Acceptance Randomized Descent (ALARD) 
to solve university course timetabling problem. In their work, 
they only dealt with students’ satisfaction and did not 
consider the lecturers allocation. This paper reports on a 
case study of the Late Acceptance heuristic as implemented 
to Mwenge University College of Education (MWUCE) in 
Tanzania.  

The paper starts by describing the course timetabling 
problem at MWUCE, followed by mathematical 
formulations. Late Acceptance Heuristic is then described 
with its adaptation to MWUCE problem. A summary of 
results is presented before giving a conclusion and 
suggestions for future research.  

II. COURSE TIMETABLING AT MWUCE  

MWUCE is a young growing institution, which 
continues to grow and expand in her structures and 
programmes of study. The expansion of student enrolment 
currently stands at approximately 1,700 students. There are 
two semesters per each academic year with approximately 
121 courses per semester, 22 rooms which includes 
classrooms and laboratories, 91 lecturers, and 1,700 students 
to be scheduled on a five days week. Each day is made up of 
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10 one- hour timeslots starting from 8.00 a.m. to 6.00 p.m., 
giving a total of 50 timeslots for the whole timetabling 
period. The necessary data includes students-course 
registrations, lecturer-course assignments, course sizes, 
room sizes and room types. Timetabling constraints are 
normally divided into two, namely hard and soft. Hard 
constraints must be satisfied for a feasible timetable, while 
soft constraints are to be satisfied as much as possible 
although their violation is tolerable. The following is the 
situation at MWUCE in terms of hard and soft constraints;  

A. Hard Constraints: 
a. No student can attend more than one lecture at the 

same time, 
b. No lecturer can teach more than one lecture at the 

same time, 
c. No room can occupy more than one lecture at the 

same time, 
d. No room can be assigned a lecture with more 

students than its capacity. 

B. Soft Constraints: 
a. Minimize the use of Friday midday and evening 

timeslots to allow for Muslim prayers and Adventists 
Sabbath Day (SDA) respectively.  

b. Minimize the use of evening timeslots throughout the 
week. These times are not very popular because of 
shortage of accommodation in the college for both 
students and lecturers, where most of them live far 
away from the college.  

c. Spread lectures of the same course over the week. It 
is not desirable to have all lectures on the same day 
or close days. 

C. Model Formulation:  
Consider the following definitions;  
A= {1,…,K} is a set of courses 
B= {1,…,T} is a set of timeslots 
C= {1,…,R} is a set of rooms 

=kx Timeslot of course k  
=ky Room of course k  

rC = Capacity of room r  

ka = Number of students in course k  
And collision matrix;  





=
otherwise0

 k course with collides  k course if1 21

21kkm ,  

Hard constraints are then formulated as follows;  

a. Course collision: 

We say that courses k1  and k 2  collides if they have at 
least one student or lecturer in common. Note that when the 
two courses collide then collision matrix associated with the 
two courses will have a value of 1 (i.e.

 21kkm  =1). To 
constrain this case, we must make sure that when the two 
courses collide then they are not slotted in the same timeslot 
i.e.  

21   ,1
221121

kkxmxm kkkkkk ≠∀≤+   

b. Room collision: 
No room can have more than one course at the same 

timeslot i.e. given any two courses k1 and k2, then  

2121
)( kkkk yyxx ≠⇒=   

And  

2121
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Then we have 021 ≤−αα   

c. Room capacity: 
No room can have more students than its capacity i.e. 

kyk Ca ≤  for all rooms ky   
Soft constraints in this application make up the objective 

function. This is found by minimizing the cost associated 
with penalties on violations of soft constraints. The 
formulation of each soft constraint is explained as follows;  

d. Minimize the use of religion and evening periods;  

Let 


 =

=
 Otherwise  0

 xif     1 k i
uki  

then  
∑∑

∈

=
k Gi

kiuxf 11 )( λ
 and  
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=
k Hi

kiuxf 22 )( λ  

Where  1λ  = weight given to evening timeslots, 

2λ  = weight given to religion timeslots, 
G= timeslots of the evening periods of the week,  
H= timeslots of the religion periods of the Fridays  

e. Spread consecutive course lectures over the week: 
If ( )axk =

1
 and ( )bxk =

2
 then 

||||
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And ( )2
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The resulting objective function is therefore;  
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Where λ6= weight given to the constraint on distance 
between events. 

Since we are using heuristics in the implementation, we 
have decided to have all constraints in the objective function 
and penalize higher on the hard constraints. The objective 
function is therefore presented by combining all equations 
as follows;  
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Where ),,(1 uyxf  is the use of special times for evening 
timeslots, ),,(2 uyxf  is the use of special times for religion 
timeslots, ),,(3 uyxf  represents students lecturer collisions, 

),,(4 uyxf  is for room clashes, ),,(5 uyxf  is for room size 
violations and ),,(6 uyxf  is the distance between events of 
the same course.  

