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Abstract: Support Vector Machines (SVM) have originally designed for binary classification problems. However, Multi-class SVMs (MCSVM) 
are implemented by combining several binary SVMs. This paper presents a new boosting Multi-class SVMs (BmSVM) to overcome 
computational complexity of existing construction MCSVM methods. The other two objectives of the paper are: first, to show the robustness of 
BmSVM against different constructing Multi-class SVM methods such as One-Against-All, One-Against-One; Second, to compare the 
performance and complexity of BmSVM against SMO, AdaBoost, Decision Tree, and MCSVM. The simulation results demonstrate that the 
BmSVM on hypothyroid dataset with polynomial kernel is superior to the others. 
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I. INTRODUCTION 

Support Vector Machines (SVMs) proposed by Vapnik 
[1] are a set of related supervised learning methods used for 
classification, regression and ranking. SVMs are 
classification prediction tools that use Machine Learning 
theory as a principled and very robust method to maximize 
predictive accuracy for detection and classification. SVMs 
can be considered as techniques which use hypothesis space 
of linear separators in a high dimensional feature space, 
trained with a learning algorithm from optimization theory 
that makes a learning bias derived from statistical learning 
theory [1, 2]. 

The SVM technique was developed to design separating 
hyperplanes for classification problems. In the 1990s SVM 
was generalized for constructing nonlinear separating 
functions and for real-valued functions approximation. 
Some applications of SVMs include text categorization, 
character recognition, bioinformatics, bankruptcy prediction, 
spam categorization and so forth [3]. 

The rest of the paper is organized as follows. In Section 
2, SVMs classification is introduced and provides a 
formulation of linear and nonlinear SVM. Section 3 presents 
how Multi-class SVMs problem is solved through binary 
SVMs by deploying different methods. In Section 4 BmSVM 
is proposed and explained in detail and the experimental 
results are given in Section 5 to show the effectiveness of 
BmSVM over other classifiers which is followed by 
conclusion in Section 6. 

II. SVM OVERVIEW   

SVM classification is based on the idea of decision 
hyperplanes that determine decision boundaries in input 
space or high dimensional feature space. SVM constructs 
linear functions (hyperplanes either in input space or in 
feature space) from a set of labeled training dataset. This 
hyperplane will try to split the positive samples from the 
negative samples. The linear separator is commonly 
constructed with maximum distance from the hyperplane to 
the closest negative and positive samples. Intuitively, this 
causes correct classification for training data which is near, 
but not equal to the testing data.  

Throughout training phase SVM takes a data matrix as 
input data and labels each one of samples as either 
belonging to a given class (positive) or not (negative). SVM 
treats each sample in the matrix as a row in an input space or 
high dimensional feature space, where the number of 
attributes identifies the dimensionality of the space.  SVM 
learning algorithm determines the best hyperplane which 
separates each positive and negative training sample. The 
trained SVM can be deployed to perform predictions about a 
test samples (new) in the class. 

Nonlinear problems in SVM are solved by mapping the 
n- dimensional input space into a high dimensional feature 
space. Finally in this high dimensional feature space a linear 
classifier is constructed which acts as nonlinear classifier in 
input space. Most mathematical concepts as background 
materials for designing SVM and Multi-class SVM are 
introduced in the following [1, 4-11]. 

A. Linear Separable SVMs Classifier: 
Consider a binary classification problem with N training 

samples (data). Each sample is indicated by a tuple (xi, yi) 
and ( i = 1, 2, …, N), where xi=(xi1, xi2, …, xin) corresponds 
to the attribute set for the ith sample. Conventionally let yi 
∈{-1, 1} is considered as its class label. The decision 
boundary of a linear classifier (separator) can be written as 
follows: 

wTx + b = 0,            (1) 

where w is weight vector and b is a bias term. 
There are many linear separators, but the SVM design 

goal is to define a decision boundary that is maximally far 
away from any data point. This distance from the decision 
boundary to the closest data point determines the margin of 
the classifier. This technique of designing means that the 
decision boundary for an SVM is fully identified by a 
(generally small) portion of the data points which identify 
the position of the separator. These points are named 
support vectors. Fig. 1 shows the margin and support vectors 
for two classes problem.  

