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. INTRODUCTION

The traditional view in science, especially in
mathematics, is to avoid uncertainty at all levels at any cost.
Thus "being uncertain” is regarded as "being unscientific".
But unfortunately in real life most of the information that we
have to deal with is mostly uncertain.

One of the paradigm shifts in science and mathematics in
this century is to accept uncertainty as part of science and
the desire to be able to deal with it, as there is very little left
out in the practical real world for scientific and
mathematical processing without this acceptance!

One of the earliest successful attempts in this directions
is the development of the Theories of Probability and
Statistics. However, both of them have their own natural
limitations. Another successful attempt again in the same
direction is the so called Fuzzy Set Theory, introduced by
Zadeh[21].

According to Zadeh[21], a fuzzy subset of a set X is
any function f from the set X itself to the closed interval

[0,1] of real numbers. An element x belonging to the set
X belongs to the fuzzy subset f with the degree of

membership fx, a real number between 0 and 1.
Observing that fuzzy subsets themselves require a
specific real number between/including 0 and 1 to be
associated with each element of X, which is not always
possible in several of the practical applications, Zadeh[22]
himself introduced the so called interval valued fuzzy

subsets of a set X as means to handle even more inexact/
uncertain, but bounded information.

Thus, an interval valued fuzzy subset of a set X is any
function f from the set X itself to the complete lattice of

all nonempty closed intervals of the closed interval [0,1] of
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real numbers. An element x belonging to the set X belongs
to the fuzzy subset f with the degree of membership fx, a

nonempty closed interval in [0,1].

Interestingly, in the same year 1975 that Zadeh proposed
his interval valued fuzzy subsets, Grattan-Guiness[6],
Jahn[7] and Sambuc[18] also proposed interval valued fuzzy
subsets.

Ever since the the interval valued fuzzy subsets came
into existence, once again some mathematicians started
imposing and studying both algebraic and topological
structures and the interested reader can refer to Biswas[1]
for interval valued fuzzy subgroups; Li and Wang[8] for
SH-interval-valued fuzzy subgroups and TH-interval valued
fuzzy subgroups; Shaoquan[19] for interval valued fuzzy
fields and for interval valued fuzzy linear spaces; Zeng-
Shi[23] and Zeng-Shi-Li[24] for concepts of cut set of
interval valued fuzzy subset and interval valued nested sets
and for decomposition and representation theorems of
interval valued fuzzy subset; Bustince[2] for interval valued
fuzzy relations and applications to approximate reasoning of
interval valued fuzzy subsets; Cornelis-Deschrijver-Kerre[3]
for Implication in intuitionistic fuzzy subsets and interval-
valued fuzzysubset theory: construction, classification,
application; and Mondal-Samanta[10] for topology on
interval valued fuzzy subsets.

Looking at all these and other papers in print and on-
line, one thing which becomes evident is that various
(lattice) algebraic properties of interval valued fuzzy images
and interval wvalued fuzzy inverse images which,
incidentally, not only play a crucial role in the study of both
interval valued fuzzy algebra and interval valued fuzzy
topology but also are necessary for the individual/exclusive
development of Interval Valued Fuzzy Set Theory, are not
yet studied, although these concepts of interval valued fuzzy
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images and interval valued fuzzy inverse images were
existing since long.

Now, the aim of this paper is 1. to introduce the notions
of, interval valued f-set with truth values in a complete

lattice of closed intervals or a simply a cloci, 1"(L) on a

complete lattice L, called an L -interval valued f-set or

simply an L -ivf-set,

an L -interval valued f-subset and

an interval valued f-map between an L -interval valued
f-set and an M -interval valued f-set where the complete
lattice L may possibly be different from the complete lattice
M,

an M -interval valued f-image of an L -interval valued
f-subset under an interval valued f-map and

an L-interval valued f-inverse image of an M -interval
valued f-subset under an interval valued f-map, and

2. to study the standard (lattice) algebraic properties of,

all L -interval valued f-subsets of an L -interval valued f-
set,

all M -interval valued f-images of L -interval valued f-
subsets under an interval valued f-map and of all L -interval
valued f-inverse images of M -interval valued f-subsets
under an interval valued f-map.

Now coming back to the developments in this side of
this paper, Goguen further generalized the two types of
fuzzy subsets of Zadeh, namely the fuzzy subset and the
interval valued f-subset, to those that take the truth values in
a complete lattice. However, even though Goguen unified
both of them mathematically, one must observe here that, as
mentioned earlier, when it comes to practical applications,
the fuzzy subsets and the interval valued f-subsets are quite
different because fuzzy sets require a specific real number
between 0 and 1 to be associated with each of its elements
while interval valued f-sets require a reasonable interval to
be associated with each of its elements, offering a
representation of even more uncertainty in belonging of
certain elements to a set than the fuzzy sets themselves.

Still, the following are some lacunae that one can easily
observe with any of the above notions:

a. There is no such notion as fuzzy set (of course some
mathematicians observed that one can define the
notion of a fuzzy set to be the constant map assuming
the value 1, but it was not exploited further.)

b. It is predominant in Mathematics that, for a pair of
objects to be considered one as a sub object of the
other, they both must be of the same type, namely,
both objects are sets, both objects are pairs, both
objects are triplets etc. and this type compatibility
between set and its fuzzy subset is absent in the sense
that fuzzy subset is a map while the set is not. (Of
course, one can make here two arguments namely, a
map is a particular type of relation which is a subset
and hence a set, and thus a fuzzy subset is also a set
and secondly one can identify a set with the map that
takes the constant value 1; but both of them are not

completely natural.)

c. There is no such notion as fuzzy map between fuzzy
sets with truth values in different lattices

d. It is not possible to accommodate the notions of fuzzy
weak-relative-sub algebra and fuzzy strong-relative-
subalgebra in the conventional way
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e. The Axiom of Choice is not extendable to fuzzy
subsets without its dependence on the nature of the
complete lattice where the fuzzy subset takes its truth
values in. (Observe that the Axiom of Choice fails with
the existing definitions of L -fuzzy set and L -fuzzy

product as: For any pair of fuzzy sets A,B: X —> L,
the fuzzy product Ax B is defined to be the fuzzy set

(AxB)(x) = AXABX for all xe X . Letting L to
be the four element diamond looking lattice with two
incomparable elements « and £ and letting A and

B to be the constant fuzzy sets with values ¢ and 2]

respectively, the fuzzy product Ax B turns out to be
the empty fuzzy subset given by the constant map

assuming the value O of L while the fuzzy subsets A

and B are non-empty.

f. There is no transparent forgetful functor from the
category of fuzzy topological spaces to the category of
topological spaces which forgets the fuzzy structure.

g. There is no transparent forgetful functor from the
category of fuzzy rings to the category of rings which
forgets the fuzzy structure.

h. Last but not least, in some L -fuzzy subsets of a set,

one must assign the value 0 for some elements of the
set when actually the membership value for them is
either not available or not relevant because for a fuzzy
subset of a set every member of the set must be
assigned a membership value.

Keeping these things in mind, Murthy[11] modified the
definition of an L -fuzzy subset of a set to that of an f-set,
addressing the first, second, fifth and the eighth issues
above, in such a way that each f-set carries along
a) its underlying set

b) its complete lattice where the fuzzy set takes its truth
values for members of its underlying set

c) its fuzzy map that specifies membership values for all
elements in its underlying set and this
modification resolves the above mentioned issues.
Thus we have:

an f-setisatriplet A = (A, A/ L,) where

(@). A isaset, called the underlying(crisp) set of A

(b). L, is a complete lattice, called the underlying
complete lattice for truth values of elements of A

). ATA— L, is a map, called the underlying fuzzy
map that assigns a truth value for each element of A.

In the same paper Murthy[11] also introduced the notion
of an f-map between f-sets whose underlying complete
lattices for truth values are possibly, completely different,
addressing the third issue above, along with other notions
like f-image of an f-subset under an f-map and f-inverse
image of an f-subset under an f-map and studied the
standard (lattice) algebraic properties of, all f-subsets of an
f-set, all f-images of f-subsets of an f-set under an f-map and
of all f-inverse images of f-subsets of an f-set under an f-
map.
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For a settlement of other issues and for elementary
studies of algebraic and topological (sub) structures on f-
sets, one can refer to Murthy[13,14,15] and Murthy and
Yogeswara[12].

In the present paper we generalize this Theory of f-Sets
and f-Maps to Theory of Interval Valued f-Sets and Interval
Valued f-Maps. Further, all counter examples in this paper
can be obtained from the corresponding ones in the Theory
of f_Sets in Murthy and Prasanna[17]. Hence the sectional
references mentioned in this paper for counter examples in
the last two sections are for the above paper.

This paper is a part of the Ph.D. Thesis for which the
second author was awarded her doctoral degree in the month
of August, 2012.

In Section-1, Introduction, the goal of this paper together
with its lay out is described section wise.

In Section-2, Preliminaries, we recall some basic
definitions and some algebraic properties in the theory
Lattices Theory like poset, least and greatest elements of a
poset, (least)upper bound, (greatest)lower bound, complete
lattice, complete ideal, complete homomorphisms etc., were
recalled along with some of their properties which are used
later.

In Section-3, results about characterisation of complete
ideals; complete ideals generated by a set and a union of
sets, and relations between these complete ideals; lattice
algebraic properties of complete ideals; lattice algebraic
properties of supremums and infimums of images, inverse
images and their combinations; and lattice algebraic
properties of images and inverse images of ideals are
recalled and several of them will be used in the last two
secions.

In Section-4, results about the complete lattice of non
empty closed intervals of a complete lattice; complete ideals
generated by a subset and unions of subsets of the complete
lattice of non empty closed intervals and relations between
these complete ideals; modularity, distributivity and infinity
distributivity of the complete lattice of non empty closed
intervals; properties of the embedding of a complete lattice
in to the complete lattice of non empty closed intervals of
the same complete lattice; and complete homomorphisms
between complete lattices of non empty closed intervals, are
recalled and several of them will be used again in the last
two secions.

