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Abstract: In today’s society people become more and more dependent on computer systems. It is therefore vital that such systems are up and 
running at all times. One factor that has the power to destroy the availability is computer network attacks (CNA). (CNA are defined as "methods 
aimed at destroying, altering or obstructing information in computers, computer networks or the networks themselves"). Unfortunately, the 
Internet show an increasing trend regarding the usage of malicious activities such as intrusion attempts, denial-of-service attacks, phishing, 
spamming and worms. Some automated attacks can compromise a large number of computers in a short period of time. To try to minimize this 
threat, it would be nice to have a security system which has the ability to detect new attacks and react on them. This work focuses on seeing how 
good IDS rules that can be generated automatically based on data logged by a simple honypot. The result will be based on data collected by a 
network intrusion detection system named SNORT, a low-interaction honeypot named honeyd and a vulnerability scanner named Nessus.  
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I. INTRODUCTION 

This paper covers issues regarding behavior and 
implementation of a simple honeypot and the use of such 
technology in creating IDS rules. A honeypot is a computer 
that is implemented in a network for the purpose of 
attracting attackers. This computer has nothing to do with 
the production network, thus all traffic into the honeypot is 
by definition malicious [1]. This work focuses on signature 
generation. At present, the creation of these signatures is a 
tedious, manual process that requires detailed knowledge of 
each software exploit that is supposed to be captured. 
Simplistic signatures tend to generate large numbers of false 
positives, too specific ones cause false negatives.  

The goal is to attract attackers by pretending to be an 
interesting network. The log files from the honeypot serve 
as data collectors in conjunction with other widely used data 
collectors such as tcpdump [4] if needed. A security scanner 
named Nessus [2] is used to generate traffic towards the 
honeypot, leaving us with full control of the entire system. 
We use SNORT [3], a signature based Network intrusion 
detection system (NIDS) to check if the rules we create are 
usable. The main goal is to see how good SNORT rules that 
can be made, with as little user intervention as possible, 
based on information from the collected data. 

II. LITERATURE REVIEW 

A. Intrusion Detection System: 
Many IDS’s in use today are signature based. These 

IDS’ are only capable of detecting already known attacks 
(attacks which have a signature entry in the database of the 
IDS). 

This is a huge problem when new attacks arrive. A 
signature based IDS are only capable of detecting alterations 
of already known attacks at best. Therefore there is an 
interest in trying to make a rule generating system to 
automatically generate new rules when new attacks arrive. 

In this work we look at the possibility of using a low-
interaction honeypot to address this problem. The important 
question is then if the honeypot logs sufficient information 
to make rules out of. We propose a measurement method to 
see how good the rules we create are, compared to original 
rules alerting on the same threat. 

Generally, a good signature must be narrow enough to 
capture precisely the characteristic aspects of exploit it 
attempts to address; at the same time, it should be flexible 
enough to capture variations of the attack. Failure in one 
way or the other leads to either large amounts of false 
positives or false negatives. 

Our system supports signatures for the Snort [3] NIDSs. 
We include Snort here because of its current popularity and 
large signature repository. 

B. Honeypots: 
Honeypots are decoy computer resources set up for the 

purpose of monitoring and logging the activities of entities 
that probe, attack or compromise them[5][6][7]. Activities 
on honeypots can be considered suspicious by definition, as 
there is no point for benign users to interact with these 
systems. Honeypots come in many shapes and sizes; 
examples include dummy items in a database, low-
interaction network components like preconfigured traffic 
sinks, or full-interaction hosts with real operating systems 
and services. Our system is an extension of honeyd [8], a 
popular low-interaction open-source honeypot. honeyd 
simulates hosts with individual networking personalities. It 
intercepts traffic sent to nonexistent hosts and uses the 
simulated systems to respond to this traffic. Each host's 
personality can be individually configured in terms of OS 
type (as far as detectable by common fingerprinting tools) 
and running network services (termed subsystems). 

C. String-based Pattern Detection Algorithms: 
Our system is unique in that it generates signatures. In 

contrast to NIDSs, it cannot read a database of signatures 
upon startup to match them against live traffic to spot 
matches. 
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Thus, the commonly employed pattern-matching 
algorithms in NIDSs are of no use to us. Instead, the system 
tries to spot patterns in traffic previously seen on the 
honeypot: we overlay parts of flows in the traffic and use a 
longest common substring (LCS) algorithm to spot 
similarities in packet payloads. Like pattern matching, LCS 
algorithms have been thoroughly studied in the past. Our 
LCS implementation is based on suffix trees, which are used 
as building blocks for a variety of string algorithms. Using 
suffix trees, the longest common substring of two strings is 
straightforward to find in linear time [9]. Several algorithms 
have been proposed to build suffix trees in linear time 
[10][11]. 

