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I. INTRODUCTION 

The traditional view in science, especially in 
mathematics, is to avoid uncertainty at all levels at any cost. 
Thus "being uncertain" is regarded as "being unscientific". 
But unfortunately in real life most of the information that we 
have to deal with is mostly uncertain. 

One of the paradigm shifts in science and mathematics in 
this century is to accept uncertainty as part of science and 
the desire to be able to deal with it, as there is very little left 
out in the practical real world for scientific and 
mathematical processing without this acceptance! 

One of the earliest successful attempts in this directions 
is the development of the Theories of Probability and 
Statistics. However, both of them have their own natural 
limitations. Another successful attempt again in the same 
direction is the so called Fuzzy Set Theory, introduced by 
Zadeh[21]. 

According to Zadeh[21], a fuzzy subset of a set X is 
any function f from the set X itself to the closed interval 
[0,1]of real numbers. An element x belonging to the set 
X belongs to the fuzzy subset f with the degree of 

membership ,fx a real number between 0  and 1. 
Observing that fuzzy subsets themselves require a 

specific real number between/including 0 and 1 to be 
associated with each element of ,X which is not always 
possible in several of the practical applications, Zadeh[22] 
himself introduced the so called interval valued fuzzy 
subsets of a set X as means to handle even more inexact/ 
uncertain, but bounded information. 

Thus, an interval valued fuzzy subset of a set X is any 
function f from the set X itself to the complete lattice of 
all nonempty closed intervals of the closed interval [0,1]of 

real numbers. An element x belonging to the set X belongs 
to the fuzzy subset f with the degree of membership ,fx  a 
nonempty closed interval in .[0,1]  

Interestingly, in the same year 1975 that Zadeh proposed 
his interval valued fuzzy subsets, Grattan-Guiness[6], 
Jahn[7] and Sambuc[18] also proposed interval valued fuzzy 
subsets.  

Ever since the the interval valued fuzzy subsets came 
into existence, once again some mathematicians started 
imposing and studying both algebraic and topological 
structures and the interested reader can refer to Biswas[1] 
for interval valued fuzzy subgroups; Li and Wang[8] for 
SH-interval-valued fuzzy subgroups and TH-interval valued 
fuzzy subgroups; Shaoquan[19] for interval valued fuzzy 
fields and for interval valued fuzzy linear spaces; Zeng-
Shi[23] and Zeng-Shi-Li[24] for concepts of cut set of 
interval valued fuzzy subset and interval valued nested sets 
and for decomposition and representation theorems of 
interval valued fuzzy subset; Bustince[2] for interval valued 
fuzzy relations and applications to approximate reasoning of 
interval valued fuzzy subsets; Cornelis-Deschrijver-Kerre[3] 
for Implication in intuitionistic fuzzy subsets and interval-
valued fuzzysubset theory: construction, classification, 
application; and Mondal-Samanta[10] for topology on 
interval valued fuzzy subsets. 

Looking at all these and other papers in print and on-
line, one thing which becomes evident is that various 
(lattice) algebraic properties of interval valued fuzzy images 
and interval valued fuzzy inverse images which, 
incidentally,  not only play a crucial role in the study of both 
interval valued fuzzy algebra and interval valued fuzzy 
topology but also are necessary for the individual/exclusive 
development of Interval Valued Fuzzy Set Theory, are not 
yet studied, although these concepts of interval valued fuzzy 
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images and interval valued fuzzy inverse images were 
existing since long. 

Now, the aim of this paper is 1. to introduce the notions 
of, interval valued f-set with truth values in a complete 
lattice of closed intervals or a simply a cloci, )(LI ∗  on a 
complete lattice L , called an L -interval valued f-set or 
simply an L -ivf-set, 

an L -interval valued f-subset and 
an interval valued f-map between an L -interval valued 

f-set and an M -interval valued f-set where the complete 
lattice L  may possibly be different from the complete lattice 

,M   
an M -interval valued f-image of an L -interval valued 

f-subset under an interval valued f-map and  
an L -interval valued f-inverse image of an M -interval 

valued f-subset under an interval valued f-map,  and 
2. to study the standard (lattice) algebraic properties of,  
all L -interval valued f-subsets of an L -interval valued f-

set, 
all M -interval valued f-images of L -interval valued f-

subsets under an interval valued f-map and of all L -interval 
valued f-inverse images of M -interval valued f-subsets 
under an interval valued f-map. 

Now coming back to the developments in this side of 
this paper, Goguen further generalized the two types of 
fuzzy subsets of Zadeh, namely the fuzzy subset and the 
interval valued f-subset, to those that take the truth values in 
a complete lattice. However, even though Goguen unified 
both of them mathematically, one must observe here that, as 
mentioned earlier, when it comes to practical applications, 
the fuzzy subsets and the interval valued f-subsets are quite 
different because fuzzy sets require a specific real number 
between 0 and 1 to be associated with  each of its elements 
while interval valued f-sets require a reasonable interval to 
be associated with each of its elements, offering a 
representation of even more uncertainty in belonging of 
certain elements to a set than the fuzzy sets themselves. 

Still, the following are some lacunae that one can easily 
observe with any of the above notions: 
a. There is no such notion as fuzzy set (of course some 

mathematicians observed that one can define the 
notion of a fuzzy set to be the constant map assuming 
the value ,1  but it was not exploited further.) 

b. It is predominant in Mathematics that, for a pair of 
objects to be considered one as a sub object of the 
other, they both must be of the same type, namely, 
both objects are sets, both objects are pairs, both 
objects are triplets etc. and this type compatibility 
between set and its fuzzy subset is absent in the sense 
that fuzzy subset is a map while the set is not. (Of 
course, one can make here two arguments namely, a 
map is a particular type of relation which is a subset 
and hence a set, and thus a fuzzy subset is also a set 
and secondly one can identify a set with the map that 
takes the constant value ;1 but both of them are not 
completely natural.) 

c. There is no such notion as fuzzy map between fuzzy 
sets with truth values in different lattices 

d. It is not possible to accommodate the notions of fuzzy 
weak-relative-sub algebra and fuzzy strong-relative-
subalgebra in the conventional way 

e. The Axiom of Choice is not extendable to fuzzy 
subsets without its dependence on the nature of the 
complete lattice where the fuzzy subset takes its truth 
values in. (Observe that the Axiom of Choice fails with 
the existing definitions of L -fuzzy set and L -fuzzy 

product as: For any pair of fuzzy sets LXBA →:, , 

the fuzzy product BA×  is defined to be the fuzzy set 

xBxAxBA ∧× =))((  for all Xx∈ . Letting L  to 
be the four element diamond looking lattice with two 
incomparable elements α  and β  and letting A  and 

B  to be the constant fuzzy sets with values α  and β  

respectively, the fuzzy product BA×  turns out to be 
the empty fuzzy subset given by the constant map 
assuming the value 0  of L  while the fuzzy subsets A  
and B  are non-empty. 

f. There is no transparent forgetful functor from the 
category of fuzzy topological spaces to the category of 
topological spaces which forgets the fuzzy structure. 

g. There is no transparent forgetful functor from the 
category of fuzzy rings to the category of rings which 
forgets the fuzzy structure. 

h. Last but not least, in some L -fuzzy subsets of a set, 
one  must assign the value 0  for some elements of the 
set when actually the membership value for them is 
either not available or not relevant because for a fuzzy 
subset of a set every member of the set must be 
assigned a membership value. 

Keeping these things in mind, Murthy[11] modified the 
definition of an L -fuzzy subset of a set to that of an f-set, 
addressing the first, second, fifth and the eighth issues 
above, in such a way that each f-set carries along   
a) its underlying set  
b) its complete lattice where the fuzzy set takes its truth 

values for members of its underlying set  
c) its fuzzy map that specifies membership values for all 

elements in its underlying set  and this                                
modification resolves the above mentioned issues. 
Thus we have: 

an f-set is a triplet A  = ),,( ALAA  where   
(a). A  is a set, called the underlying(crisp) set of A   
(b). AL  is a complete lattice, called the underlying 

complete lattice for truth values of elements of A   

(c). ALAA →:  is a map, called the underlying fuzzy 
map that assigns a truth value for each element of .A  

 
In the same paper Murthy[11] also introduced the notion 

of an f-map between f-sets whose underlying complete 
lattices for truth values are possibly, completely different, 
addressing the third issue above, along with other notions 
like f-image of an f-subset under an f-map and f-inverse 
image of an f-subset under an f-map and studied the 
standard (lattice) algebraic properties of, all f-subsets of an 
f-set, all f-images of f-subsets of an f-set under an f-map and 
of all f-inverse images of f-subsets of an f-set under an f-
map. 
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For a settlement of other issues and for elementary 
studies of algebraic and topological (sub) structures on f-
sets, one can refer to Murthy[13,14,15] and Murthy and 
Yogeswara[12]. 

In the present paper we generalize this Theory of f-Sets 
and f-Maps to Theory of Interval Valued f-Sets and Interval 
Valued f-Maps. Further, all counter examples in this paper 
can be obtained from the corresponding ones in the Theory 
of f_Sets in Murthy and Prasanna[17]. Hence the sectional 
references mentioned in this paper for counter examples in 
the last two sections are for the above paper. 

This paper is a part of the Ph.D. Thesis for which the 
second author was awarded her doctoral degree in the month 
of August, 2012. 

In Section-1, Introduction, the goal of this paper together 
with its lay out is described section wise. 

In Section-2, Preliminaries, we recall some basic 
definitions and some algebraic properties in the theory 
Lattices Theory like poset, least and greatest elements of a 
poset, (least)upper bound, (greatest)lower bound, complete 
lattice, complete ideal, complete homomorphisms etc., were 
recalled along with some of their properties which are used 
later. 

In Section-3, results about characterisation of complete 
ideals; complete ideals generated by a set and a union of 
sets, and relations between these complete ideals; lattice 
algebraic properties of complete ideals; lattice algebraic 
properties of supremums and infimums of images, inverse 
images and their combinations; and lattice algebraic 
properties of images and inverse images of ideals are 
recalled and several of them will be used in the last two 
secions. 

In Section-4, results about the complete lattice of non 
empty closed intervals of a complete lattice; complete ideals 
generated by a subset and unions of subsets of the complete 
lattice of non empty closed intervals and relations between 
these complete ideals; modularity, distributivity and infinity 
distributivity of the complete lattice of non empty closed 
intervals; properties of the embedding of a complete lattice 
in to the complete lattice of non empty closed intervals of 
the same complete lattice;  and complete homomorphisms 
between complete lattices of non empty closed intervals, are 
recalled and several of them will be used again in the last 
two secions. 

In Section-5, first the notions of, L -interval  valued f-set 
or simply L -ivf-set, L -ivf-subset of an L -ivf-set, L -ivf-
union of L -ivf-subsets of an L -ivf-set, L -ivf-intersection 
of L -ivf-subsets of an L -ivf-set, were introduced. Then 
lattice algebraic properties of L -ivf-subsets of an L -ivf-set 
were studied. 

Next, the notions of, interval valued f-maps or simply 
ivf-maps between L -ivf-sets of different complete lattices 
L , ;M  ivf-image of an L -ivf-subset under an ivf-map and 
L -ivf-inverse image of an M -ivf-subset under an ivf-map 
were introduced and were shown to be well defined. Later 
on, lattice algebraic properties of these M -ivf-images and 
L -ivf-inverse images of ivf-subsets under ivf-maps; and 
several other properties were shown to have neatly extended 
from f-sets and f-maps.  

II. PRELIMINARIES 

Some basic definitions in Lattice Theory like poset, least 
and greatest elements of a poset, (least) upper bound, 
(greatest) lower bound, complete lattice, complete ideal, 
complete homomorphisms etc., along with some of their 
properties are freely used and they can be obtained from any 
of the standard text books on Lattice Theory, like Szasz[20]. 
However some results from lattice theory are occasionally 
recalled for completion sake.  

Note: Since IVF-Set Theory is a natural generalization 
of F-Set Theory, those lattice theoretic results that are 
developed and played an important role in the development 
of F-Set Theory can naturally be expected to play a similar 
important role even in the development of IVF-Set Theory 
and this is true.  

Consequently, the following section, namely,  
Lattice theory for F-Set Theory, which appears in 

Murthy and Prasanna[17], will not be reproduced in this 
paper but will remain the same together with referencing in 
this paper as well. In other words, in this paper a 
referencing, for example, by 3.3.11(3),…………. only 
means that, by 3.3.11(3)  of Murthy and 
Prasanna[17],…………... So, the next section begins with 
number 4. 

III. LATTICE THEORY OF COMPLETE 
LATTICES OF CLOSED INTERVALS (CLOCIS)  OR  

COMPLETE INTERVAL-LATTICES 

In this section, results about, the complete lattice of non 
empty closed intervals of a complete lattice; complete ideals 
generated by a subset and unions of subsets of the complete 
lattice of non empty closed intervals and relations between 
these complete ideals; modularity, distributivity and infinity 
distributivity of the complete lattice of non empty closed 
intervals; properties of the embedding of a complete lattice 
in to the complete lattice of non empty closed intervals of 
the same complete lattice; and complete homomorphisms 
between complete lattices of non empty closed intervals, are 
recalled from Murthy[16]. Several of these results will be 
used in the last two sections for the main results of this 
paper. 