In Section-5, first the notions of, L -interval valued f-set
or simply L -ivf-set, L -ivf-subset of an L -ivf-set, L -ivf-
union of L-ivf-subsets of an L -ivf-set, L -ivf-intersection
of L -ivf-subsets of an L -ivf-set, were introduced. Then
lattice algebraic properties of L -ivf-subsets of an L -ivf-set
were studied.

Next, the notions of, interval valued f-maps or simply
ivi-maps between L -ivf-sets of different complete lattices
L, M; ivf-image of an L -ivf-subset under an ivf-map and
L -ivf-inverse image of an M -ivf-subset under an ivf-map
were introduced and were shown to be well defined. Later
on, lattice algebraic properties of these M -ivf-images and
L -ivf-inverse images of ivf-subsets under ivf-maps; and
several other properties were shown to have neatly extended
from f-sets and f-maps.

1. PRELIMINARIES
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Some basic definitions in Lattice Theory like poset, least
and greatest elements of a poset, (least) upper bound,
(greatest) lower bound, complete lattice, complete ideal,
complete homomorphisms etc., along with some of their
properties are freely used and they can be obtained from any
of the standard text books on Lattice Theory, like Szasz[20].
However some results from lattice theory are occasionally
recalled for completion sake.

Note: Since IVF-Set Theory is a natural generalization
of F-Set Theory, those lattice theoretic results that are
developed and played an important role in the development
of F-Set Theory can naturally be expected to play a similar
important role even in the development of IVF-Set Theory
and this is true.

Consequently, the following section, namely,

Lattice theory for F-Set Theory, which appears in
Murthy and Prasanna[17], will not be reproduced in this
paper but will remain the same together with referencing in
this paper as well. In other words, in this paper a

referencing, for example, by 3.3.11(3),............. only
means that, by 3.3.11(3) of Murthy and
Prasanna[17],............... So, the next section begins with
number 4.

Il.  LATTICE THEORY OF COMPLETE
LATTICES OF CLOSED INTERVALS (CLOCIS) OR
COMPLETE INTERVAL-LATTICES

In this section, results about, the complete lattice of non
empty closed intervals of a complete lattice; complete ideals
generated by a subset and unions of subsets of the complete
lattice of non empty closed intervals and relations between
these complete ideals; modularity, distributivity and infinity
distributivity of the complete lattice of non empty closed
intervals; properties of the embedding of a complete lattice
in to the complete lattice of non empty closed intervals of
the same complete lattice; and complete homomorphisms
between complete lattices of non empty closed intervals, are
recalled from Murthy[16]. Several of these results will be
used in the last two sections for the main results of this
paper.

A. Complete Lattices of Closed Intervals (Clocis):

In this subsection, first a partial ordering on the
collection of all non-empty closed intervals is defined with
respect which it becomes a complete lattice. Then the
complete ideal generated by a subset of the complete lattice
of all non-empty closed intervals is obtained in terms of the
left/ right end points of members of the subset. Also, every
complete lattice is naturally embedded into the the complete
lattice of all non-empty closed intervals in the complete
lattice itself via the one-point intervals.

Later on, various properties of the map, that assigns to
each subset of a given complete lattice, the subset of all
nonempty closed intervals with end points in the given
subset, are recalled.

Finally we see that the above map, when restricted to the
complete lattice of all complete ideals in the given complete
lattice, is in fact, a complete homomorphism into the the
complete lattice of all complete ideals of non-empty closed
intervals in the given complete lattice itself. In a counter
example, we show that this restricted complete
homomorphism, in fact, is not an epimorphism.
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Definitions 1.1: (a) For any complete lattice L and for
any pair of elements «,BelL , the subset

{xelL|a<x< B} of L is called the closed interval
a, f and is denoted by [, A].

Clearly, for any triplet of elements «, 5,7 € L, (1)
as<piff[a,fl#¢ @ la,pl={}iffa=p=y
and (3) [a,f] = ¢ iff « and [ are incomparable or
f<a.

(b) Whenever [, ] is a non empty closed interval, for
[, B]. « is called the left end point and S is called the

right end point.
(c) Whenever a non empty closed interval is denoted by a

single element « , its left end point is denoted by &, and
the right end point is denoted by o

(d) For any & € L, the non empty closed interval [a,a] =
{a} isdenoted by i() .

(e) For any complete lattice L and for any subset A of L,
the set of all non empty closed intervals with end points in

A is denoted by |7 (A).

Thus 1™ :P(L) = P(P(L)) isamap.

(f) For any complete lattice L and for any pair of elements
a,fel’ (L) , define a<p iff a, <B, and
an < Py

() For any subset S of 17(L) , we define S, =
{s,|seS}cLad S; = {s;|seS}cL.

Proposition 1.2: For any complete lattice L, the
following are true:

(a) for any pair of elements «, S 1 (L), the following
are equivalent:

@ a=p
) a<pf, f<ain I7(L)
() a, = p, and oy = Sy
(b) 17(L) is a complete lattice with < defined as 4.1.1(6)

above.
Definition 1.3: (a) For any complete lattice L, the

complete lattice 17(L) defined as in 4.1.3(2) above is

called the complete lattice of closed intervals or simply
cloci or the complete interval-lattice with end pointsin L.

(b) For any S < 17°(L), (VS), = v,sS_=VS,,
(VS)r = Vees Sp = VSz. (AS)L = Ay S = AS,
and (AS)y = A, Sk = ASg where s = [S.,S:],
S, ={s |seS}cLandS;={s;|seS}cL.

Vs [S1,8:] =
sesSrl = [VSL VST =[(vS), (vS):] and
AS = Aus S = AssS0,8r] = [AssSLAs SRl =

[AS_ ASR] = [(AS),(AS)R].

In other words, VS = v .S

[VSES sL Vv
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Since 17(L) is a complete lattice whenever L is so,

the definition of complete ideal in 1~ (L) is the usual one in

any complete lattice. However, we state it explicitly in the
following for completion sake:
Definition 1.4: For any complete lattice L and for any

subset J of 17(L), J isacomplete ideal of 1"(L) iff
@ forall g=ScJ, vSed (@ Bed, acl (L),
a < [ implies a €J . Clearly, the empty set is a

complete ideal of 1"(L).

The following lemma will be useful when we define ivf-
intersection of ivf-subsets of an ivf-set:

Lemma 1.5: For any family of complete ideals (S;) |

le

of the complete lattice 1°(L), m | S, is a complete ideal
le

of 1"(L).
Corollary 1.6: For any complete lattice L and for any
subset S of 17(L), the intersection of all complete ideals

of 17(L) which contain S, is the unique smallest complete
ideal of 1”(L) containing S(cf. 2.2.2).

Definition 1.7: For any complete lattice L and forany
subset S of 17(L), the unique smallest complete ideal of
I"(L) containing the given subset S is called the complete

ideal generated by S and is denoted by (S)I*(L)

(cf 2.2.3).
The following lemma will be frequently used through
out the development of ivf-set theory. Again it is also true in

any complete lattice, in particular, in 17(L) as stated

below.
Lemma 1.8: For any complete lattice L and for any

subset =S 17(L), (S)I*(L) = [0,vS] where VS
is th e join of S in I"(L) . Thus (S)I*(L) =
{ael’(L)|a, <v

@), =9

Lemma 1.9: For any complete lattice L, the inclusion
map i:L — 17(L) defined by i(s)=[s,s] is a complete
monomorphism.

Proposition 1.10: For any complete lattice L, 1" (L)
isachainiff L = {0,1}.

Lemma 1.11: For any complete lattice L and for any
pair of subsets A, B of L, Ac B iff I"(A) < I (B).

Corollary 1.12: For any pair of complete lattices L, M
, L= Miff I"(L) = 1" (M).

Corollary 1.13: For any complete lattice L and for any
family of subsets (X )., of L,

X)) 2 v, I'(X))

5O 0r SV Sz} . However

(@) always 17(U;,
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(b) however equality holds whenever each XJ— is a
complete ideal in L.
An equality may not hold in (b) above if one of X i is

not an ideal.
Lemma 1.14: Let L be a complete lattice and | be a

subset of L. Then the following are true for 17 (I).
(@) | isa meet (complete) semi lattice of L iff 1 (1) isa
meet (complete) semi lattice of 1"(L).
(b) | is a join (complete) semi lattice of L iff 1™ (1) is a
join (complete) semi lattice of 17 (L).
() | is a (complete) sub lattice of L iff 1 (1) is a
(complete) sub lattice of 17(L).
(d) 1 is a (complete) ideal of L iff 17(1) is a (complete)
ideal of 17(L).

Theorem 1.15: For any complete lattice L and for any

subset | of L, Then following are true:
(@) 1 is complete infinite meet distributive sub lattice of L

iff 17(1) issoof 17(L).

(b) 1 is complete infinite join distributive sub lattice of L
iff 17(L) issoof 17(L).

(c) Consequently, | is complete infinite distributive sub
lattice of L iff 17(1) issoof 1 (L).

(d) | is distributive sub lattice of L iff 1°(l) is
distributive sub lattice of 17(L).

(e) 1 is modular sub lattice of L iff 17(I) is modular sub

lattice of 1”(L).

In 4.1.14(4), we have seen that whenever | is a
complete ideal of L, 17(l) isa complete ideal of 17(L).
Hence it is natural to question whether all the complete
ideals of 1°(L) are of the form 17(1) where 1 is a

complete ideal of L. However, this is not the case and an
example is given in Murthy[16].