III. LATE ACCEPTANCE HEURISTIC  

Late Acceptance heuristic tries to avoid falling into local 
optima by instituting various strategies which involves 
careful acceptance of bad solution (moves) in anticipation 
for better results in future. It accepts a candidate solution if 
it is not worse than that solution which was “current’’ 
several steps before. The work by [11]; gives a 
comprehensive description of the technique. The algorithm 
only requires one parameter L and is as presented in Fig.1.  

Given an initial solution 0S  and )( 0Sf ) 

Set bestS = 0S , )( bestSf = )( 0Sf  

Set all initial values in L= )( 0Sf ) 

I=0;  
for n=0 to N 

Generate some feasible neighbour solutions of 0S  and choose the best 

neighbour ( *S ) 

If )( *Sf )< )( bestSf ) 

bestS = *S , )( bestSf )= )( *Sf );  

0S = *S ;  

Else  
V = I mod L  

If )( *Sf )( vSf≤ ) 

0S = *S ; )( vSf )= )( *Sf ; I = I+1;  

End if  
End if 
End for 
Return the best obtained feasible solution  

Figure. 1  Late Acceptance Algorithm  

A. Adapting Late Acceptance to MWUCE: 
To apply Late acceptance to MWUCE Timetabling, one 

needs to make a number of decisions with respect to the 
general algorithm; these are the kind of initial solution, 
neighbourhood structure, length of the list L, initial values, 
cooling function and stopping criteria.  

a. Initial Solution: 
It is preferable to start with an initial solution which 

satisfies all the hard constraints to give an initial feasible 
solution. This can be used to ensure that the selected 
solution neighbourhood is always feasible. However, 
finding an initial feasible solution may be expensive in 
terms of time. It may not be a very good idea to spend most 

of the reasonable time in finding initial feasible solution; the 
whole process may be too time-consuming. The chosen 
strategy is to start with the simple initial solution which is 
infeasible and penalise all infeasibilities in the objective 
function. The following simple algorithm was therefore 
applied to obtain an initial solution;  

Sort the courses and rooms in descending order of capacity  
For all courses starting from the beginning; 
Assign a course to the latest available timeslot and room 
If timeslots or rooms have been exhausted;  

go to the beginning of the list 
End if  
End for 

Figure. 2: Initial Solution Algorithm  

Though simple but it is helpful since it reduces the 
possibility of course collisions; neighbouring courses are 
more likely to be assigned into different timeslots.  

b. Neighbourhood Structure: 
In this work, we have used different neighbourhood 

structures as follows: 
NS1: Randomly select two courses and swap their 

timeslots if feasible (and swap their rooms if necessary). 
NS2: Pick a course randomly; find a neighbourhood to 

the left and right then change timeslots randomly for courses 
in the neighbourhood and check for both course collision 
and room capacity collision.  

NS3: Pick a course randomly and replace its timeslot 
with a randomly selected timeslot.  

NS4: Randomly select four courses and swap their 
timeslots if feasible (and swap their rooms if necessary). 

c. Length of the list L: 
We have applied different values of L in anticipation for 

better results. From experiments with the algorithm, the best 
values of L were found to be between 6 and 12. Note that 
this is the only parameter required in the Late Acceptance 
heuristic.  

d. Stopping criteria : 
The stopping criteria used in this study is a pre-

determined value N. The best values for this are obtained 
experimentally and found to be in the range from 100,000 to 
100,000,000. It is worth noting that this criterion does not 
have to be pre-determined as can be related to the quality of 
solution.  

During experimentation, the algorithm output was 
compared to that of Simulated Annealing. We present here 
the Simulated Annealing algorithm and show how it was 
implemented in the study.  

e. Simulated Annealing Algorithm: 
The algorithm is a simulation of the physical cooling 

process called “annealing”, where the physical objects cools 
slowly down by following a particular cooling schedule. A 
temperature value is defined initially, and cools slowly until 
an equilibrium point is achieved. The work by Collin [13], 
gives a comprehensive description of the technique. The 
algorithm is as presented below;  
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Simulated_Annealing  
Select an initial solution so; 
Select an initial temperature 00 >t ; 
Select a temperature reduction function f;  
While (Not Freezing_Condition ) 
 Randomly select )( 0SNS ∈ ;  

 )()( 0SfSf −=σ ;  

 If( 0<σ ) SS =0 ; 
 else 
 generate random x uniformly in range (0, 1)  

  if( x < exp( t
σ− ) SS =0 ; end if  

 end if  
 Update temperature )(tft = ;  
 Check_Freezing_Condition (t);  
End while  

0S  is the approximate solution  
End Simulated Annealing  

Figure. 3: Simulated Annealing Algorithm 

Same initial solution strategy and neighbourhood 
structures were used in Simulated Annealing. The most 
common temperature reduction function is geometric 
function; ttf α=)(  where 99.08.0 ≤≤α .  