If the training data are linearly separable then there 
exists a pair (w, b) such that: 

wTxi + b  ≥ 1  if yi = 1,    (2) 
wTxi + b ≤ -1  if yi = -1,   (3) 

The linear classifier is defined as: 
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f(x) = sign(wTx + b).   (4) 
For a given dataset and decision hyperplane, the 

functional margin of the ith sample xi with respect to a 
hyperplane (w, b) is defined as in (5): 

γi =  yi (wTxi + b) ,   (5) 

The functional margin of a dataset of decision boundary 
is then twice the functional margin of any of the samples in 
the dataset with minimal functional margin (the factor of 2 
comes from computing across the total width of the margin, 
as in Fig. 1). It is known that the shortest distance between a 
point and a hyperplane is perpendicular to the plane, and 
consequently, parallel to w. A unit vector in this direction is 
w/║w║. The maximum width of the band that can be 
designed for separating the support vectors of the two 
classes is known as geometric margin as shown in Fig. 1 by 
ρ.   Distance from any xi sample to the separator is equal to:  

 

Designing linear separator is to maximize this geometric 
margin (6) in order to find the best w and b as formulated 
below: 
ρ  = 2 /║w║ is maximized, 
For all (xi, yi), i =1, …, N ;  s.t.   yi (wTxi + b) ≥ 1.      (7) 

 
Figure 1. Decision boundary and margin of SVM. 

Next step is optimizing quadratic function based on 
linear constraints. Quadratic optimization problems are a 
standard, popular class of mathematical optimization 
problems, and many algorithms is used for solving them. 
SVM classifiers construct using standard quadratic 
programming (QP) libraries. Therefore, the above problem 
is reformulated as minimization problem: 

Φ(w) = ||w|| = wTw  is minimized,  

for all (xi, yi), i =1,…, N :  s.t.  yi (wTxi + b) ≥ 1.   (8) 

The solution for the above problems includes 
constructing a dual problem where a Lagrange multiplier αi 
is linked with every inequality constrains (yi (wTxi + b) ≥ 1) 
in the primal problem: 
Find α1, …, αN  such that 

 

 
is maximized with respect to  αi subject to the following 

constraints: 

 
 

The solution of the dual problem αi must satisfy the 
condition αi{yi (wTxi - b) -1)} = 0 for  i =1, 2, …, N. 

Then solution to the primal is: 

 

 

In the solution above, most of αi are zero for data 
samples which are not support vectors. Each non-zero αi 
specifies that the equivalent xi is a support vectors. So the 
classification function is given as below: 

 
 

We don’t need w explicitly in (11) since it relies on an 
inner product between the test point x and the support 
vectors xi. Finding class label for any data points xj involves 
computing the inner products xi

Txj . 

B. Linear Non-Separable SVMs Classifier: 
We have presented above, where dataset are linearly 

separable, and what we present below is the data which is 
not linearly separable. The standard approach is to allow the 
fat decision boundary as shown in Fig. 2 to make a few 
mistakes (some points - outliers or noisy samples - are 
inside or on the wrong side of the margin). We then pay a 
cost for each misclassified sample, which depends on how 
far it is from meeting the margin requirement given in (8). 
To implement this, slack variables ξi are introduced below. 

The formulation of the SVMs optimization problem with 
slack variables is given below: 
Find w, b and ξi ≥ 0 such that 

 
 

For all (xi, yi), i =1, ..., N :  s.t.  yi (wTxi + b) ≥ 1 – ξi, ,         (12) 

The parameter C is a regularization term, which can be 
viewed as a way to control overfitting, it is trade-off 
between the relative importance of maximizing the margin 
and fitting the training data. 