Lemma 1.16: The following are true in any complete
lattice L:

@ Forany z €L, 1'([0,a]), = [O,ia]l*(L)

(b) For any family of complete ideals (L. )., of L, the
j
following are true:
(i) I*(VjeJ Lcj) = Via I*(Lcj)
(if) I*(/\jeJ Lcj) = Njas I*(Lcj)-
Lemma 1.17: For any complete lattice L and for any

subset X suchthat ¢ = X < L, we have (I"(X)); ) =

(X)) = (XDrw-
Lemma 1.18: For any complete lattice L and for any

family (X;);.; of subsetsof L,
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(Yia I*(Xj)) =

(L)

I*((UjeJ Xj)L) :

(I*(Ujeij)) =

(L)

B. Complete Homomorphisms of Complete Lattices of
Closed Intervals

In this subsection, we make a study of the complete
homomorphisms of complete lattices of closed intervals
induced by the underlying complete homomorphisms of
complete lattices, which is essential to define and study the
interval valued f-maps between an L -interval valued f-set
and an M -interval valued f-set, wher the complete lattices
L and M may possibly be different.

Definition 2.1: For any pair of posets L and M and

forany map ¢: L —> M, themap 17 (¢):
I"(L) > I'(M) defined by I"(#)[a,aq] = [P, dee]
is called the interval map induced by ¢
Lemma 2.2: For any pair of posets L,M and for any
order preserving map ¢: L — M, the interval map
I7(¢): 17 (L) = 1 (M) is well defined.
Theorem 2.3: For any map ¢:L—> M between
complete lattices L and M , the interval map
17(¢): 1" (L) = 17(M) is a complete homomorphism iff
¢:L —> M isacomplete homomorphism.
Lemma 24: For any map ¢:L—> M between
complete lattices L and M , the following are true:
(a): ¢ is a monomorphism iff 17 (¢) is a monomorphism

(b): ¢ is an epimorphism iff 1~ (¢) is an epimorphism

(c): ¢ isan isomorphism iff 1" (¢) is an isomorphism.
Theorem 2.5: For any map ¢:L —> M between

complete lattices L and M , the following are true:

(a): p:L>M is 0-preserving iff
1"(¢): 17 (L) = 1" (M) is O-preserving.

(b): p:L>M is 1-preserving iff
I"(4) 117 (L) > 1" (M) is 1-preserving.

(c): p:L>M is O-reflecting iff
I"(4) 117 (L) > 1" (M) is O-reflecting.

(d): p:L>M is 1-reflecting iff

17(4) 117 (L) > 1" (M) is 1-reflecting.

Lemma 2.6: For any complete homomorphism
w: 1" (L) > 1" (M), there exists a unique complete
homomorphism ¢:L — M such that y = 1 (g) ,
whenever ¥(i(L)) € i(M).

Theorem 2.7: For any complete homomorphism,
n:L—>M andforany ¢ =S < L, we have

@ 17(m)1°(S) = 1" (nS)
® A1)

1" (M)
(NOUNE)) Py

w1y’

U(@S)w) =
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Theorem 2.8: For any complete homomorphism
n:L— M and for any complete ideal P of M,

ram—rr®e) = ' 'p).

IV. L-INTERVAL VALUED FUZZY SET THEORY

In this section, first the notions of, L-interval valued f-
set or simply L -ivf-set, L-ivf-subset of an L -ivf set, L -ivf-
union of L -ivf subsets of an L -ivf set, L -ivf-intersection of
L -ivf subsets of an L -ivf set, were introduced. Then lattice
algebraic properties of L -ivf-subsets of an L -ivf-set were
studied.

Next, the notions of, interval valued f-maps or simply
ivi-maps between L -ivf-sets with truth values in different
complete lattices of closed intervals in different complete
lattices L, ivf-image of an L -ivf-subset under an ivf-map
and ivf-inverse image of an M -ivf-subset under an ivf-map
were introduced and were shown to be well defined. Later
on, lattice algebraic properties of these ivf-images and ivf-
inverse images of ivf-subsets under ivf-maps; and several
other properties were shown to have neatly extended from f-
sets and f-maps.

Here onwards, for convenience sake we omit L- in all
the phrases L -ivf-set, L -ivf-subset, L -ivf-union, L -ivf-
intersection etc..

A. L-Interval Valued Fuzzy Sets and L -Interval Valued
Fuzzy Subsets:

In this subsection the notions of ivf-set, (c-total, d-total,
total, strong n)-ivf-subset, ivf-union and ivf-intersection for
ivf-subsets of an ivf-set are introduced.

Definition 1.1: (a) An interval valued f-set A or simply

an ivf-set is any triplet A = (A, A 17(L,)), where A is a

set called the underlying set for A, I*(LA) is a complete
lattice of non empty closed intervals in a complete lattice
LA, called the underlying complete lattice of closed interval

truth values for A and A: A—> 1"(L,) is a map called
the underlying interval valued f-map for A.

Clearly the triplet (A, A, 17(L,)) where A=g, the
empty set with no elements, 1" (L,) = 1" (¢) = ¢, the
empty complete lattice of non empty closed intervals in ¢
and Z=¢, the empty map, is an ivf-set, called the empty
ivf-set.

(b) An ivf-set A = (A,z\, 17(L,)) is it normal iff there

exists an a, € A such that Aa, = 1|*(L -
A

Through out this section the bold italic letters
AB,C,D,E,G, X,Y,Z together with their suffixes
always denote the ivf-sets unless otherwise stated. Also any
such bold italic letter P always denotes the triplet

(P,E,I*(LP)) where P is the underlying set for P ,
I"(L,) is the underlying complete lattice of non empty

closed intervals in the complete lattice L, for truth values
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of P and E:P—)I*(LP) is the underlying interval
valued f-map for P.
Definition 1.2: For any pairof ivf-sets A, B, A=B

iff (i) A=B, (i) I"(L,)=1"(Ly) and (iii) A = B.
Definitions and Statements 1.3: Let A, X be a pair of

ivf-sets.
(@ A is said to be an ivf-subset of X, denoted by

Ac X, iff (1) Ac X (b) 1'(L,) is a complete ideal
of 1I"(L,) 3) A<X|A

(c) By 4.1.17, since 1 (L,) is a complete ideal of
I7(Ly) in the above when A is an ivf-subset of X, we

get that L, is a complete ideal of L, .

(d) Clearly, the empty ivf-set is an ivf-subset of every ivf-
set and for any ivf-set X, the whole ivf-set X is an ivf-
subset of itself.

(e) For any ivf-set X, the collection of all ivf-subsets of

X is denoted by IVF (X)

() A isa d-total ivf-subset of X iff A is an ivf-subset of
Xand A= X
(@) A isa c-total ivf-subset of X iff A is an ivf-subset of

Xand I"(L,) = 1"(L,)
(h) A isa total ivf-subset of X iff A is both a c-total and

a d-total ivf-subset of X
(i) A is a strong ivf-subset of X iff A is an ivf-subset of

X and A = Y| A
() A is a nivf-subset of X iff A is the ivf-subset of X

such that Aa is singleton closed interval for all @ € A
For any family of ivf-subsets (A ), , of X,

(k) the ivf-union of (A),., ., denoted by U, , A, is
defined by the ivf-set A, where
(@ A =, A is the usual set union of the collection

(A)ic of sets
() 17(L,) = v, I*(LA]_) where v,_, I*(LAi) is the

iel

complete ideal generated by U,_, I*(LAi) in 17(Ly)

(© A:A—17°(L,) is defined by Aa = v,

el Kia )
where |, ={iel|ae A} and
(I) the ivf-intersection of (A)., .
defined by the ivf-set A, where

@ A =n,

iel

denoted by m,_, A, is

is the usual set intersection of the

collection (A),_, of sets

) 17(L,) = Ny I*(LAi) is the usual set intersection of
the complete ideals (I*(LAi N in 17(Ly)

(© A:A>1°(L,) by Aa = A, Aa.
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Lemma 1.4: For any pair of ivf-sets A and B, the
following aretrue (@) A = B (b)) AcB and BC A
© A=B, L,=L;and A =B.

Proof: (1) (=) (2): It follows from 5.1.3. and the

definition of ivf-subset.
2 (=) 3: AcB implies AcB, I'(L,) is a
complete ideal of 17(Lg) and KS§| Aand BC A
implies B A, 17(Lg) is a complete ideal of 17(L,)
and B < Z\| B.

Clearly from the above A = B, 17(L,) = 1"(L;) and
A=B. But by 4112, 1"(L,) = I"(Lg) implies
L, = L.

(3) (=) @): Since Ly=Lg, implies 1"(L,) = 1"(Lg),
clearly A = B.

B. Algebra of L-Interval Valued Fuzzy Subsets:

In this subsection some (lattice) algebraic properties of
the collection of all ivf-subsets of an ivf-set are studied.
Further some lattice theoretic relations between the
complete lattice of all ivf-subsets of an ivf-set and the
underlying complete lattice of closed intervals for truth
values are established.

Lemma 2.1: For any ivi-set X = (X, X,17(Ly)),
the following are true:

(@ IVF(X) isacomplete lattice.

(b) Ly is an infinite meet distributive lattice iff IVF(X)

is an infinite meet distributive lattice, whenever X is a
normal ivf-set.

(c) Ly isan infinite join distributive lattice iff IVF(X) is
an infinite join distributive lattice.

Proof: (1) First we show that IVF(X) is a poset with
< defined by B, < B, iff B, = B, with the least element
@ and the largest element X .

From 6.1.3, it is clear that D c Ac X for all
AeIVF(X). So, ®<A<X for all AelVF(X)
and @ is the least element and X is the largest element in
IVF( X).

(A): From 6.1.3, it is clear that for all Ae IVF(X),
A<A
Let B, <B, and B, <B,. B, <B, implies B, € B,

, I*(LBl) is a complete ideal of I*(LBz) and
B:1<B:|B,. B, <B, implies B, = B, , |*(|—32) is a
complete ideal of I*(LBl) and B2 < B: | B,.

Clearly, the above implies B, =B, , I*(LBl) = I*(LBZ)

and §1 =§2 or B, = B,.
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Lastly, let B, <B, and B, <B,. B, <B, implies
B,cB,, I*(LBl) is a complete ideal of I*(LBZ) and
B:<B:|B,. B, <B, implies B,  B,, I*(LBZ) is a
complete ideal of I*(LBg) and B2 <Bs3|B,.