III. RULE GENERATING SYSTEM 

The following sections explain individual aspects of our 
system in detail. 

A. How to generate SNORT rules: 
In this section we explain how we generate the rules 

used in the experiments. Before the rule generating can 
begin, we need a dataset with malicious traffic. This is taken 
care of by the honeypot and Nessus. We use Nessus to scan 
a specific service on a specific virtual host on the honeypot. 
The traffic is also run through the SNORT IDS to see what 
traffic raises alerts. Then the dataset is edited to only include 
data SNORT alerted on. This is because we only want to 
create rules for traffic we know SNORT has a rule for. The 
reason for this is that we need to have a counterpart in order 
to measure the differences between the original rules and the 
new rules. The goal is to see if we are able to create working 
rules based on information logged by a low-interaction 
honeypot as honeyd. We will compare the new rules to the 
originals by measuring the differences based on 
performance (False positives/False negatives), in addition to 
ranking each missing field by their importance as we see it. 
An important part of the rule generating was to make it as 
automatic as possible, using only information given by the 
honeypot and the standard way of writing SNORT rules. We 
had to use some assumptions in the procedure regarding 
what fields SNORT most likely would use for the attacks we 
deploy. 

B. Longest Common Substring algorithm: 
We use the LCS algorithm [12] to reduce the number of 

rules created. By using this algorithm it is possible to create 
one rule for several similar attacks. This is important 
because it is a relation between SNORT’s processing speed 
and the number of rules it loads. 

The LCS algorithm [12] is used to find the longest 
string(s) that is a substring or is substrings of two or more 
strings. There are several ways of implementing this 
algorithm, such as using suffix trees or dynamic 
programming (matrix). We chose to use the latter because 
our strings are short; hence the computational overhead is 
not so important. It is also the easiest to understand. The 
problem though is that the LCS is not suited for 
polymorphic worms [13]. This is because polymorphic 
worms change too much of its payload for LCS to get a 
good result out of. 

 
 
 

C. True/False Positive Ratio: 
True Positive Ratio (TPR) is a way of showing how 

good the IDS is at alerting on real attacks. In our setting we 
use this to show how good our rules are compared to the 
originals. 

TPR is obtained by the following formula: 

 
Where: TP = The number of alerts on malicious traffic, 

FN = The number of missing alerts on malicious traffic. The 
total number of intrusions is given by TP + FN. 

False Positive Ratio (FPR) shows the proportion of 
instances, which were not an attack but still were alerted on. 
FPR is a result of the following formula: 

 
Where: FP = The number of alerts on benign traffic, TN 

= The number of correct decisions on benign traffic. The 
total number of no-intrusions is given by FP + TN. 

A perfect IDS would have TPR = 1 and FPR = 0. This 
would result in alerts only on malicious traffic, and no alerts 
on benign traffic. 

 The confusion matrix in Fig 1 illustrates what FP, 
FN, TP and TN mean. 
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Figure 1: Confusion matrix 

D. Signature Creation Algorithm: 
The philosophy behind our approach is to keep the 

system free of any knowledge specific to certain application 
layer protocols. Each received packet causes system to 
initiate the same sequence of activities: 

a. If there is any existing connection state for the new 
packet, that state is updated, otherwise new state is 
created. 

b. If the packet is outbound, processing stops here. 
c. The model performs protocol analysis at the 

network and transport layer. 
d.  For each stored connection: 
(a). System performs header comparison in order to detect 

matching IP networks, initial TCP sequence numbers, 
etc. 

(b). If the connections have the same destination port, 
System attempts pattern detection on the 
exchanged messages. 

(c). If no useful signature was created in the previous 
step, processing stops. Otherwise, the signature is 
used to augment the signature pool as described in 
Section III-. 

(d). Periodically, the signature pool is logged in a 
configurable manner, for example by appending the 
Bro representation of the signatures to a file on 
disk. 

Figure 2 illustrates the algorithm. Each activity is 
explained in more detail in the following sections. 
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Figure 2: High level overview of Signature creation algorithm. 

E. Connection Tracking: 
The rule generating system maintains state for a limited 

number of TCP and UDP connections, but has rather unique 
requirements concerning network connection state keeping. 
Since our aim is to generate signatures by comparing new 
traffic on the honeypot to previously seen one, we cannot 
release all connection state immediately when a connection 
is terminated. Instead, we only mark connections as 
terminated but keep them around as long as possible, or until 
we can be sure that we will not benefit from storing them 
any longer. 

Connections that have exchanged lots of information are 
potentially more valuable for detecting matches with new 
traffic. The system must prevent aggressive port scans from 
overflowing the connection hash-tables which would cause 
the valuable connections to be dropped. Therefore, both 
UDP and TCP connections are stored in a two-stage fashion: 
Connections are at first stored in a “handshake” table and 
move to an “established” table when actual payload is 
exchanged. 