Dual problem is same as separable case (would not be 
same if the 2-norm penalty for slack variables C Σξi

2 was 
applied in primal objective). 

Designing SVM in this case is to find α1, …, αN such that 

 

is maximized under the following constraints with respect to 
α :  

 

 

Figure 2. Slack variables for linearly nonseparable data. 

Slack variables ξi and Lagrange multipliers will not 
appear in the dual problem. All that are left with is the 
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constant C which bound the possible size of the Lagrange 
multipliers for the support vector data points. Like before, 
the xi with non-zero αi is the support vectors. The solution of 
the dual problem is of the form: 

 
 

 

The solution of the dual problem αi must satisfy the 
condition αi{yi (wTxi - b) -1) + ξi } = 0 for  i =1, 2, …, N. 
Again, we don’t need to compute w explicitly for 
classification function as shown in (15): 

 

C. Nonlinear SVMs Classifier: 
In SVMs the optimal hyperplane is defined to maximize 

the generalization. But if the training data are not linearly 
separable, the designed classifier may not have high 
generalization ability, even though the hyperplanes are 
determined optimally. So to improve linear separability, the 
original input space is mapped into a high dimensional space 
which is known as feature space [4].  

SVMs present an easy and efficient way of performing 
this mapping to a higher dimensional space, which is called 
the kernel trick [2]. The SVMs linear classifier depends on a 
dot product between data point vectors. Assume we 
transform the data to some (possibly infinite dimensional) 
space H via a mapping function Φ such that the data appear 
in the form of Φ(xi)TΦ(xj). Linear operation in H is alike to 
non-linear operation in input space, while x = (x1, x2) and 
Ф(x) =(x1

2, x2
2, √2x1x2) Fig. 3 illustrates this mapping. 

Let K(xi, xj)=Ф(xi)TФ(xj) as a kernel function, so we 
change all inner products to kernel functions for training 
data. 
Designing SVM is to find α1 ,…, αN  such that  

 
 

is maximized under the following constraints with respect to 
α 
 

 

 
Figure 3. Nonlinear SVMs decision boundary. 

Then the classifier is as below: 

 

The four commonly used families of kernels are: 
a. Linear kernel 

K(xi, xj) = xi
Txj  

b. Polynomial kernel with degree d 
K(xi, xj) = ( xi

Txj + 1)d 
c. Radial basis function (RBF) kernel (σ  is a positive 

parameter for controlling the radius) 
K(xi, xj) = exp (-|| xi

 - xj ||2 / 2σ2) 
d. Sigmoid kernel (δ  is a positive parameter) 

K (xi, xj) = tanh (δxi
Txj + r) 

III. MULTI-CLASS SVMS (MCSVM) 

In case of Multi-class classification problems, the issue 
becomes more complex because the outputs could be more 
than one class and must be divided into M mutually 
exclusive classes. In fact, there are many ways to solve 
Multi-class classification problems for SVM such as 
Directed Acyclic Graph (DAG), Binary Tree (BT), One-
Against-One (OAO) and One-Against-All (OAA) 
classifiers. 

A. Directed Acyclic Grapph SVM (DAGSVM): 
Directed acyclic graph SVM (DAGSVM) is introduced 

by Platt, Cristianini [12]. It works like OAO method in 
training stage by constructing M × (M-1)/2 binary 
classifiers. In recognition (testing) stage it uses a rooted 
binary directed acyclic graph which includes M leaves and 
M × (M-1)/2 nodes (comprising of a binary SVM form ith 
and jth class). For a test sample, evaluation of binary 
decision function starts at the root node; afterward its 
movement to either left or right side depends on the output 
value. 

B. Binary Tree of SVM (BTSVM): 
This technique deploys multiple SVMs arranged in a 

binary tree structure [13]. Every SVM in its related node of 
the tree is trained by using two of the classes. The 
measurement of similarity between the two classes and the 
remaining samples is made by deploying probabilistic 
outputs. All existing samples in the node are allocated to the 
two consequent subnodes of the previously chosen classes 
by similarity and this step iterates at every node until all 
sample of each node belong to one class. The drawbacks of 
this technique are high training time and low performance in 
huge training dataset; since all samples of every node should 
be tested to define their classes during constructing tree.  