Clearly from the above B, < B, , I*(LBl) and
|*(L33) are complete ideals of 17(L,) such that
I*(LBl)gl*(LBS) implying I*(LBl) is a complete
ideal of I*(LBg) and B: <Bs|B, or B, < B,, implying

that IVF(X) isa poset.
Let (B;) ., bea family of ivf-subsets of X.

B,. Then B = U, B;, I"(L;)

(B): Let B = U,

Vi 17(L ) B:B—>17(L,) is defined by Bb

\

jedy Bjb, where J, ={j€J|beB,}.

(a): Since (i)B; =, B;=B (ii)1"(Ly ) and 1"(L;)
J

are  complete ideals of 17(Ly) such that

I*(LBj)g 1"(Ly), by 3.2.4(c), I*(LBJ_) is a complete

ideal of 17(Lg) (iii) for all be B;. g,—bSVjerEjb =

Bb which implies Bj<B| B, we get that B; = B for

all jeJ or B isan upper bound for (B;);;.

(b): Let C be an ivf-subset of X such that C is an upper

bound for (B;);.,. Then B; is an ivf-subset of C for all

jeJ and hence B; =C, 17(L; ) is a complete ideal

J
of I"(L.) and B; <C| B;.

Clearly, B = U, ;; B, cC, I"(L;) = Vi I*(LBJ_)
< 17(Lg) and hence, by 3.2.4(c), 17(L,) is a complete
ideal of 17(L.) and Bb = Vies, Bijb<Ch for all
be B, implying that B C and that B is the least
upper bound for (B;) ., in IVF(X).

(C): Let B =N, B;. Then B =N, B;, I(L;) =
Ajes I*(LBJ_) andforall be B, Bb = Ay Bib.

(@ Since (i) B = Ny

B, =B, i) I'(Lg) and
I"(Lg ) are complete ideals of 17(L, ) such that
J
1"(Lg) < 1"(Lg.), by 3.2.4(c), 17(Lg) is a complete
J

ideal of 17 (L ) and (3) Bb=n,,Bib<Bjb
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for all be B implies B<Bj|B, we get that B < B;
forall jeJ or B isalower bound for (B;),;-
(b): Let C be an ivf-subset of X such that C is a lower
bound for (B;);.;- Then C <= B, for all jeJ and

hence B; 2C, 1"(Le) is a complete ideal of I*(LBJ_)

and Bj |C >C.
Clearly, B = N, B; 2C, I'(Ly) = Ay, I*(LBJ_)
> 17(L:) and hence 17(L.) is a complete ideal of
I"(L,) and Bb = /\jerEijEb for all beB ,
implying that B > C and that B is the greatest lower
bound for (B;) ., in IVF(X).

Now (A), (B) and (C) imply that IVF(X) is a

complete lattice.
(2): (=): Let B,C; be ivf-subsets of X forall jeJ.

Let C =v,,C;. Then C = U, C;, I'(L) =

1" (Le )and for all ceC, Cc = v._, Cjc,

\a
where J ={jeJ|CeCj}.

Let D = BAC . Then D = BNC , 17(L,) =
1"(Ly) N 17(L) andforalt d € D, Dd = Bd ACd.
Let E; = BAC,. Then E; = BNC;, I*(LEJ_)

JEJC

1" (Lg) M I*(LCJ_) andforall €€ E;,

Eje = BeaCje.

i Ej.Then F = U )L 17(L)

Let F = Vv

I"(Le,) and for all f eF, Ff—vJ E;f,

where J ={jeJ|feEj}={JeJ|feBij}.
We show that D = F or (@ D=F (b)) I'(L,) =
1"(L.) and (¢) D = F.

@: D= Bn(v,,C)) =u
= F.

(b): First by 4116 1 (L) = v, (L))

1" (v, L) 1"(Ly) = P(Ly)Al (L)
FLeale) o 1) = F(La)Aal' (L)

VjeJ I*(LEJ)

jeJ

jed jed (Bmc ) - UjeJ E

1" (Lg /\LC_) and 17(L.) =

(Ve Le,)-
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Next, by 4.1.12, the above implies, L, = v._; Lc , Ly =
j

jed

L. .

J

But by 352(1), Ly = Lgyale = Lga(vy,L j)
jeJ(L /\L )—V LEszF‘

Since L, = LF, 1"(Lp) = 17 (Lp).

(©: Let deD = F. Then Dd = BdACd
Bd Av de,Jd={j€J|d€Cj}and

4 jed

Ly A Lc, LEJ_ = LB/\LCJ_ and Lp

jed

JeJ

Ed = Vv .Ejd

jeJd
{ied|deBnC}.

Since (a) above implies J, = J' and L satisfies the

v . (BdACjd) . J,
JeJd

infinite meet distributive law, Dd = Fd or BAav,,C;

=D =F =v,,;(BAC)), implying that IVF(X) is
an infinite meet distributive lattice.

(<) Let aely and (B));,;, S L. Since X is a
normal ivf-set, there existan X, € X such that

Yxo = 1.

iy For any ael, , define A =

X
(X, A, 1"(Ly)) where Aci X > 1°(L,) is defined

by Kaxo = i and AuX = OI* for X # X, . Then

Ly)
A, isan ivf-subset of X forall & € L, because

Yxo =12 ia =AX.
Let. D = A A(VigA,) ad E =
Vies (A, A A, ). Then IVF(X) is infinite meet

distributive lattice and so D = E and in particular D=
E. Clearly, by the definition of A, , since

i:L, — 17(L,) is a complete monomorphism, BXO =

lan(ViyiB) = lanilviy fy) = ilanv, )
and
Ex, = Vig llanip) = v ilanp) =

i(VjeJ (a/\ﬂj))-
Now DX, = EX, implies ANV, B =Viglanp).

(3)(=): Let B,C; beivf-subsets of X forall jeJ.
Let C = A;;C;. Then C =N, C;, | (L) =

i jed
T (S ) and for all ceC , Cc = /\JEJCCJC,
where JC={jEJ|beCj}.
Let D = BvC . Then D = BUC , I'(L,) =

1"(Ly) v 1"(L.) andforall d € D, Dd = Bd v Cd.
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Let E; = BvC,. Then E; = BUC;, I'(L;) =
J

1" (Lg) v I*(Lcj) and

forall ec E;, Eje = BevCje.

Let F = Aj,; Ej. Then F = 0 Ej, 17(Lg) =

jle Ejf’

where J; ={jeJ|feE}={jel|feBUC}

We show that D = F or @) D=F (b) 17(Ly) =

1"(L.) and (¢) D = F.

@: D =Bu(n,,C)) =n

= F.

(b): First by 4116 1(L) = A, I*(Lcj)

M(rsle) o 1) = P vI(L)

Flevile) o 1M(Le) = F(L)vI'(Le)

I*(LBVLC]_) and 17(L.) = Ajes I*(LEJ_)

|*(/\J-EjLEj).

Next, by 4.1.12, the above implies, L. = A,

Ay 17(Le ) and for all feF, Ff = A
J

jed jed (BUCj) = MNigy Ej

LCJ_, Ly
L, v L, LEJ_ = LBVLCJ_ and Lp = A, LEJ_.

But by 352(2), Ly = Lyvle = Lyv(a, Lcj) =
Le, = L.

Since Ly = L, 17(Ly) = 1"(Lp).

Nijel (LBVLCJ-) A

(c: Let deD = F. Then Dd = BdvCd
Bdv A, dEjd,Jd={jeJ|d€Cj}and

jed

Ed = A .Ejd
JEJd

{ied|deBuUC}.

Since (a) implies J, = J;j and L satisfies the infinite join

A . (BdvC;d) . J,
JeJd

distributive law, Dd = Fd or
C;=D=F = A, (BvC,), implying that

IVF (X) is an infinite join distributive law.

Bv A,

(<) Let aely and (B);,;, S Ly . Since X is a
normal ivf-set, there existan X, X such that

XX, = 1.
17 (Ly)

For any ael, , define A =

(X, A, 1"(Ly)) where AsiX > 1"(L,) is defined
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by Kaxo = i and A.X = OI*(L for X # X, . Then

X
A, isanivf-subset of X forall & € L, because

Yxo =12 a=AX,.
Let D=A, v (A AﬁJ) and E=A_, (AavAﬂJ).

Then IVF(X) is an infinite join distributive lattice and so

jed

D = E and in particular D=E. Clearly, by the
definiton of A, , Dx, = lav(rn,if;) =

a
iavi(a, B) = lava,B) and Ex, =
Njes (iaViﬂj)z/\jeJ i(avﬂj)zi(/\je.] (avﬁj))-
Now DX, = EX, implies av A B =nglavp).
C. Fuzzy Maps Between An L -Interval Valued Fuzzy

Setand An M -Interval Valued Fuzzy Set:

In this subsection the notions of, an (increasing,
decreasing, preserving) interval valued f-map or simply an
ivi-map between an L -ivf-set and an M -ivf-set and the
ivf-composition of such ivf-maps were introduced.

Definition 3.1: A generalised ivf-map from A to B is
any pair (f,y), denoted by (f,y):A— B, where
f:A>Bisasetmapand w:1°(L,) = 17(Lg) isa
complete homomorphism.