A. Complete Lattices of Closed Intervals (Clocis): 
In this subsection, first a partial ordering on the 

collection of all non-empty closed intervals is defined with 
respect which it becomes a complete lattice. Then the 
complete ideal generated by a subset of the complete lattice 
of all non-empty closed intervals is obtained in terms of the 
left/ right end points of members of the subset. Also, every 
complete lattice is naturally embedded into the the complete 
lattice of all non-empty closed intervals in the complete 
lattice itself via the one-point intervals. 

Later on, various properties of the map, that assigns to 
each subset of a given complete lattice, the subset of all 
nonempty closed intervals with end points in the given 
subset, are recalled. 

Finally we see that the above map, when restricted to the 
complete lattice of all complete ideals in the given complete 
lattice, is in fact, a complete homomorphism into the the 
complete lattice of all complete ideals of non-empty closed 
intervals in the given complete lattice itself. In a counter 
example, we show that this restricted complete 
homomorphism, in fact, is not an epimorphism.  
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Definitions 1.1:  (a) For any complete lattice L and for 
any pair of elements , the subset 

 of  is called the closed interval 
 and is denoted by . 

Clearly, for any triplet of elements , (1) 
 iff  (2)  =  iff  

and (3)  =  iff  and  are incomparable or 
. 

(b) Whenever  is a non empty closed interval, for 
,  is called the left end point and  is called the 

right end point. 
(c) Whenever a non empty closed interval is denoted by a 
single element , its left end point is denoted by  and 

the right end point is denoted by . 

(d) For any , the non empty closed interval  = 
 is denoted by . 

(e) For any complete lattice  and for any subset  of , 
the set of all non empty closed intervals with end points in 

 is denoted by . 

Thus  is a map. 
(f) For any complete lattice  and for any pair of elements 

, define  iff  and 

. 

(g) For any subset  of , we define  = 

 and  = .   
Proposition 1.2:  For any complete lattice , the 

following are true: 
(a) for any pair of elements , the following 
are equivalent: 

     (a)  =  

     (b) ,  in  

     (c)  =  and  =  

(b)  is a complete lattice with  defined as 4.1.1(6) 
above. 

Definition 1.3:  (a) For any complete lattice , the 
complete lattice  defined as in 4.1.3(2) above is 
called the  complete lattice of closed intervals or simply  
cloci or the  complete interval-lattice with end points in . 
(b) For any  ,  =  = , 

 =  = ,  =  =  

and  =  =  where  = , 

 =  and  = . 

In other words,  =  =  = 

 =  =  and 

 =  =  =  =

 = . 

 Since  is a complete lattice whenever  is so, 

the definition of complete ideal in  is the usual one in 
any complete lattice. However, we state it explicitly in the 
following for completion sake: 

Definition 1.4:  For any complete lattice  and for any 
subset  of ,  is a complete ideal of  iff 

 (1) for all ,  (2) , , 

 implies . Clearly, the empty set is a 

complete ideal of . 
The following lemma will be useful when we define ivf-

intersection of ivf-subsets of an ivf-set: 
Lemma 1.5:  For any family of complete ideals  

of the complete lattice ,  is a complete ideal 

of . 
Corollary 1.6:  For any complete lattice  and for any 

subset  of , the intersection of all complete ideals 

of  which contain , is the unique smallest complete 

ideal of  containing (cf. 2.2.2). 
Definition 1.7:  For any complete lattice  and forany 

subset  of , the unique smallest complete ideal of 

 containing the given subset  is called the complete 

ideal generated by  and is denoted by 
 

(cf 2.2.3). 
The following lemma will be frequently used through 

out the development of ivf-set theory. Again it is also true in 
any complete lattice, in particular, in  as stated 
below. 

Lemma 1.8:  For any complete lattice   and for any 
subset ,  =  where  

is th e  join of  in . Thus  = 

. However 

 = . 

Lemma 1.9:  For any complete lattice , the inclusion 
map  defined by  is a complete 
monomorphism. 

Proposition 1.10:  For any complete lattice ,  
is a chain iff  = . 

Lemma 1.11:  For any complete lattice  and for any 
pair of subsets  of ,  iff . 

Corollary 1.12:  For any pair of complete lattices 

,  =  iff  = . 
Corollary 1.13: For any complete lattice  and for any 

family of subsets  of ,  

(a) always   
 

L∈βα ,
}|{ βα ≤≤∈ xLx L

βα , ],[ βα
L∈γβα ,,

βα ≤ φβα ≠],[ ],[ βα }{γ γβα ==
],[ βα φ α β

αβ <
],[ βα

],[ βα α β

α Lα

Rα
L∈α ],[ αα

}{α )(αi
L A L

A )(* AI
))(()(:* LLI PPP →
L

)(, * LI∈βα βα ≤ LL βα ≤

RR βα ≤
S )(* LI LS

LssL ⊆∈ }|{ S RS LssR ⊆∈ }|{ S
L

)(, * LI∈βα

α β
βα ≤ αβ ≤ )(* LI

Lα Lβ Rα Rβ
)(* LI ≤

L
)(LI ∗

L
S )(* LI⊆ LS)(∨ LSs s∈∨ LS∨

RS)(∨ RSs s∈∨ RS∨ LS)(∧ LSs s∈∧ LS∧

RS)(∧ RSs s∈∧ RS∧ s ],[ RL ss

LS LSssL ⊆∈ }|{ RS LSssR ⊆∈ }|{
S∨ sSs∈∨ ],[ RLSs ss∈∨

],[ RSsLSs ss ∈∈ ∨∨ ],[ RL SS ∨∨ ])(,)[( RL SS ∨∨
S∧ sSs∈∧ ],[ RLSs ss∈∧ ],[ RSsLSs ss ∈∈ ∧∧

],[ RL SS ∧∧ ])(,)[( RL SS ∧∧

)(* LI L
)(* LI

L
J )(* LI J )(* LI

JS ⊆≠φ JS∈∨ J∈β )(* LI∈α
βα ≤ J∈α

)(* LI

Iii ∈
)(S

)(* LI iIi
S

∈
∩

)(* LI
L

S )(* LI
)(* LI S

)(* LI S
L

S )(* LI
)(* LI S

S
)(*)(

LI
S

)(* LI

L
)(* LI⊆≠ Sφ

)(*)(
LI

S ][0, S∨ S∨

S )(* LI
)(*)(

LI
S

},|)({ *
RsRLsL SSLI SS ∈∈ ∨≤∨≤∈ ααα

)(*)(
LI

φ φ

L
)(: * LILi → ],[=)( sssi

L )(* LI
L {0,1}

L
BA, L BA⊆ )()( ** BIAI ⊆

ML,
L M )(* LI )(* MI
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∗ ∪ ⊇ )( jJj XI ∗
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 (b) however equality holds whenever each  is a 

complete ideal in .
 

An equality may not hold in (b) above if one of , is 
not an ideal. 

Lemma 1.14:  Let  be a complete lattice and  be a 
subset of . Then the following are true for . 

(a)  is a meet (complete) semi lattice of  iff  is a 

meet (complete) semi lattice of .  

(b)  is a join (complete) semi lattice of  iff  is a 

join (complete) semi lattice of .  

(c)  is a (complete) sub lattice of  iff  is a 

(complete) sub lattice of . 

(d)  is a (complete) ideal of  iff  is a (complete) 

ideal of . 
Theorem 1.15:  For any complete lattice  and for any 

subset  of , Then following are true:  
(a)  is complete infinite meet distributive sub lattice of  
iff  is so of . 
(b)  is complete infinite join distributive sub lattice of  
iff  is so of . 
(c) Consequently,  is complete infinite distributive sub 
lattice of  iff  is so of . 

(d)  is distributive sub lattice of  iff  is 

distributive sub lattice of . 

(e)  is modular sub lattice of  iff  is modular sub 

lattice of . 
 In 4.1.14(4), we have seen that whenever  is a 

complete ideal of ,  is a complete ideal of . 
Hence it is natural to question whether all the complete 
ideals of  are of the form  where  is a 
complete ideal of . However, this is not the case and an 
example is given in Murthy[16]. 

Lemma 1.16:  The following are true in any complete 
lattice : 
(a) For any ,  =  

(b) For any family of complete ideals  of , the 

following are true: 
     (i)  =   

     (ii)  = . 

Lemma 1.17:  For any complete lattice  and for any 
subset  such that , we have  = 

  =  . 
Lemma 1.18:  For any complete lattice  and for any 

family  of subsets of ,  

 =  = 

. 
 

B. Complete Homomorphisms of Complete Lattices of 
Closed Intervals 

In this subsection, we make a study of the complete 
homomorphisms of complete lattices of closed intervals 
induced by the underlying complete homomorphisms of 
complete lattices, which is essential to define and study the 
interval valued f-maps between an -interval valued f-set 
and an -interval valued f-set, wher the complete lattices 

 and  may possibly be different. 
Definition 2.1:  For any pair of posets  and  and 

for any map : , the map : 

,defined by  =  
is called the interval map induced by  

Lemma 2.2:  For any pair of posets  and for any 
order preserving map , the interval map 

 :  is well defined. 
Theorem 2.3:  For any map  between 

complete lattices  and , the interval map 
 :  is a complete homomorphism iff 

 is a complete homomorphism. 
 Lemma 2.4:  For any map  between 

complete lattices  and , the following are true:  
(a):  is a monomorphism iff  is a monomorphism  

(b):  is an epimorphism iff  is an epimorphism  

(c):  is an isomorphism iff  is an isomorphism. 
Theorem 2.5:  For any map  between 

complete lattices  and , the following are true: 
(a):  is 0-preserving iff 

 is 0-preserving. 
(b):  is 1-preserving iff 

 is 1-preserving. 
(c):  is 0-reflecting iff 

 is 0-reflecting. 
(d):  is 1-reflecting iff 

 is 1-reflecting. 
Lemma 2.6: For any complete homomorphism 

, there exists a unique complete 

homomorphism  such that  = , 
whenever . 

Theorem 2.7: For any complete homomorphism, 
 and for any , we have 

(a)  =  

(b)  = = 

. 

jX
L

jX

L I
L )(* II

I L )(* II
)(* LI

I L )(* II
)(* LI

I L )(* II
)(* LI

I L )(* II
)(* LI

L
I L

I L
)(* II )(* LI

I L
)(* LI )(* LI

I
L )(* II )(* LI

I L )(* II
)(* LI

I L )(* II
)(* LI

I
L )(* II )(* LI

)(* LI )(* II I
L

L
L∈α LI ])([0,* α

)(*][0,
LI

iα

JjjCL ∈)( L

)(*

jCJj LI ∈∨ )(*

jCJj LI∈∨

)(*

jCJj LI ∈∧ )(*

jCJj LI∈∧

L
X LX ⊆⊆φ

L
JjjX ∈)( L

)(*
* ))((

LIjJj XI∈∪
)(*

* ))((
LIjJj XI ∈∪

))((*
LjJj XI ∈∪

L
M

L M
L M

φ ML → )(* φI
)()( ** MILI → ],)[(*

RLI ααφ ],[ RL φαφα
φ

ML,
ML →:φ

)(* φI )()( ** MILI →
ML →:φ

L M
)(* φI )()( ** MILI →

ML →:φ
ML →:φ

L M
φ )(* φI
φ )(* φI
φ )(* φI

ML →:φ
L M

ML →:φ
)()(:)( *** MILII →φ

ML →:φ
)()(:)( *** MILII →φ

ML →:φ
)()(:)( *** MILII →φ

ML →:φ
)()(:)( *** MILII →φ

)()(: ** MILI →ψ
ML →:φ ψ )(* φI

ML →:η LS ⊆⊆φ
)()( ** SII η )(* SI η

)(*
** ))()((

MI
SII η ))((*

MSI η

)(*)(*
** )))()(((

MILI
SII η
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Theorem 2.8:  For any complete homomorphism 
 and for any complete ideal  of , 
=  . 

 

IV. L -INTERVAL VALUED FUZZY SET THEORY 

In this section, first the notions of, L -interval valued f-
set or simply L -ivf-set, L -ivf-subset of an L -ivf set, L -ivf-
union of L -ivf subsets of an L -ivf set, L -ivf-intersection of 
L -ivf subsets of an L -ivf set, were introduced. Then lattice 
algebraic properties of L -ivf-subsets of an L -ivf-set were 
studied. 

Next, the notions of, interval valued f-maps or simply 
ivf-maps between L -ivf-sets with truth values in different 
complete lattices of closed intervals in different complete 
lattices L , ivf-image of an L -ivf-subset under an ivf-map 
and ivf-inverse image of an M -ivf-subset under an ivf-map 
were introduced and were shown to be well defined. Later 
on, lattice algebraic properties of these ivf-images and ivf-
inverse images of ivf-subsets under ivf-maps; and several 
other properties were shown to have neatly extended from f-
sets and f-maps. 

Here onwards, for convenience sake we omit L - in all 
the phrases L -ivf-set, L -ivf-subset, L -ivf-union, L -ivf-
intersection etc.. 