C. One-Against-One SVM (OAOSVM): 
OAOSVM constructs M × (M -1)/2 binary classifiers, 

using all the binary pair-wise combinations of the M classes. 
Each classifier is qualified by using the examples of the first 
class as positive and the examples of the second class as 
negative examples. To combine these classifiers, the Max 
Wins algorithm is accepted. The subsequent class is 
determined by selecting the class voted by the majority of 
the classifiers. The number of examples used for training 
each one of the OAOSVM classifiers is smaller, since only 
examples from two of all M classes are considered. The 
smaller number of examples makes shorter training times [8, 
14].  

To train sample from ith and the jth classes, the below 
minimization equation should be solved: 
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s.t.     
 

.  

After all M × (M -1)/2 classifiers are designed, the Max 
Wins strategy is deployed in this way: if the result of 

assigns the ith class to x then the 
vote of the ith class is increased by one; otherwise, vote of 
the jth class is added by one. So, the class with the largest 
vote will be assigned to x. 

D. One-Against-All SVM (OAASVM): 
In case of M-class problems (M >2), M binary SVM 

classifiers are constructed [8, 15]. The ith SVM is trained 
such that the samples in the ith class are labeled as positive 
samples and all the rest as negative samples. In the 
recognition stage, a test sample is obtained from all M 
SVMs and is labeled according to the maximum output 
among the M classifiers.  

The Multi-class SVM (MCSVM) problem is solved by 
constructing a decision bounary by given N samples 
typically with noise: (x1, y1), …, (xN, yN ), where xi : i = 1, 
…, N is a vector of length n and yi∈ {1, …, M} represents 
the class of the sample. The classical approach to solve 
MCSVM classification problems is to consider the problem 
as a collection of binary classification problems. The OAA 
method constructs M classifiers, one for each class. The ith 

classifier constructs a hyperplane between class i and the M 
– 1 remaining classes. A new test sample is allocated to the 
class that the distance from the margin, in the positive 
direction, is maximal.  

We can generalize optimization problem [1] to the 
following by minimizing:  

 

 s.t.            
 

 
ξij ≥ 0 ,       for   i = 1, …, N                         . 

Here the training sample xi is mapped to feature space 
(high dimensional space) using function Φ and C is defined 
as trade-off parameter. 

Minimizing   is equal to maximize  
which means the margin between two classes. In case of non 
linear separable samples, presence of trade-off term 

 is necessary for reducing the training error rate. 
There is an essential need to balance the training errors and 
the regularization term  . 

The following M decision boundaries emerge as a result 
of solving equation (19), 

, 
. 
. 
. 

  . 

So, the sample xi is assign to the class with the largest 
decision boundary’s value as follows 

 .  (20) 

Therefore, the dual problem with N-variable and M 
quadratic optimization problems with N-variable should be 
solved correspondingly. 

IV. BMSVM ALGORITHM 

The main goal of any boosting algorithms is to improve 
existing classification algorithm in order to enhance its 
accuracy. This section presents a new boosting technique for 
SVM classifiers by investigating two ways of boosting 
SVMs as well as their combinations:  
a. Creating weak SVMs for different values of C on the 

same dataset and finding majority sign defines the 
class label for input data.  

b. Integrating existing AdaBoost with SVM using 
weighted training dataset and weighted voting.  

The critical problem that we face in these two methods is 
computational complexity in real world problem. The most 
possible solution is to reduce number of the samples used 
for designing the base classifiers. The proposed boosting 
SVM, BmSVM (Boosting Multi-class SVM), involves 
designing multiple binary SVM based on selection of 
disjoint subset of dataset from whole dataset (training set), 
and then combining them for calculating majority sign for 
classification.  