Definition 3.2: An ivf-map from A to B is any pair

F = (f,17(L,)), denoted by F : A—> B, where
f:A—>Bisasetmapand L, :L, = Ly isacomplete

homomorphism.
Definition 3.3: For any ivf-map

(F,17(L)) (A A 17(L)) = (B,B, 1"(Ly)).
) (f,17(L,)) is increasing, denoted by F, , iff
Bf >17(L,)A
(i) (f,17(L,)) is decreasing, denoted by F, , iff
Bf <I1'(L,)A
(i) (f,17(L,)) is preserving, denoted by F,. iff Bf =
(LA

Definition 3.4: For any pair of ivf-maps
F=(f,1I'(L,):A>B andG:(g,I*(Lg)):B—>C,

the ivf-composition of F by G , denoted by
GF : A— C, is defined by the ivf-map

GF = (gf, 1"(L)1" (L))

D. M-Interval Valued Fuzzy Images and L-Interval
Valued Fuzzy Inverse Images of Interval Valued Fuzzy
Subsets:

In this subsection the notions of, the M -ivf-image of an
L -ivf-subset under an ivf-map and the L -ivf-inverse image

of an M -ivf-subset under an ivf-map were introduced and
were shown to be well defined.
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Lemma 4.1: For any ivimap (f,17(L,)) :

(A,K,I*(LA))—>(B,§,I*(LB)) , the following are

true:
(a) For any ivf-subset (C,C, 17(L,)) of (A A, (L)),
the ivfset D where D = fC , I1'(Ly) =
(I*(Lf)l*(LC))I*(LB) and D:D — I"(L,) is defined
by
Dd =Bd AvI“(L,)C(f *dNC) forall d € D, isan
ivf-subset of B.
(b) For any ivf-subset (D, D, 1"(Ly)) of (B,B, 1" (Ly))
, the ivfset C where C = f'D , I'(L.) =
1"(L,)™17(Ly) and C:C — 1"(L,) is defined by
Cc=AcavI®(L,)'Dfc for all CeC, is an ivF-
subset of A.

Proof: (a) Since Cc A, Cc A, I'(L.) is a
complete ideal of 17(L,) and C<A|C.

Therefore, D = fCc fAcB and 17(Ly) =
(I*(Lf)l*(LC))I*(LB) is a complete ideal of 17 (L;).

Further, since f'dNCcC , we have
C(f*dNC)cCCcI'(L.). So,
I"(L)C(FHdNC) I (L )17 (Le)
(|*(Lf)|*(|—c)),*(LB) = 1" (Lp).

Now since 17 (L) is a complete ideal, we get that
vI(L)C(f'dnC)el(L,) and Dd =
Bd AvIT(L,)C(fdNC)el™(L,).

Thus the ivf-image of an ivf-subset is a well-defined ivf-
subset of B.

(b) Since Dc B, D B, 17(Ly) isacomplete ideal of
1"(L,) and D<B|D.

Therefore C = f 'D < f B < A. Further since the
inverse image of a complete ideal under a complete

IN

homomorphism is a complete ideal, | (L.) =
1"(L; )™ 17(Ly) is a complete ideal of 17(L,). Also C
= f'D implies fC = D which in turn implies
DfceDDc I"(L,).

(L) ™ Dfcc 17(L,) 17 (Ly)

Therefore

I"(Le).

© 2010, IJARCS All Rights Reserved

Now, since | (Lg) is a complete ideal, we get that
vI'(L)"'Dfcel”(L;) and hence Cc =

AcAvI™(L)*Dfcel”(L.), implying that the ivf-
inverse image of an ivf-subset is a well-defined ivf-subset of
A

Definition 4.2: Let F: A— B be an ivf-map. Then
(a) For any ivf-subset C of A, the ivf-image of C under

F , denoted by FC, is defined by D, where (a) D = fC
® 1"(L) = ("L (L))~ ad © Dd =
B

Bd AvI'(L,)C(f™d NC) forall d € D.
(b) For any ivf-subset D of B, the ivf-inverse image of D

under F, denoted by F'D, is defined by C, where (a)
C=f'D® I'(L) = 1'(L)(Ly) and (0)
Cc = AcavI™(L,)*Dfc forall ceC.

E. Properties of M-Interval Valued Fuzzy Images and
L-Interval Valued Fuzzy Inverse Images:

In this subsection some standard lattice algebraic
properties of the collections of, M -ivf-images of L -ivf-
subsets under an ivf-map and the L -ivf-inverse images of
M -ivf-subsets under an ivf-map are studied in detail.

Further, all counter examples in this subsection can be
obtained from the corresponding ones in the Theory of
f _Sets And f-Maps-Revisited in Murthy and Prasanna[17].
Hence the sectional references mentioned in this section for
counter examples are for the above paper. Also, as
mentioned earlier in a Note before Section 4, a referencing,
for example, by 3.3.11(3),......... only means that, by
3.3.11(3) of Murthy and Prasanna[17], ..........

Definitions 5.1: (a) Let F: A— B be an ivf-map and
C = B. Then C issaidtobean 17(L,) -regular

ivf-subset of B iff 1" (L.) <= 1 (L, )17 (L,).
(b) Anf-map F = (f,17(L,)) is

(@) O-preserving, or simply O-p iff 17(L;) is a O-
preserving complete homomorphism (Cf. 3.3.6)

(b) 1-preserving or simply 1-p iff 1 (L) isa 1-preserving
complete homomorphism (Cf.3.3.6)

(c) O-reflecting or simply 0-r iff 17 (L) is a O-reflecting
complete homomorphism (Cf.3.3.18) and

(d) 1-reflecting or simply 1-r iff 1 (L, ) is a 1-reflecting
complete homomorphism (Cf.3.3.18).

Proposition 5.2: for any ivf-map F:A— B and for
any pair of ivf-subsets A and A, of A such that
A c A, we always have F.A < F.A, whenever * = i
or 4 or p.
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Proof: Let D, = FA .Then D, = fA | I*(LDl) =
(LU L), and
Did =Bd AvI™(L)A(fdNA) forall d € D,.
Let D, = FA,. Then D, = fA,, I*(LDZ) =
(VL) ond
D2d =Bd AvI'(L,)A(f'd N A) forall d €D,.
We show that D, € D, or (@) D, = D, (b) I*(LDl) isa
complete ideal of I*(LDZ) and () D1< D2 | D,.

Since AcA,, we hae A CA,, I*(LAl) is a
complete ideal of |*(|-A2) and A1 < A | A.
@): D, = fA c fA, = D,,since A C A,.
(b):  Since I*(LAl)g I*(LAZ)
I*(Lf)l*(LAl)g I*(Lf)l*(LAz) and so I*(LDl) =
(o (LAl))l*(LB) is a complete ideal of

we have

(|*(|_f)|*(|_A2))I*(LB) = 1"(Lp,) . by 3:23(7).

(c): Let deD, . since f'dnA cf'dnA, and
A< Az | A, we get that 17(L )AL < 17(L,)A | A
By 348 vI'(L)A(fdAA)<VI'(L,)A:
(f'dNA) < vIT(L)A: (fdNA,) which now
implies D:d = Bd A VIT(L)A (fdnA) <
Bd A vI'(L)A: (fdAA) = Dad or

D: < D | D, .
Proposition 5.3: For any ivf-map F : A— B and for
any pair of ivf-subsets B, and B, of B such that

B,cB, and B, is 17(L;) -regular, we have
F.'B, c F.'B, whenever * =i or 4 or p.

Proof :Let F™'B, = A.. Then A, = f7'B,, I'(L
= I*(Lf)’ll*(LBl) and
Awa=AaavI'(L,) Bifa for all aeA.
Let F'B, = A,. Then A, = f7'B,, I'(L

a)

w) =
(L)1 (L) and Aa = Aaavi’(L,)"B:fa
forall ae A,.

We show that A, € A, or (@) A < A, (b) I*(LAl) is
a complete ideal of I*(LAz) and () Au< Az | A.
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Since B,cB,, we have B, B, , I*(LBl) is a
complete ideal of I*(LBZ) and B1 < B2 |B,.

(@):Since B, = B, wehave A = f'B, c f 'B,=A,.
(b):  Since I*(LBl) c I*(LBZ) , we have

(L) = (LD (L) < 1 (LH (L)) =1 (L)

So, by 3.2.4(c), I*(LAl) is a complete ideal of | *(LAZ ).
(c): Let ae A = f B, be fixed. Then faeB, cB,,
A= AaAvI’(L,)?'B:fa and
Aa=AaavI’(L,)?'B:fa.

Therefore it is enough to show that

vIT(L) " Bifa<vI™(L,)™"B:fa.

Since acA=f"'B, and B: SElel , we have
fac B, c B, and Bifa<B:fa.

since B2fae I"(L,)1"(L,), by 17(L;) -regularity of
B, and by join monotonicity of 17 (L, )™ as in 3.3.2, we
get that v 17 (L) "Bifa < vI'(L,)™ B:fa, as
required.

The above proposition is not true if B, isnot 1" (L,) -

regular and the Example 4.5.7 serves here also.
Proposition 5.4: For any o-p ivf-map F : A— B and

for any ivf-subset C of A, C — F.*F.C whenever * —
ior p
Proof: LetFC=D.ThenD = fC,I"(L,)=(I"(L)I"(L.)) .

I'(Lg)
and Dd = Bd AvI7(L,)C(f *d NC) forall d e D.

Let F'D=E ) Then
E= f‘lD,I*(LE): I*(Lf)‘ll*(LD) and

Ee=AeavI'(L,)"Dfe forall ecE.

We show that CC E or (8) CCE (b) 1'(L.) isa
complete ideal of 17 (L;) (c) 6£E|C.
@:Ccf'fC=f'D=E.

O: (L) < I'L)™ 1MLy (k) <
LD L) V=) (L) -
1"(Lz) since 1" (L.) and 17(L) are complete ideals
of 17(L,) suchthat 1" (L.) < 17 (Lg) we get that
I "(Lc) isacomplete ideal of 17(Lg) by 3.2.4(c).