A. L -Interval Valued Fuzzy Sets and L -Interval Valued 
Fuzzy Subsets: 

In this subsection the notions of ivf-set, (c-total, d-total, 
total, strong n)-ivf-subset,  ivf-union and ivf-intersection for 
ivf-subsets of an ivf-set are introduced. 

Definition 1.1:  (a) An interval valued f-set A  or simply 

an ivf-set is any triplet A  = ))(,,( *
ALIAA , where A is a 

set called the  underlying set for A , )(*
ALI  is a complete 

lattice of non empty closed intervals in a complete lattice 

AL , called the underlying complete lattice of closed interval 

truth values for A  and )(: *
ALIAA →  is a map called 

the underlying interval valued  f-map for .A  
Clearly the triplet ))(,,( *

ALIAA  where ,= φA  the 

empty set with no elements, )(*
ALI  = )(* φI  = φ , the 

empty complete lattice of non empty closed intervals in φ  

and A =φ , the empty map, is an ivf-set, called the empty 
ivf-set. 

(b) An ivf-set A  = ))(,,( *
ALIAA  is it normal iff there 

exists an Aa ∈0  such that 0aA  = 
)(*1

ALI
.  

Through out this section the bold italic letters 
ZYXGEDCBA ,,,,,,,, together with their suffixes 

always denote the ivf-sets unless otherwise stated. Also any 
such bold italic letter P always denotes the triplet 

))(,,( *
PLIPP  where P  is the underlying set for P , 

)(*
PLI  is the underlying complete lattice of non empty 

closed intervals in the complete lattice PL  for truth values 

of P and )(: *
PLIPP →  is the underlying interval 

valued f-map for .P    
Definition 1.2:  For any pairof ivf-sets ,, BA  A = B  

iff  (i) A = ,B  (ii) )(*
ALI = )(*

BLI  and (iii) A  = .B  
Definitions and Statements 1.3:  Let XA,  be a pair of 

ivf-sets. 
(a) A  is said to be an ivf-subset of ,X  denoted by 

,XA⊆  iff  (1) XA⊆  (b) )(*
ALI  is a complete ideal 

of )(*
XLI  (3) .| AXA ≤  

(c)  By 4.1.17,  since )(*
ALI  is a complete ideal of 

)(*
XLI  in the above when A  is an ivf-subset of ,X  we 

get that AL  is a complete ideal of .XL  
(d)  Clearly, the empty ivf-set is an ivf-subset of every ivf-
set and for any ivf-set ,X  the whole ivf-set X is an ivf-
subset of itself. 
(e)  For any ivf-set ,X  the collection of all ivf-subsets of 
X is denoted by IVF )(X  

(f) A  is a  d-total ivf-subset of X iff A  is an ivf-subset of 
X and A  = X  

(g) A  is a  c-total ivf-subset of X iff A  is an ivf-subset of 
X and )(*

ALI  = )(*
XLI  

(h) A  is a  total ivf-subset of X iff A  is both a c-total and 
a d-total ivf-subset of X  
(i) A  is a strong ivf-subset of X iff A  is an ivf-subset of 

X and A  = AX |  
(j) A  is a nivf-subset of X iff A  is the ivf-subset of X
such that aA  is singleton closed interval for all Aa∈  
For any family of ivf-subsets IiiA ∈)(  of ,X  

(k) the ivf-union of IiiA ∈)( , denoted by ,iIi A∈∪  is 
defined by the ivf-set ,A where  

(a) A  = iIi A∈∪  is the usual set union of the collection 

IiiA ∈)(  of sets 

(b) )(*
ALI = )(*

iAIi LI∈∨  where )(*

iAIi LI∈∨   is the 

complete ideal generated by )(*

iAIi LI∈∪  in )(*
XLI  

(c) )(: *
ALIAA →  is defined by aA  = aAi

aIi∈∨ , 

where aI  = }|{ iAaIi ∈∈  and 

(l)  the ivf-intersection of IiiA ∈)( , denoted by ,iIi A∈∩ is 
defined by the ivf-set ,A  where 

(a) A  = iIi A∈∩  is the usual set intersection of the 

collection IiiA ∈)(  of sets 

(b) )(*
ALI  = )(*

iAIi LI∈∩  is the usual set  intersection of 

the complete ideals IiiALI ∈))(( *  in )(*
XLI  

(c) )(: *
ALIAA →  by aA  = .aAiIi∈∧   

ML →:η P M
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Lemma 1.4: For any pair of ivf-sets A  and ,B  the 

following are true (a) A  = B  (b) BA⊆  and AB ⊆   

(c) A  = ,B  AL  = BL  and A  = .B    
Proof: (1) )(⇒ (2):  It follows from 5.1.3. and the 

definition of ivf-subset. 
(2) )(⇒ (3): BA⊆  implies BA⊆ , )(*

ALI  is a 

complete ideal of )(*
BLI  and ABA |≤  and AB ⊆  

implies AB ⊆ , )(*
BLI  is a complete ideal of )(*

ALI  

and BAB |≤ . 

Clearly from the above A  = ,B )(*
ALI  = )(*

BLI  and 

.= BA  But by 4.1.12, )(*
ALI  = )(*

BLI  implies 

.= BA LL  

(3) )(⇒ (1):  Since AL = BL , implies )(*
ALI  = )(*

BLI , 
clearly A  = .B  

B. Algebra of L -Interval Valued Fuzzy Subsets: 
In this subsection some (lattice) algebraic properties of 

the collection of all ivf-subsets of an ivf-set are studied. 
Further some lattice theoretic relations between the 
complete lattice of all ivf-subsets of an ivf-set and the 
underlying complete lattice of closed intervals for truth 
values are established. 

Lemma 2.1: For any ivf-set X  = ))(,,( *
XLIXX , 

the following are true: 
(a) )(XIVF  is a complete lattice. 

(b) XL  is an infinite meet distributive lattice iff )(XIVF  
is an infinite meet distributive lattice, whenever X is a 
normal ivf-set. 
(c) XL  is an infinite join distributive lattice iff )(XIVF  is 
an infinite join distributive lattice.   

Proof: (1)  First we show that )(XIVF  is a poset with 

≤  defined by 21 BB ≤  iff 21 BB ⊆  with the least element 
Φ  and the largest element .X  

From 6.1.3,  it is clear that XA⊆⊆Φ  for all 
.)(XIVFA∈  So, XA ≤≤Φ  for all )(XIVFA∈  

and Φ  is the least element and X  is the largest element in 
IVF( X ). 
(A): From 6.1.3, it is clear that for all ,)(XIVFA∈  

.AA ≤  
Let 21 BB ≤  and 12 BB ≤ . 21 BB ≤  implies 21 BB ⊆

, )(
1

*
BLI  is a complete ideal of )(

2

*
BLI and 

121 | BBB ≤ . 12 BB ≤  implies 12 BB ⊆ , )(
2

*
BLI  is a 

complete ideal of )(
1

*
BLI  and .| 212 BBB ≤  

Clearly, the above implies 1B = 2B , )(
1

*
BLI  = )(

2

*
BLI  

and 1B  = 2B  or 1B  = 2B . 

Lastly, let 21 BB ≤  and .32 BB ≤  21 BB ≤  implies 

21 BB ⊆ , )(
1

*
BLI  is a complete ideal of )(

2

*
BLI  and 

121 | BBB ≤ . 32 BB ≤  implies ,32 BB ⊆  )(
2

*
BLI  is a 

complete ideal of )(
3

*
BLI  and .| 232 BBB ≤  

Clearly from the above 31 BB ⊆ , )(
1

*
BLI  and 

)(
3

*
BLI  are complete ideals of )(*

XLI  such that 

)()(
3

*

1

*
BB LILI ⊆  implying )(

1

*
BLI  is a complete 

ideal of )(
3

*
BLI  and 131 | BBB ≤  or 31 BB ≤ , implying 

that )(XIVF  is a poset. 

Let JjjB ∈)(  be a family of ivf-subsets of .X  

(B): Let B  = jJj B∈∪ . Then B  = jJj B∈∪ , )(*
BLI  = 

)(*

jBJj LI∈∨ , )(: *
BLIBB →  is defined by bB  = 

,bB j
bJj∈∨  where bJ  = .}|{ jBbJj ∈∈  

(a): Since (i) jJjj BB ∈∪⊆ = B  (ii) )(*

jBLI  and )(*
BLI  

are complete ideals of )(*
XLI  such that 

)()( **
BjB LILI ⊆ , by 3.2.4(c), )(*

jBLI  is a complete 

ideal of )(*
BLI  (iii) for all jBb∈ , bBbB j

bJjj ∈∨≤  = 

bB  which implies jj BBB |≤ , we get that BBj ⊆  for 

all Jj∈  or B  is an upper bound for JjjB ∈)( . 

(b): Let C  be an ivf-subset of X  such that C  is an upper 
bound for JjjB ∈)( . Then jB  is an ivf-subset of C  for all 

Jj∈  and hence CBj ⊆ , )(*

jBLI  is a complete ideal 

of )(*
CLI  and jj BCB |≤ . 

Clearly, B  = CBjJj ⊆∪ ∈ , )(*
BLI  = )(*

jBJj LI∈∨  

⊆  )(*
CLI  and hence, by 3.2.4(c), )(*

BLI  is a complete 

ideal of )(*
CLI  and bB  = bCbB j

bJj ≤∨ ∈  for all 

Bb∈ , implying that CB ⊆  and that B  is the least 

upper bound for JjjB ∈)(  in .)(XIVF  

(C): Let B  = jJj B∈∩ . Then B  = jJj B∈∩ , )(*
BLI  = 

)(*

jBJj LI∈∧  and for all Bb∈ , bB  = .bB jJj∈∧  

(a) Since (i) B  = jjJj BB ⊆∩ ∈  (ii) )(*
BLI  and 

)(*

jBLI  are complete ideals of )(*
XLI  such that  

)(*
BLI  ⊆  )(*

jBLI , by 3.2.4(c), )(*
BLI  is a complete 

ideal of )(*

jBLI  and (3) bB  = bBbB jjJj ≤∧ ∈   
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for all Bb∈  implies BBB j |≤ , we get that jBB ⊆  

for all Jj∈  or B  is a lower bound for .)( JjjB ∈  

(b): Let C  be an ivf-subset of X  such that C  is a lower 

bound for .)( JjjB ∈  Then jBC ⊆  for all Jj∈  and 

hence CBj ⊇ , )(*
CLI  is a complete ideal of )(*

jBLI  

and CCB j ≥| . 

Clearly, B  = CBjJj ⊇∩ ∈ , )(*
BLI  = )(*

jBJj LI∈∧  

⊇  )(*
CLI  and hence )(*

CLI  is a complete ideal of 

)(*
BLI  and bB  = bCbB j

bJj ≥∧ ∈  for all Bb∈ , 

implying that CB ⊇  and that B  is the greatest lower 

bound for JjjB ∈)(  in .)(XIVF  

Now (A), (B) and (C) imply that )(XIVF  is a 
complete lattice. 
(2): (⇒ ): Let jCB,  be ivf-subsets of X  for all .Jj∈  

Let C  = jJj C∈∨ . Then C  = jJj C∈∪ , )(*
CLI  = 

)(*

jCJj LI∈∨  and for all Cc∈ , cC  = cC j
cJj∈∨ , 

where cJ  = }|{ jCcJj ∈∈ . 

Let D  = CB ∧ . Then D  = CB∩ , )(*
DLI  = 

)()( **
CB LILI ∩  and for all ,Dd ∈  dD  = .dCdB ∧  

Let jE  = jCB ∧ . Then jE  = jCB∩ , )(*

jELI  = 

)()( **

jCB LILI ∩  and for all jEe∈ ,  

eE j  = .eCeB j∧  

Let F  = jJj E∈∨ . Then F  = jJj E∈∪ , )(*
FLI  = 

)(*

jEJj LI∈∨  and for all ,Ff ∈  fF  = ,fE j
fJj∈∨  

where fJ  = }|{ jEfJj ∈∈  = }|{ jCBfJj ∩∈∈ . 

We show that D  = F  or  (a) FD =  (b) )(*
DLI  = 

)(*
FLI  and (c) D  = .F  

(a): D  = )( jJj CB ∈∪∩  = )( jJj CB∩∪ ∈  = jJj E∈∪  

= .F  

(b): First by 4.1.16, )(*
CLI = )(*

jCJj LI∈∨  = 

)(*

jCJj LI ∈∨ , )(*
DLI = )()( **

CB LILI ∧  =

)(*
CB LLI ∧ , )(*

jELI = )()( **

jCB LILI ∧  =

)(*

jCB LLI ∧  and )(*
FLI = )(*

jEJj LI∈∨  =

)(*

jEjj LI ∈∨ . 

Next, by 4.1.12, the above implies, CL  = 
jCJj L∈∨ , DL  = 

CB LL ∧ , 
jEL  = 

jCB LL ∧  and FL  = .
jEJj L∈∨  

But by 3.5.2(1), DL  = CB LL ∧  = )(
jCJjB LL ∈∨∧  = 

)(
jCBJj LL ∧∨ ∈  = 

jEJj L∈∨  = FL . 