IV. SUMMARY OF RESULTS  

In this chapter, we present and discuss results of the 
algorithms using data from MWUCE whose properties are 
summarised in Table I.  

Table 1: Summary of Data 

Number of 
students 

Number of 
courses 

Number of 
rooms 

Number of 
lecturers 

1700 121 22 91 
 

The algorithm was implemented on C++ compiler and 
test run on Intel(R) core(TM) i3 CPU M370@2.40GHz 
machine. The results are as presented in Table II with 
varying values of L, iteration J and using different 
neighbourhood structures. ‘Cc’ is the total number of course 
collisions in the solution, while ‘Rc’ is the total number of 
room collisions in the solution and, ‘Cp’ is the total number 
of Capacity collisions.  
Table 2: Results obtained using Late Acceptance at iteration j=10,000,000 

Neighborhood Length L Cc Rc Cp Final  
solution 

Time(s) 

NS1 

7 0 0 9 7914 4185.75 

8 0 0 9 7914 4185.34 

10 0 0 9 7914 4186.34 

12 0 0 9 7914 4189.07 

NS4 
7 4 0 4 7834 4199.57 
12 4 0 4 7834 4178.11 
 

NS2 

7 19 0 1 8797 4214.04 
8 19 0 1 8797 4135.72 
9 23 0 1 9090 4198.36 
10 11 12 1 9068 4203.43 
11 13 2 1 8459 4188.8 

NS3 
7 8 2 1 8034 4198.84 
8 8 2 1 8034 4198.66 
10 8 2 1 8034 4180.32 

 

After experimentation with varying values of 
neighbourhood, L and J, the best results were obtained when 
J=10,000,000. The best value is obtained at neighbourhood 
NS4 with L=12. However, this corresponds to 4 course 
collisions and 4 capacity collisions. Due to the importance 
of having course collision-free timetable, it is preferable to 
have a solution which has no course or room collisions. The 
most preferable timetable is therefore corresponding to NS1 
with L=8, where Cc=0, Rc=0 and Cp=9.  

A comparison was done with Simulated Annealing 
solution where the best results are presented in Table III 
with NBR4.  

Table 3: Results obtained after using Geometric Cooling Function 

T
em

pe
ra

tu
r

e α C
c 

R
c 

C
p 

Fi
na

l 
so

lu
tio

n 

T
im

e(
se

c)
 

100000 0.995 19 0 3 8954 1.451 

100000 0.998 21 0 4 9194 3.682 

100000 0.999 18 0 5 9034 7.878 

1000000 0.995 19 0 3 8934 1.591 

1000000 0.998 18 0 3 8874 4.025 

1000000 0.999 12 0 6 8634 8.58 

10000000 0.995 17 0 3 8794 1.81 

10000000 0.998 18 0 5 9034 4.461 

10000000 0.999 16 0 3 8714 9.235 

100000000 0.9999 7 0 9 8474 117.85 

 
The parameters freezing point 0.00005, alpha (α) 

=0.9999 and temperature of 100,000,000 produced the 
solution of 8,474 at running time of 117.85. This set gives 
the best solution for Simulated Annealing with Cc=7, Rc-0 
and Cp=9. The quality of solution in this case is lower than 
that of Late Acceptance.  

V. CONCLUSION  

The study experimented on Late Acceptance heuristic 
which is one of recent strategies and compared results with 
those of Simulated Annealing which is a well known 
efficient technique. This was done purposely because this is 
the first study on the MWUCE data set and therefore no 
previous results are available for comparison.  

It has been concluded that Late Acceptance is a good 
strategy for MWUCE course timetabling. Although no 
feasible solution was found, the best solution greatly 
reduced infeasibilities in the original problem. In the best 
solution, both values of L gave a solution with zero values 
of course collisions and room collisions with a 
neighbourhood of NS1. In this case, a feasible solution can 
be easily obtained by fixing other resources and just expand 
slightly the room capacities. Although neighbourhood NS4 
provided the lowest value of final solution, it failed to 
achieve collision-free courses which are more complex 
constraint. With these results it has also been observed that 
the neighbourhood NS1 outperforms all other 
neighbourhood structures. Furthermore, Late Acceptance 
demonstrated better results than Simulated Annealing 
technique for the tested data set.  

mailto:M370@2.40GHz�
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The results indicate that the current timetabling system at 
MWUCE operates under constraints on room capacities. 
Some candidates may be studying under unfavourable 
conditions. 

VI. FUTURE RESEARCH DIRECTIONS  

There is a need to search for better stable algorithms 
which do not greatly depend on the choice of parameters. 
Other soft constraints were not considered in this paper such 
as such lecturer’s preferences and academic institution’s 
regulations. Exploration of more neighbourhood structures 
might improve performance. Furthermore, it would be 
interesting to simulate room sizes and test the algorithm so 
as to advise management on the extent of room extension 
required that would lead to good feasible solution.  
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