237



Nistala V. E. S. Murthyet al, International Journal of Advanced Research in Computer Science, 4 (2), Jan —Feb, 2013,227-250

(c): Let ceC be fixed. Then
Ec=AcAvI'(L,)'Dfc : where

Dfc=BfcavI™(L,)C(f *fcnC)

=Bfcav ., I"(L)Ca.

since 1"(L,) is increasing, Bfc>17(L,)Ac . But
1"(L,)Ac > 1"(L,)Cc because A|C>C andceC,
Further, for all ae f?*fcnC , fa=fc and
Bfa=Bfc. So, from the above
Bfc=Bfa>1"(L,)Aa>1"(L,)Ca for all
ae ffcnC,implying Bfc>vI™(L,)C(f *fcnC).
Therefore, Dfc = BfcavI™(L,)C(f*fcnC)
v I'(L,)C(f tfcnC).

v I7(L,)C(f tfcnC)
1" (L, )(vC(f *fcC)) because f*fcNC # ¢ and

But Dfc =

hence E(f_lfCﬁC)¢¢ and 17(L,) is a complete
homomaorphism.

Therefore Dfc = 1"(L)(vC(f tfcAC)) implying
that v C(f *fcnC)el”(L,)'Dfc.

Now, since ce f *fcnC , the above implies Cc <
vC(f*fenC) < v 1"(L)™ Dfc as
vC(ftfcnC)el’(L,)* Dfc.

Therefore EC = AcAvI'(L,)'Dfc> AcACc = Cc

since A|C >C, implying E|C>C.
The above proposition is not true for decreasing ivf-
maps and the Example 4.5.9, serves here also.

Proposition 5.5: For any 0-p ivf-map F: A— B and
for any 17(L,) -regular ivf-subset C of B, we have

F.F.'C = C, whenever *=i or d or p.

Proof: Let F'C=D . Then D=f"C
(Lp) = 1 (L) M1 (L) and
Dd = Ad AvI“(L,)Cfd forall d eD.
let FED = E . Then E = D , I'(L) =
(I*(Lf)l*(LD))I*(LB) and for all ec E, Ee =Be
vI'(L,) D(fenD).

We show that ECC or (@) EcC (b) 1'(Lg) is a

complete ideal of 1" (L) and (c) ESE| E.
@: E=fD=ff'CcC.

© 2010, IJARCS All Rights Reserved

(b):
1"(Le) = (l*(Lf)l*(LD)),*(LB) =17 (L)rL)™

I (LC))I*(LB) cl (LC)u*(LB) because always

L) (L) (L)

since 17(Lg) and 17(L.) are complete ideals of
1"(Lg) such that 17(Lg) < 17(Le), by 3.2.4(c), we get
that 17(L;) isacomplete ideal of 1™ (L.).
(c): Let eckE be fixed. Then
Ee=BeavI'(L;)D(f 'enD) : where
Da=AaavI’(L,)*Cfa.
Now for all acf'enD , fa=ze, aeD and
I"(L)Da = 1I"(L)Aa A 1I(L)(vIT(L)™
Cfa)<1”(L,)AarCfa<Ce, forallac f 'enD,
where the first < is by 3.3.11(4) and the fact that F is 0-p.
Therefore, v I"(L,)D(f e~ D)<Ce and Ee =
BeavI™(L,)D(f 'enD)<BenCe=Ce , since

C < B implies ES§|C,implying ESE|E.

The above proposition is not true if F is not 0-p and the
Example 4.5.11 serves here also.

Proposition 5.6: For any 0-p ivi-map F : A— B such
that f and 1 (L) are one-one and for any ivf-subset C

of A wehave C = F.'F.C whenever* = i or p.
Proof: Let FC = D .Then D= fC
(L) =L (), , and Dd =Bd AvI’(L,)C(f*d NC)

il

forall d e D.
However, since f is one-one,

Dfc=BfcavI™(L,)C(f *fcnC)=Bfcal"(L,)Cc
forall ceC.

let F'D=E . Then E = f'D, I"(L) =
1"(L) 17 (Ly) and Ee=/Ae A v I"(L,) ™ Dfe for
alleekE.

It is enough to show C=E or (1) C=E (2
I"(L.) = 1"(L.) and3) E=C.
@: E=f'D=f"'fC=C,since fis1-1.
(b): First, by 3.2.3(3), L. =[0,] for some € L, and
by4.1.16, 1 (Ls) = 17([0,a]) = [0,ic] .

17 (Ly)
By 3.4.3(2) and the above, 17(Ly) =

(l*(Lf)l*(Lc)),*(LB) = (@ Lordo.an) .

1"(Lg)
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(1 (LD -, =[0,1°(L,)icl],-

(L)

Therefore by 3.4.6(3), since I*(Lf; is 0-p and
I'(L)ie 17(L)IT(L,),
1" (Le) = (L) (L)
1"(L,)7'[0, 1" (L, )ia]l*(LB) =
OV (L) (L))ia] -

1" (Lg)

= [0,iar] = 1" (L), where the 4th equality is due to the

fact that 1" (L,) is one-one.
(c): We already have ESE|C , because by 6.5.4,
CcFR'RC=E.

Let e € E be fixed. Then (a) Bfe above when f is
one-one (b) the facts that

() 17(L)Cee l"(L)IT(L) = 17 (L)I7(LY)
(i) 17 (L) is join increasing by 3.3.2
(i) Bfea1"(L,)Ce<1"(L,)Ce (iv) C<A|C and
() 17(L;) isone-one, imply that
Ee = PeAvI®(L,)"Dfe =
AeavI®(L) (Bfeal™(L,)Ce) <
PeavI®(L,) (1" (L,)Ce) = AeACe = Ce , which
in turn implies E <C | E.

The above proposition is not true if only 1 (L) is one-

one but f is not and the Example 4.5.14 serves here also.
The above proposition is not true if the ivf-map is

decreasing and both f and 17 (L,) are bijections and the
Example 4.5.15 serves here also.

Proposition 5.7: For any 0-p ivi-map F : A— B such
that f and 1 (L) are onto, and for any ivf-subset D of
B, we have F.F.'D = D whenever * = d or p.

Proof: Let C = F*D. Then C = f'D, I"(L.)
1"(L) ™ 17(Ly) and Cc= AcavI™(L,)*Dfc
forall ceC.

let E=FC . Then E=fC , I7(L) =
(I (L)t (LC))'*<LB> and
Ee=BeavI'(L,)C(f 'enC)
forallecE.

We will showthat D =E or (@) D = E (b) 1 (L;)
= 17(Ly) and () D=E
(a): E=fC = ff 'D =D, since fis onto.
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o 1'(L) = (I*(Lf)l*(l—c)),*(LB)

* * -1+ - * -
FLOUL) L), = (L)) =
1"(Ly), where the third equality is due to 1 (L) being
onto and the fourth equality is due to 1 (L) being a

complete ideal of 17(Lg).
(c): Let e e E =C be fixed. Since F is decreasing and

DcB ., we have Bf <I*(L,)A and D<B|D .
Consequently, for all ce f 'enC, e= fc, ceC and
Dfc<Bfc<I17(L,)Ac.

Further, since 17 (L, ) is onto, Dfc e 1"(Ly) < 1'(Lg)
= 17(L;)1"(L,), by3.3.11(3),
1"(L,)(v1*(L,)*Dfc)= Dfc and hence
1"(L,)Cc = 1"(L)(AcAvI'(L,)™"Dfc)
(L )AC A I(L (VI (L,) ™ Dfc) =
I"(L,)AcADfc = Dfc = De , implying
v I*(L,)C(f'enC) = De.

Now Ee = BeavI™(L,)D(f 'enC) = BeaDe =

De, because D<B|D.
The above proposition is not true if F is increasing and
both f and I (L) are bijections and Example 4.5.17

serves here also.
Also, the above proposition is not true if only one of f

or 17(L,) is onto but not both and Examples 4.5.18 and

4.5.19 serve here also.
Let us recall from 6.1.3 that for any family of ivf-subsets

(A)i of A,

(@) ;. A isdefined by the ivf-set B, where

@ B=U A ) I'(Lg) = vig 1'(Ly) and ()
B:B— 1" (Lg) is defined by Bb= vielbxib , Where
I, ={iel|be A}, forall beB.

and
() M, A is defined by the ivf-set C , where (1)

C=niuA @ 1'(Le) = A 17(Ly)
(©) C:C — 1"(L.) is defined by Cc = A, AiC for all
ceC.

Proposition 5.8: For any 0-p ivfi-map F : A— B and
for any family of ivf-subsets (C;);, of A, we have
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F.(U;,C;) =, RC; whenever *=1i or d or p

and Lg is a complete infinite distributive lattice.
Proof: Let C=uU,,C; . Then C=u,,C;

jed jed
1" (L) = vJeJI(L ) and Cc=v
|c:{j€J|C€Cj}foraIICeC.
le¢ D = FC . Then D = fC , 1'(Ly)
(N(BIN

Dd =Bd A vIT(L,)C(fdAC) forall deD.
Let E,=FC, . Then E;=fC, .
1" (L, )= (L) (L. -

" (Lg)
Eje=BeavI’(L, )C-(f‘leij) forall €€ E;.
E=u,,E;

jed

jel, C,—c , where

Let E=u E Then

jed
1"(Lg) = Vi |l (LEj) and Ee:vjE,eE,-e, where

l.={jeJ|ecE} forallecE.

Now we show that D=E or @ D=E (b

1"(Ly)=17(Lg) and () D=E.

(a):
D=fC=f(u,,C))=u

(b): First, since F is 0-p, by definition 1 (L, ) is 0-p. But

fC,=v,,E;=E.

jed jed

then by 4.2.5(1) L, is 0-p.

(L) = (P ) =
(L, Lc).,) and

|*(|-Ej) = (|*(Lf)|*(Lc.)),* o (L Le ) )
By 4.1.16, 1'(Le) = v, I'(Lc. D=l
(L) =v o (L) =1 (VJEJ Le,).
Therefore by 4.1.12, the above imply L, = (LfLC)LB,
LE. = (L, LC,-)LB’ L. = Vies LCj and

LEJ_.

By 427,

jed

L. ) and
J

LE vjeJ
Again by 4.1.12, to show | (Ly)=1"(Lg), it is enough
But Ly = (LfLC)LB =

Le, = Vi (Like)),

to show L, = L; .

L (VjeJ LCj)LB L = Ve Vijes
and as in the f-set-theory setup 4.5.20, LD = LE , since Lf
is 0-p.