Since DL  = FL , )(*
DLI  = .)(*

FLI  

(c): Let Dd ∈  = .F  Then dD  = dCdB ∧  = 

dCdB j
dJj∈∨∧ , dJ  = }|{ jCdJj ∈∈  and  

dF  = dE j
dJj '∈

∨  = )(' dCdB j
dJj

∧∨
∈

, '
dJ  = 

}|{ jCBdJj ∩∈∈ . 

Since (a) above implies dJ  = '
dJ  and L  satisfies the 

infinite meet distributive law, dD  = dF  or jJj CB ∈∨∧  

= D  = F  = )( jJj CB ∧∨ ∈ , implying that )(XIVF  is 
an infinite meet distributive lattice. 
( ⇐ ): Let XL∈α  and XJjj L⊆∈)(β . Since X  is a 

normal ivf-set, there exist an Xx ∈0  such that  

0xX  = 
)(*1

XLI
. For any XL∈α , define αA  = 

))(,,( *
XLIAX α  where )(: *

XLIXA →α  is defined 

by 0xAα  = αi  and xAα  = 
)(*0

XLI
 for 0xx ≠ . Then 

αA  is an ivf-subset of X  for all AL∈α  because  

0xX  = 1 ≥  αi  = 0xAα . 

Let D  = )(
JJj AA βα ∈∨∧  and E =

.)(
JJj AA βα ∧∨ ∈  Then )(XIVF  is infinite meet 

distributive lattice and so D  = E  and in particular D  = 
.E  Clearly, by the definition of αA , since 

)(: *
XX LILi →  is a complete monomorphism, 0xD  = 

)( jJj ii βα ∈∨∧  = )( jJjii βα ∈∨∧  = )( jJji βα ∈∨∧  
and  

0xE  = )( jJj ii βα ∧∨ ∈  = )( jJj i βα ∧∨ ∈  = 

))(( jJji βα ∧∨ ∈ .  

Now 0xD  = 0xE  implies jJj βα ∈∨∧  = )( jJj βα ∧∨ ∈ . 

(3)(⇒ ):  Let jCB,  be ivf-subsets of X  for all .Jj∈  

Let C  = jJj C∈∧ . Then C  = jJj C∈∩ , )(*
CLI  = 

)(*

jCJj LI∈∧  and for all Cc∈ , cC  = cC j
cJj∈∧ , 

where cJ  = }|{ jcbJj ∈∈ . 

Let D  = CB ∨ . Then D  = CB∪ , )(*
DLI  = 

)()( **
CB LILI ∨  and for all Dd ∈ , dD  = .dCdB ∨  



Nistala V. E. S. Murthy et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013,227-250 

© 2010, IJARCS All Rights Reserved                                                                                                                                                                                                  235 

Let jE  = jCB∨ . Then jE  = jCB∪ , )(*

jELI  = 

)()( **

jCB LILI ∨  and  

for all jEe∈ , eE j  = eCeB j∨ . 

Let F  = jJj E∈∧ . Then F  = jJj E∈∩ , )(*
FLI  = 

)(*

jEJj LI∈∧  and for all Ff ∈ , fF  = ,fE j
fJj∈∧  

where fJ  = }|{ jEfJj ∈∈  = .}|{ jCBfJj ∪∈∈  

We show that D  = F  or (a) FD =  (b) )(*
DLI  = 

)(*
FLI  and (c) D  = .F  

(a): D  = )( jJj CB ∈∩∪  = )( jJj CB∪∩ ∈  = jJj E∈∩  

= .F  

(b): First by 4.1.16, )(*
CLI = )(*

jCJj LI∈∧  =

)(*

jCJj LI ∈∧ , )(*
DLI = )()( **

CB LILI ∨  =

)(*
CB LLI ∨ , )(*

jELI = )()( **

jCB LILI ∨  =

)(*

jCB LLI ∨  and )(*
FLI = )(*

jEJj LI∈∧  =

)(*

jEjj LI ∈∧ . 

Next, by 4.1.12, the above implies, CL  = 
jCJj L∈∧ , DL  = 

CB LL ∨ , 
jEL  = 

jCB LL ∨  and FL  = 
jEJj L∈∧ . 

But by 3.5.2(2), DL  = CB LL ∨  = )(
jCJjB LL ∈∧∨  = 

)(
jCBJj LL ∨∧ ∈  = 

jEJj L∈∧  = FL . 

Since DL  = FL , )(*
DLI  = .)(*

FLI  
 

(c): Let Dd ∈  = .F  Then dD  = dCdB ∨  = 

dCdB j
dJj∈∧∨ , dJ  = }|{ jCdJj ∈∈  and  

dF  = dE j
dJj '∈

∧  = )(' dCdB j
dJj

∨∧
∈

, '
dJ  = 

}|{ jCBdJj ∪∈∈ . 

Since (a) implies dJ  = '
dJ  and L  satisfies the infinite join 

distributive law, dD  = dF  or  

jJj CB ∈∧∨  = D  = F  = )( jJj CB∨∧ ∈ , implying that 

)(XIVF  is an infinite join distributive law. 
 

( ⇐ ): Let XL∈α  and XJjj L⊆∈)(β . Since X  is a 

normal ivf-set, there exist an Xx ∈0  such that  

0xX  = 
)(*1

XLI
. For any XL∈α , define αA  = 

))(,,( *
XLIAX α  where )(: *

XLIXA →α  is defined 

by 0xAα  = αi  and xAα  = 
)(*0

XLI
 for 0xx ≠ . Then 

αA  is an ivf-subset of X  for all AL∈α  because  

0xX  = 1 ≥  α  = 0xAα . 

Let D = )(
JJj AA βα ∈∧∨  and E = )(

JJj AA βα ∨∧ ∈ . 

Then )(XIVF  is an infinite join distributive lattice and so 

D  = E  and in particular D  = E . Clearly, by the 

definition of αA , 0xD  = )( jJj ii βα ∈∧∨  = 

)( jJjii βα ∈∧∨  = )( jJji βα ∈∧∨  and 0xE  =

)( jJj ii βα ∨∧ ∈ = )( jJj i βα ∨∧ ∈ = ))(( jJji βα ∨∧ ∈ .  

Now 0xD  = 0xE  implies jJj βα ∈∧∨  = )( jJj βα ∨∧ ∈ . 

C. Fuzzy Maps Between An L -Interval Valued Fuzzy 
Set and An M -Interval Valued Fuzzy Set: 

In this subsection the notions of, an (increasing, 
decreasing, preserving) interval valued f-map or simply an 
ivf-map between an L -ivf-set and an M -ivf-set and the 
ivf-composition of such ivf-maps were introduced. 

Definition 3.1:  A generalised ivf-map from A  to B  is 
any pair ),( ψf , denoted by BAf →:),( ψ , where 

BAf →:  is a set map and )()(: **
BA LILI →ψ  is a 

complete homomorphism.   
Definition 3.2:  An ivf-map from A  to B  is any pair 

F  = ))(,( *
fLIf , denoted by F : BA→ , where 

BAf →:  is a set map and BAf LLL →:  is a complete 
homomorphism.   

Definition 3.3: For any ivf-map 
))(,,())(,,(:))(,( ***

BAf LIBBLIAALIf → , 

(i) ))(,( *
fLIf  is increasing, denoted by iF , iff 

ALIfB f )(*≥  

(ii) ))(,( *
fLIf  is decreasing, denoted by dF , iff 

ALIfB f )(*≤  

(iii) ))(,( *
fLIf  is preserving, denoted by pF , iff fB  = 

ALI f )(*    
  Definition 3.4: For any pair of ivf-maps 

BALIfF f →:))(,(= *  and CBLIgG g →:))(,(= * , 

 the ivf-composition of F  by G , denoted by 
CAFG →: , is defined by the ivf-map  

FG  = ))()(,( **
fg LILIgf . 

D. M-Interval Valued Fuzzy Images and L-Interval 
Valued Fuzzy Inverse Images of Interval Valued Fuzzy 
Subsets: 

In this subsection the notions of, the M -ivf-image of an 
L -ivf-subset under an ivf-map and the L -ivf-inverse image 
of an M -ivf-subset under an ivf-map were introduced and 
were shown to be well defined. 
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Lemma 4.1:  For any ivf-map ))(,( *
fLIf : 

))(,,())(,,( **
BA LIBBLIAA → , the following are 

true: 

(a) For any ivf-subset ))(,,( *
CLICC  of ))(,,( *

ALIAA , 

the ivf-set D  where D  = fC , )(*
DLI  = 

)(*
** ))()((

BLICf LILI  and )(: *
DLIDD →  is defined 

by  

dD = )()( 1* CdfCLIdB f ∩∨∧ −  for all Dd ∈ , is an 

ivf-subset of .B  

(b) For any ivf-subset ))(,,( *
DLIDD  of ))(,,( *

BLIBB
, the ivf-set C  where C  = Df 1− , )(*

CLI  = 

)()( *1*
Df LILI −  and )(: *

CLICC →  is defined by  

cC = fcDLIcA f
1* )( −∨∧  for all Cc∈ , is an ivf-

subset of .A    

Proof: (a) Since AC ⊆ , AC ⊆ , )(*
CLI  is a 

complete ideal of )(*
ALI  and .| CAC ≤  

Therefore, D  = BfAfC ⊆⊆  and )(*
DLI  = 

)(*
** ))()((

BLICf LILI   is a complete ideal of .)(*
BLI  

Further, since CCdf ⊆∩−1 , we have 

)()( *1
CLICCCdfC ⊆⊆∩− . So,  

)()()()( **1*
Cff LILICdfCLI ⊆∩−  ⊆  

)(*
** ))()((

BLICf LILI  = .)(*
DLI  

Now since )(*
DLI  is a complete ideal, we get that 

)()()( *1*
Df LICdfCLI ∈∩∨ −  and dD  = 

.)()()( *1*
Df LICdfCLIdB ∈∩∨∧ −  

Thus the ivf-image of an ivf-subset is a well-defined ivf-
subset of .B  
(b) Since BD ⊆ , BD ⊆ , )(*

DLI  is a complete ideal of 

)(*
BLI  and .| DBD ≤  

Therefore C  = .11 ABfDf ⊆⊆ −−  Further since the 
inverse image of a complete ideal under a complete 

homomorphism is a complete ideal, )(*
CLI =

)()( *1*
Df LILI −  is a complete ideal of )(*

ALI . Also C  

= Df 1−  implies fC  = D  which in turn implies 

)(*
DLIDDfcD ⊆∈ . 

Therefore  )()()( *1*1*
Dff LILIfcDLI −− ⊆  = 

.)(*
CLI  

Now, since )(*
CLI  is a complete ideal, we get that 

)()( *1*
Cf LIfcDLI ∈∨ −  and hence cC  = 

)()( *1*
Cf LIfcDLIcA ∈∨∧ − , implying that the ivf-

inverse image of an ivf-subset is a well-defined ivf-subset of 
.A    

Definition 4.2:   Let BAF →:  be an ivf-map. Then  
(a) For any ivf-subset C  of ,A  the  ivf-image of C  under 

F , denoted by FC , is defined by ,D  where (a) D  = fC  

(b) )(*
DLI  = 

)(*
** ))()((

BLICf LILI  and (c) dD  = 

)()( 1* CdfCLIdB f ∩∨∧ −  for all .Dd ∈  

(b) For any ivf-subset D  of ,B  the  ivf-inverse image of D  

under ,F  denoted by ,1DF −  is defined by C , where (a) 

C  = Df 1−  (b) )(*
CLI  = )()( *1*

Df LILI −  and (c) 

cC  = fcDLIcA f
1* )( −∨∧  for all .Cc∈  

E. Properties of M-Interval Valued Fuzzy Images and 
L-Interval Valued Fuzzy Inverse Images: 

In this subsection some standard lattice algebraic 
properties of the collections of, M -ivf-images of L -ivf-
subsets under an ivf-map and the L -ivf-inverse images of 
M -ivf-subsets under an ivf-map are studied in detail. 

Further, all counter examples in this subsection can be 
obtained from the corresponding ones in the Theory of 
f_Sets And f-Maps-Revisited in Murthy and Prasanna[17]. 
Hence the sectional references mentioned in this section for 
counter examples  are for the above paper. Also, as 
mentioned earlier in a Note before Section 4, a referencing, 
for example, by 3.3.11(3),……… only means that, by 
3.3.11(3)  of Murthy and Prasanna[17], ………. 

Definitions 5.1: (a) Let BAF →:  be an ivf-map and 
.BC ⊆  Then C  is said to be an )(*

fLI -regular 

 ivf-subset of B  iff )()()( ***
AfC LILILI ⊆ . 

(b) An f-map ))(,(= *
fLIfF  is  

(a) 0-preserving, or simply 0-p iff )(*
fLI  is a 0-

preserving complete homomorphism (Cf. 3.3.6)  
(b) 1-preserving or simply 1-p iff )(*

fLI  is a 1-preserving 
complete homomorphism (Cf.3.3.6)  
(c) 0-reflecting or simply 0-r iff )(*

fLI  is a 0-reflecting 
complete homomorphism (Cf.3.3.18) and  
(d) 1-reflecting or simply 1-r iff )(*

fLI  is a 1-reflecting 
complete homomorphism (Cf.3.3.18).   