The system performs stream reassembly: for TCP, we 
reassemble flows up to a configurable total maximum of 
bytes exchanged in the connection. We store the 
reassembled stream as a list of exchanged messages up to a 
maximum allowed size, where a message is all the payload 
data that was transmitted in one direction without any 
payload (i.e., at most pure ACKs) going the other way. For 
example, a typical HTTP request is stored as two messages: 
one for the HTTP request and one for the HTTP reply. For 
UDP, we similarly create messages for all payload data 
going in one direction without payload data going the other 
way. Figure 3 illustrates the idea. 

F. Protocol Analysis: 
After updating connection state, The proposed system 

will create an empty signature record for the flow and starts 
inspecting the packet. Each signature record has a unique 
identifier and stores discovered facts (i.e., characteristic 
properties) about the currently investigated traffic 
independently of any particular NIDS signature language. 

The signature record is then augmented continuously 
throughout the detection process, maintaining a count of the 
number of facts recorded. 

In proposed system, protocol analysis will be performed 
at the network and transport layers for IP, TCP and UDP 
packet headers, using the header-walking technique 
previously used in traffic normalization [14]. Instead of 
correcting detected anomalies, we record them in the 
signature, for example invalid IP fragmentation offsets or 
unusual TCP flag combinations. Note that for these checks, 
System does not need to perform any comparison to 
previously seen packets. We refer to a signature at this point 
as the analysis signature. 
 

 
Figure: 3 

Fig. 3. A TCP packet exchange (left) and the way 
System traces the connection (right). The packet initiating 
the connection is copied separately. afterwards, two 100-
Byte payloads are received and assembled as one message. 
200 Bytes follow in response, forming a new message. This 
in turn is answered by another 300 Bytes, forming the final 
message. The successful completion of the TCP teardown 
triggers the labeling of the connection as “terminated”. 

The proposed system will then performs header 
comparison with each currently stored connection of the 
same type (TCP or UDP). If the stored connection has 
already moved to the second level hash-table, Honeycomb 
tries to look up the corresponding message and uses the 
headers associated with that message. 

G. Pattern Detection in Flow Content: 
After protocol analysis, The system proceeds to the 

analysis of the reassembled flow content. The model applies 
the LCS algorithm to binary strings built out of the 
exchanged messages. It does this in two different ways, 
illustrated in Figures 4 and 5. 
a. Horizontal Detection: Assume that the number of 

messages in the current connection after the connection 
state update is n. The model then attempts pattern 
detection on the nth messages of all currently stored 
connections with the same destination port at the 
honeypot by applying the LCS algorithm to the 
payload strings directly. 

b. Vertical Detection: Honeycomb also concatenates 
incoming messages of an individual connection up to a 
configurable maximum number of bytes and feeds the 
concatenated messages of two different connections to 
the LCS algorithm. The point here is that horizontal 
detection will fail to detect patterns in interactive 
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sessions like Telnet, whereas vertical detection will 
still work. 

 
Figure. 4. Horizontal pattern detection. 

 
Figure. 5 Vertical pattern detection: for both connections, several incoming 
messages are concatenated into one string and then passed as input to the 

LCS algorithm for detection. 

In either case, if a common substring is found that 
exceeds a configurable minimum length, the substring is 
added to the signature as a new payload byte pattern. 

IV. EVALUATION 

The implementation will consist of roughly 9000 lines of 
C code, with about 3000 lines for a separate library 
implementing the LCS algorithm. The system will be tested 
on an unfiltered cable modem connection in three 
consecutive sessions, covering a total period of three days. 
We will particularly interest in the traffic patterns and 
signatures created for a typical home-user connection, which 
can be assumed to be often only weakly protected, if at all. 

A. Signature Lifecycle: 
If the signature record contains no facts at this point, 

processing of the current packet ends. Otherwise, System 
will check how the signature can be used to improve the 
signature pool, which represents the recent history of 
detected signatures. 

B. Signature Detection: 
The proposed system will create a number of signatures 

for hosts that just probed common ports. These are relatively 
long; on average they contain 136 bytes. The longest strings 
are those describing worms.  

C. Performance Overhead: 
We will measure the performance overhead involved 

when running proposed system compared to normal honeyd 
operation. 

V. DISCUSSION 

In implementation part we are going to show that the 
proposed system works and produces interesting signatures, 
and how easily the generated signatures can be used in 
production environments, and how the system performs 
under higher load.  

However, honeypots generally see only relatively little 
traffic, so this problem should be manageable. 

VI. SUMMARY 

In this proposed model, we have presented a system that 
can produce NIDS signatures automatically by analyzing 
traffic on a honeypot. The system will produce good-quality 
signatures on a typical end user's Internet connection. The 
system is particularly good at producing signatures for 
worms. 
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