©: Let ye fC = f(u;,C;). U,

andV, ={jeJ|ye fC;}.

={jeJ[xeC}
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Then for all xe f 'ynC, U, =g,V #4, fx=y
and XeC.

Further, Dy = By A v 1°(L,)C(f'ynC) = By
AV I*(Lf)EX

XEf_lymC

= Ey N Vxef_lymC I*(Lf) (VieUXEiX) = Ey A
Vet lyac VieU, 1" (L, )Eix-

On the other hand, since L is a complete infinite meet
distributive lattice,

Ey = Vjev Ejy =
Vi, (Eysz e 1"(L,)C;z) =
§y/\vje\,y 2 by, (L, )C Z.

Therefore it is enough to show that
VieU I*(L )CiX =

Vo1
xef ynC

Viev, V- 1y, 1"(L,)Cjz.
Let Q =l (Lf)Cjz|Zef yij,jeVy} and P
={I"(L,)Cix|xe f 'ynC,ieU }.

Then clearly, it is enough to show that P =Q, because

vP = Vi yne Vieu, (. )Cix and vQ =
Vie, Vi, Iy, 1"(L,)Cjz.
Let Q. Then o = | (Lf)E,—Z, Ze f’lyij,

jGVy . Since ngC ,zeflynC, jeU,
Therefore ze f'ynC , jeU, o o =
1"(L,)CjzeP,implying Qc P.
Let feP . Then g = I*(Lf)ax, xe flynC,
ieU, . But then xefy and xeC, or
xe f 'y NC. which implies y = fx e fCi or eV,
which in turn implies X € f 'y NC,, eV, or
B = 1"(L,)CixeQ,implying Pc Q.

Proposition 5.9: For any 1-p ivf-map F: A — B and
for any family of ivf-subsets (C;);., of A, we have

F.(n,,C;)) e, RC; whenever *=ior d or p.
Proof: Let C=n;,;C, . Then C=n,,C, ,
1"(L.) = Ao V(L. ) and Cc= /\JEJCjC for all

ceC.
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Let D=FC . Then D=fC
()= (L (L)) and
B
Dd = Bd /\vl*(Lf)C(f “d NC)
forall d e D.

Let E;=FC;,. Then E,;=fC,, I*(LEJ_)
(L) (L )) and

(L)
Eje=Beavl (Lf)C,-(f‘lemC.)forall eck,.

Let E=n,E; . Then E=n,E;, 1I'(Ly)

jed jed
1" (L )and Ee= /\JJE,e forall e E.

je.]

We will show that D E or (a) D E (b) 17(Lp) i

a complete deal of 1"(L.) and (c) D<E|D
(a):
D=fC=f(n,,C))cn

(b): First by 4.2.5(2), since | (L, ) is 1-p, we get that L,
is 1-p.
By 427, 1°(Ly) = (1I"(L)HI'(L ) - )

(LiLe)y) and 1(Le) = (ML) (L)),
= 1 ((Like))y)-

By 4.1.16, since 17(L.) =

w

fC,=n,,E,=E

jed jed

|(|-)

/\je.] I*(LEJ)
" (n A U(L)

1" (A

jed Ej) and I*(Lc) =
jed j).

By 4.1.12, the above implies L, = (L, LC)LB , L
LEJ_, LEJ_ = (L, LC,-)LB and L.= A LCJ_.

/\je.] jed
Now as in the Proof of f-set theory setup 4.5.21(2), L,
L because L; is 1-p and now 4.1.12 implies 17 (L)

1"(Lg) . B
(©: Let yeD=1fC=f(n,_,C,) befixed. Then Dy

By A vI'(L,)C(f'ynC)

= Ey AV |*(Lf)EX and Ey = A EiY

xef lync
= A (BY A VIT(L)Ci(fynC))).

Ajes (Ey/\\/I*(Lf)Ej
(fHynC)) = By N
Aoy VIT(L)Ci(f Ty C)).

But by 3.1.1(3),
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There fore Ey = By A
A VIT(LOCi(FynC,) = By A
Ner V1 e, 1" (L, )Cx.

Also flynC = f- ym(mjeJ )=

.J(f‘lyij) c f‘lyij for all je J, since
B) =i (ANB).
Next for all xe f'ynC,

An(N,

iel

Xef"lyr\Cj for
all jeJ and EXSE,-X implying

1"(L,)Cx < I"(L,)Cix < v 1" (L,)C;x

eflync

<v (. )C]X for all jeJ which in turn
xef™ ymC

implies | (Lf)CXS/\jEJ (v 1" (L, )C X) for

ef™ ymC
all xe f 'y C, from which follows:

I"(L)CX< A, (v 1" (L,)Cx).

\4
xe f 71ymC ef 71 C

Therefore, Byzgy AV I"(L,)Cx < By

xef _1ymC

I*(Lf)EjX) = Ey for all ye D,

AAY \Y
JGJ( xef_lyij

implying 5£E| D orfinally Dc E.

Proposition 5.10: For any 0-p and O-r ivf-map
F:A— B and for any family of ivf-subsets (C;);_; of
C))=uv
(@) 17(Lg) is a finite chain, L, is complete infinite meet
distributive lattice.
(b) Cj is 17(L,) -regular for each jeJ and * =i or d
or p.

Proof: Let C=u;,C,

B,wehave F.'(U F_le whenever

jed jed

Then C=uU C

jed jed
| (L) Vi | (L ) and Cc= Viel, CjC, where
|C:{jeJ|CeCj},forall ceC.
Let D=F'C . Then D=fC

1" (Ly) = (L) (L) and Dd
KdAvl*(L Y*Cfd forall d eD.
f7C, . I'(Le )

Let E lC . Then Ej

I*(Lf)’ll*(Lcj) and Eje= Aeavl (Lf)’1Cfe for

alleekE,;.
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Let E = U, Ef Then E= U, B, I'(L) =

jed
Vi I*(LEJ_) and Ee=v

jel, Eje , where

={jeJ|eck;} forall ecE.
We will show that D=E or (@ D=E (b)
I"(L,)=17(L) and(c) D=E.
@: D= f*C=f'(u,,C)=u
U, Ej=E.

(b): First by 4.2.5, 17 (L, ) is0-p and O-r implies L; is 0-p
or O-r.
Next, C; being I"(L;) -regular and 4.2.7  imply,

(L)) = (L) (L) = 1 (LLy),

which by 4.1.11 implies that Lcj clLL,.

By 4.2.8, 17(Ly) = I"(L;)"1"(L.) =1"(L'L;) and
I*(LEJ_): I*(Lf)’ll*(Lcj) = I*(L’flLCJ_).

-1 _
jed jle Cj -

By 4.1.12 and 4.1.16, the above implies L, = L7'L., Lg.
j

— 11

= L Lcj, Le = Viy LCJ and L; = v LEJ_.

But then as in the Proof of f-set theory setup 4.5.22(2),
since L; is 0-p, O-r, Ly is finite chain, L, is complete

jed

infinite meet distributive lattice and L, < LL, for all
j
jed, Ly =Lcandhence 1"(Ly) = 17(Lg).
(c): First, by 4.2.5(3), since 1 (L, ) is0-r, L is O-r.
Next, by 4.1.15(1), since L, is complete infinite meet

distributive lattice, 17(L,) is a complete infinite meet
distributive lattice.

Now let Xe D = f'C = f(U,_,C;) be fixed. Then

jed
Dx = AX A vI'(L,)™" Cfx =
AC A VITL)T (Vi Cifx) = AX A v

Jelf
VAN(H Ejfx, where the last equality is due to
3.3.19, because of (i) L is a finite chain and (ii) Lf is O-r,
where I, = {jeJ|fxeC}.

On the other hand, since 1 (L,) is a complete infinite

meet  distributive  lattice, Ex = Vial ij =
X
Vi, (AXAVIT(L,)Cjfx) =
KX/\VJ.E, vI'(L,)*C fx , where
X

={jeJ|xeE;}.
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From the above, it is enough to show that

VjelfX VI*(Lf )_16j fX Vkelx VI*(Lf )716k fX )

where
={jeJ|[xeC} 1,={kel|xeE, = f*C.}
Clearly it is enough to show that |, = 1,.

Let jel Then  fxeC; which implies

fx
X e f‘lcj =E; implyingthat jel,.

Conversely, kel implies XeE, = fC, which
implies fx € C, which in turn implies K € |,
Therefore 1, = 1.

The above proposition is not true if some C i is not

I"(L,) -regular but 1°(L,) is 0-p and O-r and the
Example 4.5.23 serves here also.
Also, the above proposition is not true if LB is not a

finite chain but F is 0-p and O-r and the Example 4.5.24.
serves here also.
Proposition 5.11: For any 0-p and 1-p ivf-map

F:A— B and for any family of ivf-subsets (C;);_; of
C)=n
C, is 1”7(L;) -regular for each jeJ and *=1i or d
o p.

Proof: Let C=n,,C,
I"(Le)=A, 17 (Le ) and Cc=

J
ceC.

Let D=F'C. Then D= f'C, I'(Ly) =
1"(L,)™ 1" (L) and Dd = Ad AvI™(L,)*Cfd for
all deD.

Let E; = F_le . Then E; = _1C

B, we hae F.'(N F 1Cj whenever

jed jed

Then C=n,,C, ,

je3 /\JEJCJ-C for all

I"(Le. )=
(L) (L) and Eie = Aenvl (Lf)‘lefe

forall € € E-.
Let E =N, E; .Then E=n;E;, I7(Ly) =
Niey | (L ) and Ee= A Eje forall ec E.

We show that D=E or (8 D=E (b) 1 (L,) =
1"(L.) and(c) D=E.
@: D= f'c=f*'(n
=E.
(b): First, by 4.2.5, since F is0-p, I (L) and L, are 0-

—1
jeJC ) mJeJ C mje‘] E

pandsince F is1-p, 1" (L) and L, are1-p.
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Next, C; s I"(L,) -regular  implies
|*(Lcj)g I"(L)I"(Ly) = 1°(L;L,) which by
4.1.11 implies Lcj cL,L, forall jeJ.