Proposition 5.2: for any ivf-map BAF →:  and for 
any pair of ivf-subsets 1A  and 2A  of A  such that 

21 AA ⊆ , we always have 2*1* AFAF ⊆  whenever *  = i  
or  d   or p .   
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Proof: Let 1D = 1FA .Then 11 = fAD , )(
1

*
DLI =

)(*1

** ))()((
BLIAf LILI  and 

)()(= 1
1

1
*

1 AdfALIdBdD f ∩∨∧ −  for all 1Dd ∈ . 

Let 2D  = 2FA . Then 22 = fAD , )(
2

*
DLI  = 

)(*2

** ))()((
BLIAf LILI  and 

)()(= 2
1

2
*

2 AdfALIdBdD f ∩∨∧ −  for all 2Dd ∈ . 

We show that 21 DD ⊆  or (a) 21 DD ⊆  (b) )(
1

*
DLI  is a 

complete ideal of )(
2

*
DLI  and (c) 121 | DDD ≤ . 

Since 21 AA ⊆ , we have 21 AA ⊆ , )(
1

*
ALI  is a 

complete ideal of )(
2

*
ALI  and 121 | AAA ≤ . 

(a): 1D  = 21 fAfA ⊆  = 2D , since .21 AA ⊆  

(b): Since )()(
2

*

1

*
AA LILI ⊆ , we have 

)()()()(
2

**

1

**
AfAf LILILILI ⊆  and so )(

1

*
DLI  = 

 
)(*1

** ))()((
BLIAf LILI  is a complete ideal of 

)(*2

** ))()((
BLIAf LILI  = )(

2

*
DLI , by 3.2.3(7). 

(c): Let 1Dd ∈ . Since 2
1

1
1 AdfAdf ∩⊆∩ −−  and 

121 | AAA ≤ , we get that 1
* )( ALI f  ≤  12

* |)( AALI f  

By 3.4.8, 2
*

1
1

1
* )()()( ALIAdfALI ff ∨≤∩∨ −  

df 1( − )1A∩  ≤  2
* )( ALI f∨  )( 2

1 Adf ∩−  which now 

implies dD1   =  dB  ∧  1
* )( ALI f∨  )( 1

1 Adf ∩−   ≤   

dB  ∧   2
* )( ALI f∨  )( 2

1 Adf ∩−   =  dD2  or  

1D  ≤  12 | DD .   
Proposition 5.3: For any ivf-map BAF →:  and for 

any pair of ivf-subsets 1B  and 2B  of B  such that

21 BB ⊆  and 2B  is )(*
fLI -regular, we have 

2
1

*1
1

* BFBF −− ⊆  whenever *  = i  or  d   or p .   

Proof :Let 11
1 = ABF − . Then 1A  = 1

1Bf − , )(
1

*
ALI  

= )()(
1

*1*
Bf LILI −  and 

 faBLIaAaA f 1
1*

1 )(= −∨∧       for       all     1Aa∈ . 

Let 2
1BF −  = 2A . Then 2A  = 2

1Bf − , )(
2

*
ALI  = 

)()(
2

*1*
Bf LILI −  and aA2  = faBLIaA f 2

1* )( −∨∧  

for all 2Aa∈ . 

We show that 21 AA ⊆  or (a) 21 AA ⊆  (b) )(
1

*
ALI  is 

a complete ideal of )(
2

*
ALI  and (c) 121 | AAA ≤ . 

Since 21 BB ⊆ , we have 21 BB ⊆ , )(
1

*
BLI  is a 

complete ideal of )(
2

*
BLI  and 121 | BBB ≤ . 

(a):Since 21 BB ⊆ ,we have 2
1

1
1

1 = BfBfA −− ⊆ = 2A . 

(b): Since )(
1

*
BLI  ⊆  )(

2

*
BLI , we have 

)()()()()(=)(
2

*

2

*1*

1

*1*

1

*
ABfBfA LILILILILILI =⊆ −−

So, by 3.2.4(c), )(
1

*
ALI  is a complete ideal of )(

2

*
ALI . 

(c): Let 1
1

1 = BfAa −∈  be fixed. Then  21 BBfa ⊆∈ , 

faBLIaAaA f 1
1*

1 )(= −∨∧  and 

faBLIaAaA f 2
1*

2 )(= −∨∧ . 
Therefore it is enough to show that 

faBLIfaBLI ff 2
1*

1
1* )()( −− ∨≤∨ . 

Since 1
1= BfAa −∈  and 121 | BBB ≤ , we have 

21 BBfa ⊆∈  and faBfaB 21 ≤ .  

Since )()( **
2 Af LILIfaB ∈ , by )(*

fLI -regularity of 

2B  and by join monotonicity of 1* )( −
fLI  as in 3.3.2, we 

get that faBLI f 1
1* )( −∨  ≤  1* )( −∨ fLI  faB2 , as 

required. 
The above proposition is not true if 2B  is not )(*

fLI -
regular and the Example 4.5.7 serves here also. 

Proposition 5.4:  For any o-p ivf-map BAF →:  and 
for any ivf-subset C  of A , CFFC *

1
*
−⊆  whenever  * =   

i  or   p.   

Proof: Let DFC = .Then
)(*

*** ))()((=)(,=
BLICfD LILILIfCD

and )()(= 1* CdfCLIdBdD f ∩∨∧ −  for all Dd ∈ . 

Let EDF =1− . Then 
)()(=)(,= *1**1

DfE LILILIDfE −−  and 

feDLIeAeE f
1* )(= −∨∧  for all .Ee∈  

We show that EC ⊆  or (a) EC ⊆  (b) )(*
CLI  is a 

complete ideal of )(*
ELI  (c) CEC |≤ . 

(a): EDffCfC == 11 −−⊆ . 

(b): )(*
CLI ⊆ 1* )( −

fLI )(*
fLI )(*

CLI ⊆
1* )( −

fLI )(( *
fLI

)(*
* ))(

BLICLI = )()( *1*
Df LILI − = 

)(*
ELI   Since )(*

CLI  and )(*
ELI  are complete ideals 

of )(*
ALI  such that )()( **

EC LILI ⊆ ,we get that  

)(*
CLI  is a complete ideal of )(*

ELI  by 3.2.4(c). 
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(c): Let Cc∈  be fixed. Then 

fcDLIcAcE f
1* )(= −∨∧ , where 

)()(= 1* CfcfCLIfcBfcD f ∩∨∧ −   

= aCLIfcB fCfcfa
)(*

1 ∩−∈
∨∧ . 

Since )(*
fLI is increasing, cALIfcB f )(*≥ . But 

cCLIcALI ff )()( ** ≥  because CCA ≥|  and Cc∈ . 

Further, for all Cfcfa ∩∈ −1 , fcfa =  and 

fcBfaB = . So, from the above  

aCLIaALIfaBfcB ff )()(= ** ≥≥  for all 

Cfcfa ∩∈ −1 , implying )()( 1* CfcfCLIfcB f ∩∨≥ − . 

Therefore, fcD = )()( 1* CfcfCLIfcB f ∩∨∧ −  = 

)()( 1* CfcfCLI f ∩∨ − . 

But fcD = )()( 1* CfcfCLI f ∩∨ − =

))()(( 1* CfcfCLI f ∩∨ −  because φ≠∩− Cfcf 1  and 

hence φ≠∩− )( 1 CfcfC  and )(*
fLI  is a complete 

homomorphism. 

Therefore fcD  = ))()(( 1* CfcfCLI f ∩∨ −   implying 

that fcDLICfcfC f
1*1 )()( −− ∈∩∨ . 

Now, since Cfcfc ∩∈ −1 , the above implies cC  ≤  

)( 1 CfcfC ∩∨ −  ≤  1* )( −∨ fLI  fcD  as 

1*1 )()( −− ∈∩∨ fLICfcfC  fcD . 

Therefore cE  = cCcAfcDLIcA f ∧≥∨∧ −1* )(  = cC  

since CCA ≥| , implying CCE ≥| . 
The above proposition is not true for decreasing ivf-

maps and the Example 4.5.9, serves here also. 
Proposition 5.5:  For any 0-p ivf-map BAF →:  and 

for any )(*
fLI -regular ivf-subset C  of B , we have 

CCFF ⊆−1
** , whenever *=i or d or p.   

Proof: Let DCF =1
*
− . Then CfD 1= − , 

)()(=)( *1**
CfD LILILI −  and 

fdCLIdAdD f
1* )(= −∨∧  for all Dd ∈ . 

Let DF* = E . Then E = fD , )(*
ELI  = 

)(*
** ))()((

BLIDf LILI  and for all Ee∈ , eE  = eB  ∧  

)(*
fLI∨  )( 1 DefD ∩− . 

We show that CE ⊆  or (a) CE ⊆  (b) )(*
ELI  is a 

complete ideal of )(*
CLI  and (c) ECE |≤ . 

(a): CCfffDE ⊆−1== . 

(b): 
1**

)(*
*** )()((=))()((=)( −

ff
BLIDfE LILILILILI  

)(*
*

)(*
* )())(

BLIC
BLIC LILI ⊆  because always  

)()()()( **1**
CCff LILILILI ⊆− . 

Since )(*
ELI  and )(*

CLI  are complete ideals of 

)(*
BLI  such that )()( **

CE LILI ⊆ , by 3.2.4(c), we get 

that )(*
ELI  is a complete ideal of )(*

CLI . 

(c): Let Ee∈  be fixed. Then 

)()(= 1* DefDLIeBeE f ∩∨∧ − , where 

faCLIaAaD f
1* )(= −∨∧ . 

Now for all Defa ∩∈ −1 , efa = , Da∈  and 

aDLI f )(*  = aALI f )(*  ∧  1** )()(( −∨ ff LILI  

eCfaCaALIfaC f ≤∧≤ )() * , for all Defa ∩∈ −1 , 

where the first ≤  is by 3.3.11(4) and the fact that F  is 0-p. 

Therefore, eCDefDLI f ≤∩∨ − )()( 1*  and eE = 

eCeCeBDefDLIeB f =)()( 1* ∧≤∩∨∧ − , since 

BC ⊆  implies CBC |≤ , implying ECE |≤ . 
The above proposition is not true if F  is not 0-p and the 

Example 4.5.11 serves here also. 
Proposition 5.6:  For any 0-p ivf-map BAF →:  such 

that f  and )(*
fLI  are one-one and for any ivf-subset C  

of A , we have C  = CFF *
1

*
−  whenever *  =  i   or   p.  

Proof: Let FC = D .Then fCD = ,

)(*
*** ))()((=)(

BLICfD LILILI and )()(= 1* CdfCLIdBdD f ∩∨∧ −  

for all Dd ∈ . 
However, since f  is one-one, 

cCLIfcBCfcfCLIfcBfcD ff )(=)()(= *1* ∧∩∨∧ −

 for all Cc∈ . 
Let EDF =1− . Then E  = Df 1− , )(*

ELI  = 

)()( *1*
Df LILI −  and eE  = eA  ∧  feDLI f

1* )( −∨  for 

all Ee∈ . 
It is enough to show C = E  or  (1) EC =  (2) 

)(=)( **
CE LILI  and (3) CE = . 

(a): CfCfDfE === 11 −− , since f is 1-1. 

(b):  First, by 3.2.3(3), ][0,= αCL  for some AL∈α  and 

by 4.1.16, )(*
CLI  = ])([0,* αI  = 

)(*][0,
ALI

iα . 

By 3.4.3(2)  and   the   above,  )(*
DLI    =   

)(*
** ))()((

BLICf LILI     =    
)(*

** ]))([0,)((
BLIf ILI α    

=   
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)(*
* ]))[0,((

BLIf iLI α =
)(*

* ])([0,
BLIf iLI α . 

Therefore by 3.4.6(3), since )(*
fLI  is 0-p and 

∈αiLI f )(*  )()( **
Af LILI ,  

)(*
ELI  = )()( *1*

Df LILI −  = 

)(*
*1* ])([0,)(

BLIff iLILI α−  = 

)(*
*1* ])()([0,

BLIff iLILI α−∨   

= ][0, αi  = )(*
CLI , where the 4th equality is due to the 

fact that )(*
fLI  is one-one. 

(c): We already have CEC |≤ , because by 6.5.4, 

CFFC *
1

*
−⊆  = E . 

Let Ee∈  be fixed. Then (a) feD  above when f  is 
one-one (b) the facts that  
(i)   )()()()()( *****

AfCff LILILILIeCLI ⊆∈   

(ii) 1* )( −
fLI  is join increasing by 3.3.2 

(iii) eCLIeCLIfeB ff )()( ** ≤∧  (iv) CAC |≤  and 

(c) )(*
fLI  is one-one, imply that  

eE  = feDLIeA f
1* )( −∨∧  

= 

))(()( *1* eCLIfeBLIeA ff ∧∨∧ −  ≤  

))(()( *1* eCLILIeA ff
−∨∧  = eCeA ∧  = eC , which 

in turn implies ECE |≤ . 

The above proposition is not true if only )(*
fLI  is one-

one but f is not and the Example 4.5.14 serves here also. 
The above proposition is not true if the  ivf-map is 

decreasing and both f  and )(*
fLI  are bijections and the 

Example 4.5.15 serves here also. 
Proposition 5.7: For any 0-p ivf-map BAF →:  such 

that f  and )(*
fLI  are onto, and for any ivf-subset D  of 

B , we have DDFF =1
**
−  whenever  *   =   d   or   p.   