Support Vectors (SV) are those important samples (due 
to its limited number in compared to number of training 
samples) which are used for constructing classifiers. Finding 
SVs among all training samples are other problems which is 
very complicated because we need to use all training 
samples to solve quadratic optimization problem. We can 
reduce computations by selecting important samples instead 
of original training set and finding the SVs among these 
selected training samples. The usefulness and importance of 
training sample is defined by the location of sample related 
to the separating hyperplane. In addition to SVs, the samples 
that are closest to separator, especially those samples that lie 
in classification margin would be important and should be 
included in selected training set to find SVs. In the case that 
there are no samples exist in the classification margin we 
can change weighted SVM dynamically by changing 
training set to get important sample in order to find different 
SVs. To improve accuracy of classification in this step we 
consider combination of boosting classifiers[16].  

While, we convert Multi-class SVMs to binary SVMs by 
employing any available methods, as it described in Section 
3, then, we can extend the aforementioned instruction to 
solve Multi-class SVMs classification problem. Fig. 4 shows 
detail of the proposed BmSVM algorithm and is 
summarized as below: 

In the first step, we choose l = N/10 samples from given 
training set (TR) in an arbitrary way and based on their 
weight distribution (here N is the number of samples in TR). 
These l samples which we refer to as CTS (chosen training 
set) are used to find SVs. Afterward, we classify  all of the 
samples belong to TR and compute their weighted errors. In 
next step, we check the presence of CTS’s samples in SVs, 
the sample which has smallest weighted value might be 
omited from CTS and the nearest samples to the separating 
hyperplane will be added in CTS. We iterate the above steps 
to find the base classifiers for the remaining CTS’s samples. 
If there are no other samples in the margin, hence we select 
another sample from TR randomly and according to the 
distribution weight. Afterward, we should check the 
presence of the sample in CTS and the status of this sample 
and decide to add or omit the sample to CTS. Finally, we 
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combine all the genrated classifiers of T rounds by 
considering majority voting sterategy. 

   

 
Begin  
Given   ,    where   //TR is Multi-class training set 
Given X                                                                                                // a test sample which its class is unknown 
Initialize Vt [1, 2, …., M] = 0  and l =1*N /10                                  // Initialize voting for classes to zero 

For   p=1   to   M-1   do                                               // loop through all possible pair of classes 
For   q=p+1   to    M   do 

initialize                          //TRp are samples of class p and TRq are samples of  class q 
//   and   
For    t=1   to  T   do  

Select CTSp, q (select CTS according to their weights) wt, train SVM;               // Chosen training set  
Finding SVp, q by finding the Lagrange multipliers α ={α1,…, αl} that maximizes 

 

classify all of samples of TR and then compute the weighted errors  

 

If p,q) in SVp,q) then 
 Omit [( with min(  from CTSp,q] and add [( to CTSp,q] 
Else go to (**) 
Select test samples (CTSp,q) according to their w  
If TR ∉ CTSp,q and  by  then 
Omit [( with min(  from CTSp,q] and add [( to CTSp,q] go to (**) 
Get a SVM classifier (learner) : ht : X→{1, 2, …, M};              
Predict the sample using classifier;                                          // classify samples with current classifier 
                                                                                                   // and increment appropriate vote 
If     then  Vt(p) + + 
Else  Vt(q) + + 
Compute learner’s weight βt using its error rate ( ; 

 ; 
Where normalization factor is Zt                                        //selected such that,  act as a distribution  

 
End for; 
Combine all classifiers 

 

Out put the final classifier; 
End for 
End for   

Predict label of samples 
End 

Figure 4. Pseudo code for the proposed BmSVM algorithm. 

V. EXPERIMENTAL RESULTS  

Thyroid gland sprinkles thyroid hormones to assist the 
regulation of the body's metabolism. The abnormalities of 
secretion thyroid hormones are divided into two groups of 
problem (hypothyroidism and hyperthyroidism) [17].  