Proof: Let DFC 1= − . Then DfC 1= − , )(*
CLI  = 

)()( *1*
Df LILI −  and fcDLIcAcC f

1* )(= −∨∧   

for all Cc∈ . 
Let FCE = . Then fCE = , )(*

ELI  = 

)(*
** ))()((

BLICf LILI  and 

)()(= 1* CefCLIeBeE f ∩∨∧ −   

for all Ee∈ . 
We will show that ED =  or  (a) D  = E  (b) )(*

DLI  

= )(*
ELI  and (c) D  = E  

(a): DDfffCE === 1− , since f is onto. 

(b): )(*
ELI  = 

)(*
** ))()((

BLICf LILI  = 

)(*
*1** ))()()((

BLIDff LILILI − = 
)(*

* ))((
BLIDLI  = 

)(*
DLI , where the third equality is due to )(*

fLI  being 

onto and the fourth equality is due to )(*
DLI  being a 

complete ideal of )(*
BLI . 

(c): Let CEe =∈  be fixed. Since F  is decreasing and 

BD ⊆ , we have ALIfB f )(*≤  and DBD |≤ . 

Consequently, for all Cefc ∩∈ −1 , fce = , Cc∈  and 

cALIfcBfcD f )(*≤≤ .  

Further, since )(*
fLI  is onto, )()( **

BD LILIfcD ⊆∈  

= )()( **
Af LILI , by 3.3.11(3),  

))()(( 1** fcDLILI ff
−∨ = fcD  and hence  

cCLI f )(*  = ))()(( 1** fcDLIcALI ff
−∨∧  = 

))()(()( 1*** fcDLILIcALI fff
−∨∧  = 

fcDcALI f ∧)(*  = fcD  = eD , implying 

)()( 1* CefCLI f ∩∨ −  = eD . 

Now eE  = )()( 1* CefDLIeB f ∩∨∧ −  = eDeB ∧  = 

eD , because DBD |≤ . 
The above proposition is not true if F  is increasing and 

both f  and )(*
fLI  are bijections and Example 4.5.17 

serves here also. 
Also, the above proposition is not true if only one of f  

or )(*
fLI  is onto but not both and Examples 4.5.18 and 

4.5.19 serve here also. 
Let us recall from 6.1.3 that for any family of ivf-subsets 

IiiA ∈)(  of A , 

(a) iIi A∈∪  is defined by the ivf-set ,B  where  

(a) iIi AB ∈∪=  (b) )(*
BLI  = )(*

iAIi LI∈∨  and (c) 

)(: *
BLIBB →  is defined by bAbB i

bIi∈∨= , where 

}|{= ib AbIiI ∈∈ , for all .Bb∈  
and  
(b) iIi A∈∩  is defined by the ivf-set C , where (1) 

iIi AC ∈∩=  (2) )(*
CLI  = )(*

iAIi LI∈∧   

(c) )(: *
CLICC →  is defined by cAcC iIi∈∧=  for all 

.Cc∈  
Proposition 5.8:  For any 0-p ivf-map BAF →:  and 

for any family of ivf-subsets JjjC ∈)(  of A , we have 
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jJjjJj CFCF ** =)( ∈∈ ∪∪  whenever i=*  or d  or p  

and BL  is a complete infinite distributive lattice.  

Proof: Let jJj CC ∈∪= . Then jJj CC ∈∪= , 

)(=)( **

jCJjC LILI ∈∨  and cCcC j
cIj∈∨= , where 

}|{= jc CcJjI ∈∈  for all Cc∈ . 

Let D  = CF . Then D  = fC , )(*
DLI  = 

)(*
** ))()((

BLICf LILI  and  

dD  = dB  ∧  )()( 1* CdfCLI f ∩∨ −  for all Dd ∈ . 

Let  jj FCE = .   Then    jj fCE = ,    

)(*
*** ))()((=)(

BLIjCfjE LILILI    and  

)()(= 1*
jjfj CefCLIeBeE ∩∨∧ −  for all jEe∈ . 

Let   jJj EE ∈∪= .    Then   jJj EE ∈∪= ,   

)(=)( **

jEJjE LILI ∈∨   and   eEeE j
eIj∈∨= ,  where  

}|{= je EeJjI ∈∈ , for all Ee∈ . 

Now we show that ED =    or    (a)  ED =    (b)  
)(=)( **

ED LILI    and   (c)  ED = . 
(a): 

EEfCCffCD jJjjJjjJj ===)(== ∈∈∈ ∪∪∪ . 

(b): First, since F  is 0-p, by definition )(*
fLI  is 0-p. But 

then by 4.2.5(1) fL  is 0-p. 

By 4.2.7, )(*
DLI  = 

)(*
** ))()((

BLICf LILI  = 

))((*

BLCf LLI  and  

)(*

jELI   = 
)(*

** ))()((
BLIjCf LILI  = ))((*

BLjCf LLI . 

By 4.1.16, )(*
CLI  = )(*

jCJj LI∈∨  = )(*

jCJj LI ∈∨  and 

)(*
ELI = )(*

jEJj LI∈∨  = )(*

jEJj LI ∈∨ .  

Therefore by 4.1.12, the above imply DL  = 
BLCf LL )( , 

jEL  = 
BLjCf LL )( , CL  = 

jCJj L∈∨  and  

EL  = 
jEJj L∈∨ . 

Again by 4.1.12, to show )(*
DLI = )(*

ELI , it is enough 

to show DL  = EL . But DL  =  
BLCf LL )(  = 

BLjCJjf LL )( ∈∨ , EL  = 
jEJj L∈∨  = 

BLjCfJj LL )(∈∨

and as in the f-set-theory setup 4.5.20, DL  = EL , since fL  
is 0-p. 
(c): Let fCy∈  = )( jJj Cf ∈∪ , xU  = }|{ jCxJj ∈∈  

and yV  = }|{ jfCyJj ∈∈ .  

Then for all Cyfx ∩∈ −1 , φ≠xU , φ≠yV , yfx =  

and Cx∈ . 

Further, yD  = yB  ∧  )()( 1* CyfCLI f ∩∨ −  = yB  

∧  xCLI fCyfx
)(*

1 ∩−∈
∨   

= yB  ∧  )(*
1 fCyfx

LI
∩−∈

∨  )( xCi
xUi∈∨  = yB  ∧  

xCLI ifxUiCyfx
)(*

1 ∈∩−∈
∨∨ . 

On the other hand, since BL  is a complete infinite meet 
distributive lattice,  

yE  = yE j
yVj∈∨  = 

))(( *
1 zCLIyB jf

jCyfzyVj ∩−∈∈ ∨∧∨
 
= 

zCLIyB jf
jCyfzyVj )(*

1 ∩−∈∈ ∨∨∧ . 

Therefore it is enough to show that  

xCLI ifxUiCyfx
)(*

1 ∈∩−∈
∨∨  = 

zCLI jf
jCyfzyVj )(*

1 ∩−∈∈ ∨∨ . 

Let Q  = },|)({ 1*
yjjf VjCyfzzCLI ∈∩∈ −  and P  

= },|)({ 1*
xif UiCyfxxCLI ∈∩∈ − .  

Then clearly, it is enough to show that P = Q , because  

P∨ = xCLI ifxUiCyfx
)(*

1 ∈∩−∈
∨∨  and Q∨  = 

zCLI jf
jCyfzyVj )(*

1 ∩−∈∈ ∨∨ . 

Let Q∈α . Then α  = zCLI jf )(* , jCyfz ∩∈ −1 , 

yVj∈ . Since CC j ⊆ , Cyfz ∩∈ −1 , zUj∈ . 

Therefore Cyfz ∩∈ −1 , zUj∈  or α  = 

PzCLI jf ∈)(* , implying PQ ⊆ . 

Let P∈β . Then β  = xCLI if )(* , Cyfx ∩∈ −1 , 

xUi∈ . But then yfx 1−∈  and iCx∈  or 

 which implies  =  or  

which in turn implies ,  or  

 = , implying . 

Proposition 5.9: For any 1-p ivf-map   and 
for any family of ivf-subsets  of , we have 

 whenever  or  or .  

Proof: Let . Then , 

 =  and  for all 

. 

iCyfx ∩∈ −1 y fCifx∈ yVi∈

iCyfx ∩∈ −1
yVi∈

β QxCLI if ∈)(* QP ⊆

:F BA→
JjjC ∈)( A

jJjjJj CFCF ** )( ∈∈ ∩⊆∩ i=* d p

jJj CC ∈∩= jJj CC ∈∩=

)(*
CLI )(*

jCJj LI∈∧ cCcC jJj∈∧=

Cc∈
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Let . Then , 

 and 

  

for all . 

Let   .    Then    ,       =   

    and  

 for all . 

Let . Then ,  =

 and  for all . 

We will show that  or  (a)  (b)  is 

a complete deal of  and (c)   
(a): 

  

(b): First by 4.2.5(2), since  is 1-p, we get that  
is 1-p. 
By 4.2.7,  =  = 

 and  =  

= . 

By 4.1.16, since  =  = 

 and =  = 

. 

By 4.1.12, the above implies = , =

, =  and = . 

Now as in the Proof of f-set theory setup 4.5.21(2),  

=  because  is 1-p and now 4.1.12 implies  

= . 

(c): Let  be fixed. Then  

=     

=    and  =  

=   . 

But by 3.1.1(3),  

 =   

.  

There fore  =   

 =   

. 

Also = =

  for all , since 

. 

Next   for   all   ,      for   

all    and       implying 

   

 for all  which in turn 

implies  for 

all , from which follows:  

. 

Therefore, =     

  =  for all , 

implying  or finally .   
Proposition 5.10:  For any 0-p and 0-r ivf-map 

 and for any family of ivf-subsets  of 

, we have   whenever 

(a)  is a finite chain,  is complete infinite meet 
distributive lattice. 
(b)  is -regular for each  and * = i or d 
or p.   

Proof: Let . Then , 

 and , where 

, for all . 

Let . Then , 

 and =

 for all . 

Let = . Then = , =

 and =  for 

all . 

FCD = fCD =

)(*
*** ))()((=)(

BLICfD LILILI

)()(= 1* CdfCLIdBdD f ∩∨∧ −

Dd ∈

jj FCE = jj fCE = )(*

jELI

)(*
** ))()((

BLIjCf LILI

)()(= 1*
jjfj CefCLIeBeE ∩∨∧ −

JEe∈

jJj EE ∈∩= jJj EE ∈∩= )(*
ELI

)(*

jEJj LI∈∩ eEeE jJj∈∧= Ee∈

ED ⊆ ED ⊆ )(*
DLI

)(*
ELI DED |≤

EEfCCffCD jJjjJjjJj ==)(== ∈∈∈ ∩∩⊆∩

)(*
fLI fL

)(*
DLI

)(*
** ))()((

BLICf LILI

))((*

BLCf LLI )(*

jELI
)(*

** ))()((
BLIjCf LILI

))((*

BLjCf LLI

)(*
ELI )(*

jEJj LI∈∧

)(*

jEJj LI ∈∧ )(*
CLI )(*

jCJj LI∈∧

)(*

jCJj LI ∈∧

DL
BLCf LL )( EL

jEJj L∈∧
jEL

BLjCf LL )( CL
jCJj L∈∧

DL

EL fL )(*
DLI

)(*
ELI

)(== jJj CffCDy ∈∩∈ yD

yB ∧ )()( 1* CyfCLI f ∩∨ −

yB ∧ xCLI fCyfx
)(*

1 ∩−∈
∨ yE yE jJj∈∧

yBJj (∈∧ ∧ ))()( 1*
jjf CyfCLI ∩∨ −

jfJj CLIyB )(( *∨∧∧ ∈

))( 1
jCyf ∩− yB ∧

)()( 1*
jjfJj CyfCLI ∩∨∧ −

∈

yE yB ∧

)()( 1*
jjfJj CyfCLI ∩∨∧ −

∈ yB ∧

xCLI jf
jCyfxJj )(*

1 ∩−∈∈ ∨∧

Cyf ∩−1 )(1
jJj Cyf ∈

− ∩∩

)( 1
jJj Cyf ∩∩ −

∈ jCyf ∩⊆ −1 Jj∈
)(=)( iIiiIi BABA ∩∩∩∩ ∈∈

Cyfx ∩∈ −1
jCyfx ∩∈ −1

Jj∈ xCxC j≤

≤≤ xCLIxCLI jff )()( ** xCLI jfCyfx
)(*

1 ∩−∈
∨

xCLI jf
jCyfx

)(*
1 ∩−∈

∨≤ Jj∈

))(()( *
1

* xCLIxCLI jf
jCyfxJjf ∩−∈∈ ∨∧≤

Cyfx ∩∈ −1

))(()( *
1

*
1 xCLIxCLI jf

jCyfxJjfCyfx ∩−∈∈∩−∈
∨∧≤∨

yD yB ∧ xCLI fCyfx
)(*

1 ∩−∈
∨ ≤ yB

∧ ))(( *
1 xCLI jf

jCyfxJj ∩−∈∈ ∨∧ yE Dy∈

DED |≤ ED ⊆

BAF →: JjjC ∈)(
B jJjjJj CFCF 1

*
1

* =)( −
∈∈

− ∪∪

)(*
BLI AL

jC )(*
fLI Jj∈

jJj CC ∈∪= jJj CC ∈∪=

)(=)( **

jCJjC LILI ∈∨ cCcC j
cIj∈∨=

}|{= jc CcJjI ∈∈ Cc∈
CFD 1

*= − CfD 1= −

)()(=)( *1**
CfD LILILI − dD

fdCLIdA f
1* )( −∨∧ Dd ∈

jE jCF 1
*
−

jE jCf 1− )(*

jELI

)()( *1*

jCf LILI − eE j feCLIeA f
1* )( −∨∧

JEe∈
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Let = .Then = , =

 and , where 

, for all . 

We will show that  or (a)  (b) 
 and (c) . 

(a): = = =  =

= . 

(b): First by 4.2.5,  is 0-p and 0-r implies  is 0-p 
or 0-r. 
Next,  being -regular and 4.2.7  imply, 

  = ,  

which by 4.1.11 implies that . 

By 4.2.8, =  =  and 

=  = .  

By 4.1.12 and 4.1.16, the above implies  = ,  

= ,  =  and  = . 

But then as in the Proof of f-set theory setup 4.5.22(2), 
since  is 0-p, 0-r,  is finite chain,  is complete 

infinite meet distributive lattice and  for all 

,  =  and hence  = . 

(c): First, by 4.2.5(3), since  is 0-r,  is 0-r. 

Next, by 4.1.15(1), since  is complete infinite meet 

distributive lattice,  is a complete infinite meet 
distributive lattice. 
Now let  =  =  be fixed. Then 

 =     =  

    =    

 , where the last equality is due to 

3.3.19, because of (i)  is a finite chain and (ii)  is 0-r, 

where  = . 

On the other hand, since  is a complete infinite 

meet distributive lattice, = =

=

, where 

. 

From the above, it is enough to show that 

 = , 

where  

= , = . 

Clearly it is enough to show that . 

Let . Then  which implies 

, implying that . 

Conversely,  implies  which 

implies  which in turn implies .  

Therefore  = . 

The above proposition is not true if some  is not 

-regular but  is 0-p and 0-r and the 
Example 4.5.23 serves here also. 

Also, the above proposition is not true if  is not a 
finite chain but  is 0-p and 0-r and the Example 4.5.24. 
serves here also. 

Proposition 5.11:  For any 0-p and 1-p ivf-map 
 and for any family of ivf-subsets  of 

, we have  =   whenever 

 is -regular for each  and  or  
or .   

Proof: Let . Then , 

 and  for all 

. 
Let = . Then = ,  =

 and =  for 

all .  

Let = . Then = , =

 and =  

for all . 

Let = .Then , =

 and =  for all . 

We show that  or (a)  (b)  = 

 and (c) . 

(a): = = = =

= . 
(b): First, by 4.2.5, since  is 0-p,  and  are 0-

p and since  is 1-p,  and  are 1-p. 

E jJj E∈∪ E jJj E∈∪ )(*
ELI

)(*

jEJj LI∈∨ eEeE j
eIj∈∨=

}|{= je EeJjI ∈∈ Ee∈
ED = ED =

)(=)( **
ED LILI ED =

D Cf 1− )(1
jJj Cf ∈

− ∪ jJj Cf 1−
∈∪

jJj E∈∪ E

)(*
fLI fL

jC )(*
fLI

⊆)(*

jCLI )()( **
Af LILI )(*

Af LLI

AfjC LLL ⊆

)(*
DLI )()( *1*

Cf LILI − )( 1*
Cf LLI −

)(*

jELI )()( *1*

jCf LILI − )( 1*

jCf LLI −

DL Cf LL 1−

jEL

jCf LL 1−
CL

jCJj L∈∨ EL
jEJj L∈∨

fL BL AL

AfjC LLL ⊆

Jj∈ DL EL )(*
DLI )(*

ELI
)(*

fLI fL

AL
)(*

ALI

Dx∈ Cf 1− )(1
jJj Cf ∈

− ∪

xD xA ∧ 1* )( −∨ fLI fxC

xA ∧ 1* )( −∨ fLI )( fxC j
fxIj∈∨ xA ∧

fxIj∈∨

1* )( −∨ fLI fxC j

BL fL

fxI }|{ jCfxJj ∈∈

)(*
ALI
xE xE j

xIj∈∨

))(( 1* fxCLIxA jfxIj
−

∈ ∨∧∨

fxCLIxA jfxIj
1* )( −

∈ ∨∨∧

}|{= jx ExJjI ∈∈

fxCLI jffxIj
1* )( −

∈ ∨∨ fxCLI kfxIk
1* )( −

∈ ∨∨

fxI }|{ jCfxJj ∈∈ xI }=|{ 1
kk CfExJk −∈∈

xfx II =

fxIj∈ jCfx∈

jj ECfx =1−∈ xIj∈

xIk∈ kk CfEx 1= −∈

kCfx∈ fxIk∈

fxI xI

jC
)(*

fLI )(*
fLI

BL
F

BAF →: JjjC ∈)(
B )(1

* jJj CF ∈
− ∩ jJj CF 1

*
−

∈∩

jC )(*
fLI Jj∈ i=* d

p

jJj CC ∈∩= jJj CC ∈∩=
)(=)( **

jCJjC LILI ∈∧ cCcC jJj∈∧=

Cc∈
D CF 1− D Cf 1− )(*

DLI
)()( *1*

Cf LILI − dD fdCLIdA f
1* )( −∨∧

Dd ∈
jE jCF 1−

jE jCf 1− )(*

jELI

)()( *1*

jCf LILI − eE j feCLIeA jf
1* )( −∨∧

jEe∈
E jJj E∈∩ jJj EE ∈∩= )(*

ELI

)(*

jEJj LI∈∧ eE eE jJj∈∧ Ee∈

ED = ED = )(*
DLI

)(*
ELI ED =

D Cf 1− )(1
jJj Cf ∈

− ∩ jJj Cf 1−
∈∩ jJj E∈∩

E
F )(*

fLI fL
F )(*

fLI fL
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Next,  is -regular implies 

 =  which by 

4.1.11 implies  for all . 

By 4.1.16, =  =  

and = = . 

By 4.2.8, =  

and =  =  for all 

. 

By 4.1.12, the above imply  = ,  = 

,  =  and  =  for all 

. 

But then, since  is 0-p and 1-p and  for 

all , as in (2) of f-set theory setup 4.5.25, we get that 

 =  and hence  = . 

(c): Let  be fixed. Then 

 =     =  

   = 

, where the last equality is 
due to 3.3.16, since  
(i)  is 1-p and hence it is  complete and (ii) 

 =     

, because each  is -regular. 

On   the   other   hand,   by 3.1.1(3),      =      

=     =  

, implying  = , 
from the above. 

The above proposition is not true if some  is not 

-regular but  is 0-p and 1-p. The Example 
4.5.26 serves here also. 

Proposition 5.12: For any pair of ivf-maps  
and  and for any ivf-subset  of , the 
following are true: 
(a)  =  

(b)  = , whenever  is a complete 
infinite meet distributive lattice 
(c)  = , whenever  is a complete 
infinite meet distributive lattice.   

Proof: Let  = . Then ,  

  and  

=  for all 

. 
Let = . Then = , =

 and =

 for all . 

Let = . Then = , =

 and =

 for all . 

(a): We show that =  or (1)  (2) =

 and (3) = . 
(a): = = = = . 

(b):   By 4.2.7, = =

 and by 4.1.12, = .  

Now by 3.2.3(3), =  for some . By 

3.4.3(2), = =  = . 

Again by 4.2.7, = =

 and by 4.1.12, = .  

Now by 3.4.3(2), = = =

. 

On the other hand, by 4.2.7, =

=  and 

by 4.1.12,  
 = . 

Again by 3.4.3(2),  = = 

= . 

Clearly, =  and hence = . 
(c): Let  =  be fixed. Since  is increasing and 

, we get that , and 

hence for any , ,  and 

  , implying that 

   or 

 = 

, for all . 

jC )(*
fLI

)()()( ***
AfjC LILILI ⊆ )(*

Af LLI

AfjC LLL ⊆ Jj∈

)(*
CLI )(*

jCJj LI∈∧ )(*

jCJj LI ∈∧

)(*
ELI )(*

jEJj LI∈∧ )(*

jEJj LI ∈∧

)(*
DLI =)()( *1*

Cf LILI − )( 1*
Cf LLI −

)(*

jELI )()( *1*

jCf LILI − )( 1*

jCf LLI −

Jj∈

CL
jCJj L∈∧ EL

jEJj L∈∧ DL Cf LL 1−

jEL
jCf LL 1−

Jj∈

fL AfjC LLL ⊆

Jj∈

DL EL )(*
DLI )(*

ELI
)(== 11

jJj CfCfDx ∈
−− ∩∈

xD xA ∧ 1* )( −∨ fLI fxC

xA ∧ )()( 1* fxCLI jJjf ∈
− ∧∨

fxCLIxA jfJj
1* )( −

∈ ∨∧∧

)(*
fLI ),( ∧∨

T }|{ JjfxC j ∈ ⊆ )(*

jCJj LI∈∪ ⊆

)()( **
Af LILI jC )(*

fLI

xE xE jJj∈∧

))(( 1* fxCLIxA jfJj
−

∈ ∨∧∧

fxCLIxA jfJj
1* )( −

∈ ∨∧∧ xD xE

jC
)(*

fLI F

BAF →:
CBG →: E A

EFG i )( * )(* EFG i

EFGd )( * )( *EFGd CL

EFG pp )( )( EFG pp CL

EGF )( H gfEH =

)(*
*** ))()((=)(

CLIEfgH LILLILI

hH ))(()()( 1** EhgfELILIhC fg ∩∨∧ −

Hh∈
FE I I fE )(*

ILI

)(*
** ))()((

BLIEf LILI iI

)()( 1* EifELIiB f ∩∨∧ − Ii∈
GI K K gI )(*

KLI

)(*
** ))()((

CLIIg LILI kK

)()( 1* IkgILIkC g ∩∨∧ − Kk∈

H K KH = )(*
HLI

)(*
KLI H K

H gfE )( fEg gI K
)(*

ILI
)(*

** ))()((
BLIEf LILI

))((*

BLEf LLI IL
BLEf LL )(

EL ][0,α AL∈α

IL
BLEf LL )(

BLfL ])[0,( α ][0, αfL

)(*
KLI

)(*
** ))()((

CLIIg LILI

))((*

CLIg LLI KL
CLIg LL )(

KL
CLIg LL )(

CLfg LL ])[0,( α

][0, αfg LL
)(*

HLI

)(*
** ))()((

CLIEfg LILLI ))))((((*

CLEfg LLLI

HL
CLEfg LLL ))((

HL
CLEfg LLL )(

CLfg LL ])[0,( α ][0, αfg LL

KL HL )(*
KLI )(*

HLI
Iy∈ fE F

AE ⊆ ELIALIfB ff )()( ** ≥≥

Eyfx ∩∈ −1 yfx = Ex∈
xELI f )(* ≤ yBfxBxALI f =)(* ≤

)()( 1* EyfELI f ∩∨ − ≤ yB
)()(= 1* EyfELIyByI f ∩∨∧ −

)()( 1* EyfELI f ∩∨ − Iy∈
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Let  =  be fixed. Then 

 and  

= =

. 

Since (i)  implies  for some , 

implying ,  implying 

 and  implying 

 where  =  
(ii)  is increasing 
(iii)  

(iv)  =  

(v)  = , we get that 

 =  

  =   

 

=        =   

  

=     = . 

(b): Let  be as in (a) above. We show that  = 

 or (1)  (2)  =  and  

(c) . Now (1) and (2) follow as in (a). 
(3): Let  be fixed. Then = 

 and  

 =  = 

. 

Since  is decreasing,   . So, for 

each , ,  and  

 =   , implying  

 = . 

Let , , =

 and = . Then 

 for  where . 

Again since (i)  implies  for some 

, implying ,  

implying  and  implying 

 where  =  

(ii)  is a complete infinite meet distributive lattice 

(iii)  =  

(iv)  =  

from the above we get that =  

  

 =  

  

= 

  

= =  =

 =  

=  

= = 

 

=  = , 

implying  = . 
(c):  The proof follows from that (a) and (b).   

Proposition 5.13:  For any  pair of  ivf-maps 
 and  and  for any ivf-subset  of  

, the following are true:  

(a)  , whenever  is -
regular. 

(b)   , whenever  is 

-regular and  is 0-p. 

(c)  = , whenever  is 

-regular and  is -regular and  is 0-
p.   

Proof: Let  = . Then  =  

= , =  and  

=  for all 
. 