In this section, we provide experimental results on 
hypothyroid dataset from UCI repository [18] for the 
proposed BmSVM. Computational results for the CPU time 
and accuracy of BmSVM with other algorithms in Weka 
[19] are provided to evaluate the effectiveness of BmSVM.  

Hypothyroid dataset had 4 classes with 30 attributes. The 
number of samples of given data was 3772 which is divided 
to 3167 samples as the training data and 605 as the test data. 
The robustness of BmSVM classifier in compare with other 
classifiers was done on this dataset by applying different 
kernels to determine its accuracy and complexity. 

A. Effect of Kernel Functions: 
The performance of BmSVM greatly depends on the 

choice of the kernel functions (to transform data from input 
space to a higher dimensional feature space). There are no 

definite rules for this selection except satisfactory 
performance by simulation study. 

Table 1: Comparison of three different kernels 

Kernel C Accuracy  Computation Time 
Training Test Training Test 

Linear 10 93.8% 92.5% 58.8s 52.9s 
40 94.1% 93.8% 92.2s 93.3s 
60 97.2% 96.4% 40.74s 40.21s 
80 93.4% 92.9% 123.9s 134.6s 

Polynomial 10 95.4% 94.2% 416.7s 413.6s 
40 96.6% 95.1% 656.5s 620s 
60 99.1% 96.9% 139.54s 134.5s 
80 97.3% 95.2% 711.6s 783.7s 

RBF 10 92.4% 93.1% 152.9s 155.8s 

40 93.1% 92.2% 135.3s 139.1s 

60 95.5% 96.1% 50.48s 79.49s 
80 92.3% 92% 186s 187.7s 

 
Table 1 presents the exprimental results of BmSVM with 

the three kernel functions. The degree of the polynomial 



Fereshteh Falah Chamasemani et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan. –Feb, 2013,1-6 

© 2010, IJARCS All Rights Reserved          6 

kernel in our expriment is 3. In spite of better accuracy for 
polynominal kernel as in Table 1, the computation time for 
classifying the samples in RBF kernel is half of polynominal 
kernel. 

B.  Effect of Using Methods in MCSVM: 
We examined the efficiency of different methods on 

MCSVMs using the OAOSVM, OAASVM and BmSVM 
methods with polynomial kernels by setting d=3 and trade-
off  (balance between slack variables and regularization 
parameter) as C = 60. This value (60) is determined by 
conducting many experiments for different values. The 
classification results are shown in Table 2. The result shows 
that the BmSVM has better performance than OAOSVM 
and OAASVM, but it takes long time to construct classifier 
and test sample.  

Table 2: Robustness of BmSVM method 
Method Accuracy Computation Time 

Training Test Training Test 
OAASVM 95.04% 95.03% 421s 425.3s 

OAOSVM 96.1% 94.48% 79.3s 81s 

BmSVM 99.1% 97.1% 446.2s 462.7s 

C. Effect Of Classifier Selection: 
The robustness and efficiency of BmSVM classification 

is shown by comparing the experimental result of the 
BmSVM with MCSVM, Decision Tree and AdaBoost. The 
results are presented in Table 3 and it shows the BmSVM 
superiority over other classifiers.  

Table 3: Average classification accuracy result of different algorithms 

Classifier Accuracy Computation Time 

Training Test Training Test 

MCSVM 99.1% 96.9% 131.82s 141.6s 

Decision Tree (J48) 95% 94.1% 0.11s 0.22s 

AdaBoost 96.4% 95.5% 0.29s 0.39s 

BmSVM 99.1% 97.1 565s 516.9s 

VI. CONCLUSION  

This paper presented the BmSVM as a new boosting 
algorithm for enhancing the accuracy and performance of 
common Multi-class SVM. The performance of BmSVM 
algorithm by selecting different kernels is examined on 
hypothyroid dataset. The experimental results demonstrated 
the superior performance and accuracy of BmSVM over 
MCSVM, Decision Tree, and AdaBoost.  
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