Let  = . Then  = ,  = 

 and  =  for all 

 

Let  = . Then  = ,  = 

 and =  for 

all We show that  or (1)  (2) 

Hz∈ gfE
))(()()(= 1** EzgfELILIzCzH fg ∩∨∧ −

zK )()( 1* IzgILIzC g ∩∨∧ −

yILIzC gIzgy
)(*

1 ∩−∈
∨∧

Hz∈ gfxz = Ex∈
φ≠∩ − zgfE 1)( Izgfx ∩∈ −1

φ≠∩− Izg 1 Eyfx ∩∈ −1

φ≠∩− Eyf 1 y fx
F

AE ⊆
Ezgf ∩−1)( Eyf

fEzgy
∩∪ −

∩−∈

1
1

αα iAIi∈∪∈∨ αα iAIi ∈∈ ∨∨

zK zC ∧
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 is a complete ideal of  and (3) 

. 

(a):  =  = . 

(b):  By 4.2.8,  =  = 

,  =   =  and 

=  = . 

By 4.1.12, the above implies,  = ,  =  

and  = . 

Now clearly from the above   =  = 

 =  =    and   hence  = 

. 

(c): Let  be fixed. Then   = , 
, 

= =

 and =

 = 

. 

Firstly,  is -regular implies   

,  

implies .  

So, by 3.3.11(3),  = . 

Since  is decreasing and   , 

,  

 =

= = , implying 

   which   implies    

   which   in   
turn   implies 

    or    

   =        

  = . 

(b): Let ,  and  be as in (a) above. Then it is 
enough to show, when  is increasing and 0-p and when 

 is -regular, that    or (1)  (2) 

 is a complete ideal of  and  

(c)   . 
(a):  =  as in (a) above. 
(b):  =  again as in (a) above. 

(c):Let  be fixed. Then , 

 = ,  

    =        and   

   =        =  

. 

 implies      which 

implies    =  

, since  =  is -regular. 

Since  is 0-p and =   

, by 3.3.9,  

   =

 and  

 =  

  

=       

  = , where the last inequality is 

due to the fact that  is increasing and hence  

 . 

Again  implies  which 

implies , since  

 =  is -regular. 

Since  and   

, as above by 3.3.2, we get that  

  .  

But then  implies 

  . 

Since always   , it follows that . 
(c): Clearly, the proof follows from (a) and (b). 

A strict containment in (a) is possible and the Example 
4.5.29 serves here also. 

The condition that  is -regular is not 
superfluous in (b) and the Example 4.5.30 serves here also. 

The condition that  is -regular is not 
superfluous in (c) and the Example 4.5.31 also serves here 
also. 

F. More on M-Interval Valued Fuzzy Images and L-
Interval Valued Fuzzy Inverse Images: 

In this section some more standard properties of the 
-ivf-images of -ivf-subsets under an ivf-map and the -
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ivf-inverse images of -ivf-subsets under an ivf-map are 
studied in detail. 

Lemma 6.1 Forany0-p ivf-map  and for any 
-regular ivf-subset  of , always 

. However, equality holds 
whenever 
(a)    is increasing,  is 1-p and  is 
complete infinite meet distributive lattice                        
(OR) 
(b)  is decreasing and  is complete infinite meet 
distributive lattice.   

Proof: (A) Since  is -regular and 

, by 5.5.3,  is monotonic and so, 

  . 

(B) Let  = . Then  = ,  = 

 and  =  for 

all . 
Let  = . Then ,  = 

 and  = 

 for all . 

Let  = . Then  = ,  = 

 and  =  for all . 

Let . Then  = ,  = 

 and =  for 

all . 
We show that  =  or (1)  (2) 

 (3)  when 

(a) isincreasing, is 1-p and  is complete 
infinite meet distributive lattice                                       
(OR) 
(b)  is decreasing and  is complete infinite meet 
distributive lattice. 
(a):  =  =  =  = 

 = . 

(b): First, (i)  is -regular implies 

,  
where the last equality is due to 4.2.7. By 4.1.11, the 
preceding statement implies  and  

(ii)  is 0-p implies by definition,  is 0-p which 

by 4.2.5, implies that  is 0-p. 

Next, by 4.2.8, and 4.1.12, =

 and so =  and 

 and so 

. 
By 4.2.7 and 4.1.12, 

 and 

so  and by 4.1.16 and 4.1.12, 

 and so 

. 
Now as in 5.6.1(B)(2) above, the above implies that  = 

 and hence . 

(c): Let  =  =  be fixed. Then 
. 

(a):   Let  be decreasing.Then .  

Further, for all ,    = 

 or  

  , implying  =

   =  which in turn 
implies  

 =    =   

=   

  

=    = , because  = 

 and . 
 

(b):   Let  be increasing.Then .  

For all ,    =  or 

   implying  
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.  

Therefore  = =
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 as 

 and  

  , by 3.3.2, 

    

  , where the last 
inequality is due to the fact that 

Consequent from the above,

= =

  

=    

 

=     

 

=    = . 

The above Proposition is not true if  is decreasing, 
 is a complete infinite meet distributive lattice but 

 is not -regular and the Example 4.6.2 serves 
here also. 

The above Proposition is not true if  is increasing, 
 is 1-p and  is a complete infinite meet 

distributive lattice but  is not -regular and the 
Example 4.6.3 serves here also. 

Lemma 6.2:  For any 0-p ivf-map  and for any 
-regular ivf-subset Y of B, we have 
, whenever  =i    or  d    or    p.   

Proof: Let  = . Then  = ,  = 

 and  =  for 

all . 
Let  = . Then  = ,  = 

 and  =

 for all . 
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 and =  for 

all . 
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 =  and by 4.1.11, . 

By 4.2.8,  =  =  and 

  =  =   

and by 4.1.12, the previous statements imply  =  

and . 

Now by 4.2.7,  = =

 and by 4.1.12,  = . 

Now as in (2): of 5.6.4,  and hence 

. 

(3): Let  =  =  =  be fixed. Then 
. 

(a): Let  be increasing. Since  =  for 

all  when  =  or , we have . 

Therefore it is enough to show that . 

But since  =  and  = 

, it is enough to  show that 

  . 

Let . Then  and . Further, 

since  is -regular,  = 

 and hence by 3.3.11(3), 

   =  = . 

Now =   =

    

=      = , implying 

  . 

Therefore =   

 = , because . 

Now, again  is -regular and hence 

 and  imply, by 3.3.2, 

 , as required. 

(b): Let  be decreasing. Then   . Since 

, . Therefore for any 

, =

 

= = , because  

Aff LLIAfafALI )()()( *1* ∈∩∨ −

φ≠∩− Afaf 1

)()( 1* AfafALI f ∩∨ − ≥ aALI f )(*

1* )( −∨ fLI ALI f )(( *∨ ))( 1 Afaf ∩−

≥ ))(()( *1* aALILI ff
−∨ ≥ aA

))(()( *1* aALILIaA ff
−∈

aG faELIaA f
1* )( −∨∧

ALIfaHLIaA ff )(()( *1* ∨∧∨∧ − ))( 1 Afaf ∩−

aA ∧ faHLI f
1* )(( −∨ ∧

)))()(()( 1*1* AfafALILI ff ∩∨∨ −−

aA( ∧ )))()(()( 1*1* AfafALILI ff ∩∨∨ −− ∧

faHLI f
1* )( −∨

aA ∧ faHLI f
1* )( −∨ aC

F
)(*

BLI
H )(*

fLI

F
)(*

fLI )(*
BLI

H )(*
fLI

*
YF 1− C C Yf 1− )(*

CLI
)()( *1*

Yf LILI − aC faYLIaA f
1* )( −∨∧

Ca∈
FC D D fC )(*

DLI

)(*
** ))()((

BLICf LILI bD

)()( 1* CbfCLIbB f ∩∨∧ − Db∈
DF 1− E E Df 1− )(*

ELI
)()( *1*

Df LILI − aE faDLIaA f
1* )( −∨∧

Ea∈
E C CE = )(*

ELI
)(*

CLI E C
E Df 1− fCf 1− Bfff 11 −− Bf 1− C

Bfff 11 −− Bf 1−

F )(*
fLI

fL

Y )(*
fLI )(*

YLI ⊆

)()( **
Af LILI )(*

Af LLI AfY LLL ⊆

)(*
CLI )()( *1*

Yf LILI − )( 1*
Yf LLI −

)(*
ELI )()( *1*

Df LILI − )( 1*
Df LLI −

CL Yf LL 1−

DfE LLL 1= −

)(*
DLI

)(*
** ))()((

BLICf LILI

))((*

BLCf LLI DL
BLCf LL )(

CE LL =

)(=)( **
CE LILI

Ea∈ Df 1− C Yf 1−

DYfa ∩∈

F CFFC *
1

*
−⊆ E

AC ⊆ * i p EC ≤
CE ≤

aE faDLIaA f
1* )( −∨∧ aC

faYLIaA f
1* )( −∨∧

faDLI f
1* )( −∨ ≤ faYLI f

1* )( −∨

Cfafc ∩∈ −1 Cc∈ fafc =
Y )(*

fLI fcY

)()()( ***
AfY LILILIfaY ⊆∈

)(*
fLI 1* )(( −∨ fLI )fcY fcY faY

cCLI f )(* ))()(( 1** fcYLIcALI ff
−∨∧

cALI f )(* ∧ ))()(( 1** fcYLILI ff
−∨

cALI f )(* ∧ fcY ≤ fcY faY

)()( 1* CfafCLI f ∩∨ − ≤ faY

faD )()( 1* CfafCLIfaB f ∩∨∧ − ≤

faYfaB ∧ faY BY ⊆
Y )(*

fLI

)()( **
Af LILIfaY ∈ faYfaD ≤

faDLI f
1* )( −∨ ≤ faYLI f

1* )( −∨

F fB ≤ ALI f )(*

BY ⊆ ALIfBfY f )(*≤≤

Cc∈ cCLI f )(*

))()(()( 1*** fcYLILIcALI fff
−∨∧

fcYcALI f ∧)(* faYfcY =



Nistala V. E. S. Murthy et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013,227-250 

© 2010, IJARCS All Rights Reserved                                                                                                                                                                                                  248 

(i) is -regular and hence   

 and (ii) by3.3.11(3),

= . 

In particular, =

=  = , 

implying  
=    =   

 = , because  and hence . 

Now clearly, = =

 = . 

The above Proposition is not true if  is not -
regular and the Example 4.6.5 serves here too. 

Definition 6.3: For any  and for any ivf-
subset  of ,  is said to be -coregular iff

.   

Proposition 6.4:  For any 0-p ivf-map  and 
for any -coregular ivf-subset  of , we have 

 =  holds whenever  =  or  or .   
Proof: Let = . Then = ,  = 

 and  

 =   for all . 
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=  

or . 
The above proposition is not true if  is not -

coregular but  is 0-p and the Example 4.6.8 serves here 
also. 

Proposition 6.5: Forany increasing f-map  
and for any pair of f-subsets  of  and  of , 

 implies  whenever  is -
regular.   

Proof: Let = .Then = , =

 and  = 

 for all . 

Let  = . Then  = ,  = 

 and  =  for 

all . 
Since , ,  is a complete ideal of 

 and . 

We show that  or (1)  (2)  is a 

complete ideal of  and (3) . 

(a): Since  iff ,  = . 

(b): Since  is a complete ideal of  and 

   

, we get that  = 

.  

Since  and  are complete ideals of 

, it follows from    that 

 is a complete ideal of . 

(c): Let  be fixed. Then .  = 

. Since  to show 

, it is enough to show that 

. 

Since (i) , 

 and (ii) 

, we get that 

 = 

  . 
Since and is increasing, 

 which implies

= , from the above. 

Since (i)    as is 

-regular(ii)   , by 3.3.2,  

   as 
required. 

The above Proposition is not true if  is not -

regular but  is increasing and the Example 4.6.10 serves 
here also. 

The above Proposition is not true if  is decreasing but 
 is -regular and the Example 4.6.11 serves here 

also. 
Proposition 6.6:  For any ivf-map  and for 

any pair of ivf-subsets  of  and  of , 
 implies , whenever  is 0-p or  

is -regular.   

Proof: Let = . Then = , =

 and  

 =  for all . 

Let  = . Then  = ,  = 

 and  

 =  for all . 

Since , we have ,  is a 

complete ideal of  and . 

We show that  or (1)  (2)  is a 

complete ideal of  and (3) . 

(a):  =  implies  which implies 
. 

(b): Since  = , 

 and   is a complete 

ideal of  implies =

. Since  and 

 are complete ideals of  such that 

, we get that  is a complete 

ideal of . 

(c): Let  =  be fixed. For any , 
 and . 

Since (i)  and hence  is 0-p, by 3.3.11(4), 
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3.3.11(3),  = . 
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But as ,  and this implies 

   and hence from the above,  

  =

  

= 

=  for all , 

implying  and =

  , implying  or 

 =   . 
The above Proposition is not true if both  is not 0-p 

and  is not -regular and the Example 4.6.13 
serves here also. 

Lemma 6.7: For any ivf-map  and for any 
ivf-subset  of ,  =  iff  = .   

Proof: :  =  implies ,  

and .  =  implies , 
 =  and 

 = , implying  = . 

: = =  implies,  which implies 
, since  iff , 

, implying  which implies 

 and  implies  or 
.   

Corollary 6.8:  For any 1-p ivf-map  and 
for any nonempty family  of ivf-subsets of , 

 =  implies  = .   
Proof: It follows from the above Lemma and 6.4.9. 
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