By 4116, | (L) = Ay, (L) =17 (r o L)
and 17 (Lg) =n ., I*(LEJ_)= (Ao LEj).

By 428, I'(Ly) = 1" (L) "1 (L) = 1" (L{'Lc)
and I*(LEJ_) = I*(Lf)’ll*(LCj) = I*(L}lLCJ_) for all
jeld.

By 4.1.12, the above imply L, = A

LCJ_, L. =

Ajes LEj . Ly = Li'L and LEJ_ = L’flLCj for all
jed.

But then, since L; is 0-p and 1-p and LCJ_ cLL, for
all jeJ,asin (2) of f-set theory setup 4.5.25, we get that
L, = Lg andhence 17(Ly) = 17(Lg).
©: Let xeD=f"C= f"l(ijJCj) be fixed. Then
Dx = AX A vI'(L,)™" Cfx=
AX A vITL) A, CifX) =
AXA AV IT(L)TCfx, where the last equality is
due to 3.3.16, since
(i) 17(L,) is 1-p and hence it is (v/,A) complete and (ii)
T = Cifkljed} < uLl) <
1"(L, )17(L,), because each C,is I"(L, ) -regular.

On the other hand, by 3.1.1(3), Ex = A ij
= A (AXAVIT(L)'Cifx) =

Z\XAAjEJvI*(Lf)’lE,—fX, implying DX = EX
from the above.

jed

jed

The above proposition is not true if some CJ- is not

I"(L,) -regular but F is 0-p and 1-p. The Example
4.5.26 serves here also.
Proposition 5.12: For any pair of ivf-maps F:A— B

and G:B—C and for any ivf-subset E of A, the
following are true:

@ (G.F)E = G.(RE)

(b) (G,F.)E = G,(F.E), whenever L. is a complete
infinite meet distributive lattice

© (G,F,)E = G,(F,E), whenever L. is a complete
infinite meet distributive lattice.
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Proof: Let (GF)E = H . Then H =gfE
'*(LH)=('*(Lg'-f)'*(LE)).*(LC> and

Hh = ChAavI*(L)I" (L, )E((gf) *hnE) for all
heH.

let FE = 1 . Then | = fE , I°(L) =
(I*(Lf)l*(LE))I*(LB) and Ii =
BiAvI“(L,)E(f inE) forall i€l .

Let. GI = K . Then K = gl , 17(L) =
(I*(Lg)l*(L,))l*(Lc) and Kk =

Ck AVIT(L)T(g k1) forall keK.

(a): We show that H=K or (1) H=K (2) 1'(L,)=
1"(L,) and 3) H=K.

(@: H=gfE=g(fE)=gl = K.

(b): By 427, I°(L,) = (I*(Lf)l*(LE))I*(LB) =
"((LiLe) ) andby 4112, L= (L, L), -

Now by 3.2.3(3), L =[0,] for some a€l, . By
343, L= (LiLe), = (L;[0,a]) =[0.L;a].
Again by 427, 17(L,) = ('*(Lg)'*(L')).*(LC)
"((LgLy)y, ) andby 4112, L= (L L), -

Now by 3.4.32), Ly = (L, L,)LC = (L,[0, Lfoc])LC =
[O,L,Lea].

On the other hand, by 427, 17(L,)
(ML D), = V(L)) and
by 4.1.12,

Ly = (Lol (L)), -
Again by  3.4.3(2),

L = (Ll =
(L,L[0.aD,_ = [0.L,La].

Clearly, L, =L,, andhence 1 (L,)=1"(L,).

(c): Let yel = fE be fixed. Since F is increasing and
Ec A, we get that Bf >17(L,)A>1"(L,)E, and
hence for any xe f'ymE, fx=y, X€E and
I"(L,)Ex < 1"(L,)Ax<Bfx =By, implying that
vIT(L)E(fyNE) < By o
1y =By avI'(L)E(f 'y nE) =
v IT(L)E(fynE), forall yel.
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Let zeH = ofE be  fixed. Then
Hz=CzAvI"(L)I"(L,)E((gf) "z E) and
Kz = CzavI'(L)I(g "z 1)

Cz AV I*(Lg )y

Since (i) ze H implies z = gfx for some X € (=
implying En(gf)'z=¢ , fxeg™zn 1 implying
g'znl#z¢ and xeflynE implying
f 'y E #¢ where y = fx
(if) F isincreasing
(i) EC A

(iv) (gf)*znE = U fynE

yeg_lzr\fE
v) Vaeuiel A a = Vig VDcEAi o , we get that

Kz = EZ A
yeg_lzml I*(Lg)(VXEf_lymE I*(Lf)EX) = CZ N
vyeg‘lzml VXEf_lymE I*(Lg)l*(Lf)EX

= Cz Av 4 TNV (L)EX

Xeu fy
yeg 7lzr\ fE

1" (L)1 (L, )Ex

Cz AV

xe((gf) L znE)
= Cz AvIT(L)I"(L)E((of)'znE) = Hz.
(b): Let H,I,K be as in (a) above. We show that K
Ho@K=H @2 I'(L) = 1"(L,) and

(©) K =H . Now (1) and (2) follow as in (a).

(3): Let zeH=gfE be fixed. Then Hz
CzAvI(L)I"(L)E((of ) *ZNE) and

Kz = CzavI™(L)I(gz1)

Cz AV (L)Y

Since G is decreasing, Eg < I*(Lg)g. So, for
each yeg'znl,gy=z, yel and

Cz = Egy < (L )By , implying Cz
Al'(L,)By = Cz.
Let c=Cz a,=1"(L,)By . b, =

I*(Lg)l*(Lf)EX and Y = g7z 1. Then

xef LynE
CAd, =C for yegz where c=Cz.

Again since (i) ze H implies z = gfx for some
XeE , implying En(gf)'z#¢, fxeglznl
implying g7znl#¢ and xe f'yNE implying

f'yNE #¢ where y = fx

© 2010, IJARCS All Rights Reserved

(i) 17(Lg) isa complete infinite meet distributive lattice

(i) (gf)'znE = U flynE

yeg_lszE
(IV) vaeuielAi a = Viel VaeAia
from the above we get that Kz = Cz A
I (L,)(BY A Vetdyne I (L,)EXx)

= Cz A v (1"(L,)By

\%

yeg_lzml f

>

yeg’lznl
(L) o, 1 (LOEX)

- Cz A (I'(L,)By

>

V
yeg_lzml

Vv

1"(L)1 (L, )EX)

XGf_lymE

= CAv,y(a,ab) = v, (cra Ab) =

b

yey Zy

Czav v 1"(L,)1 7 (L, )Ex

yeg_lzml XEf_lyﬁE

yeY
Vi (€AD)) =CAv

CzAv
X

o f,lyﬁEl*(Lg)l*(Lf)Ex =
yeg “znl

E|’*(Lg)|*(|_f)Ex

Czav »
xe(of ) "zm

= CzavI'(L)I"(L)E((gf)'znE) = Hz ,

implying Kz = Hz.
(c): The proof follows from that (a) and (b).
Proposition 5.13:  For any pair of ivf-maps

F:A— B and G:B—C and for any ivf-subset E of
C, the following are true:

@ (G,F.)"E2 F'G,'E, whenever E is 1"(L,)-
regular.
® (GF)'Ec FG.'E), whenever G'E is
I"(L, ) -regular and 1"(L,) is0-p.
© (G,F,)'E = F,*(G,'E), whenever E is I"(L,)
-regular and G™*E is 1" (L, ) -regular and 17(L,) is 0-
p.

Proof: Let (G,F.)"E = H. Then H = (gf)™E
= f7g7'E, I'(L,)= I*(LgLf)‘ll*(LE) and
Hh = AhAv(I7 (L)1 (L)) E(gf)h for al
heH.
Let G'E = | . Then | = g'E, I'(L) =
1"(Ly) 17 (Le) and 1i = BiavI™(L,) Egi for all
iel
Llet F7'1 = K. Then K = 71, I"(L) =
(L)L) and Kk = Ak avI®(L,) ™ Tfk for
all ke K we show that HoK or (1) HoK (2
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I"(Ly) is a complete ideal of 1°(L,) and (3)

HIK>K.

@: K= f1=f'g'E=H.

(b): By4.28, 1"(L.) = 1'(L,)7I7(L,) = I'(L'L,)
1"(L) = 17(L) 7 17(L) = 17(L'Ly) and

1"(Ly) = (L L) ™M (L) = V(L) Le).

By 4.1.12, the above implies, L, = Li'L,, L, = L;lLE

and L, = (L,L,)"'Le.

Now clearly from the above L, = (L, L) Le

LiLLe = L'l = L and  hence 17(Ly,)

1" (L)

(©): Let ze f 'g'E be fixed. Then fzeg™E =1,

ofzeE,

Hz = Az Av(I7(L)IT(L, ) "Egfz

AZAVIT(L) (L) "Egfz and Kz

AzZAVIT(L) Iz =

AzZAVIT(L )M (BfzavIT(L,) " Egiz).

Firstly, E is I*(Lg) -regular implies 17 (L) <
V(LI (L) . Edfael’ (L) < 1'(L)1 (L)
implies Egfa e 1”(L,)1"(Lg)-

So, by 3.3.11(3), 1”(L,)(v1"(L,) *Egfa) = Egfa.
Since G is decreasing and E c C
Egfa<Cgfa<I7(L,)Bfa,

1"(L) fa = 17(L,)Bfanl™(L)(vI"(L,)"Egfa)
= I'(L,)BfanEgfa = Egfa , implying
Ifael”(L,) Egfa which implies
1"(L) "Tfac I"(L,) " 1"(L,) "Egfa  which in
turn implies_ B

vIT(L) T fasvI®(L) (L) *Egfa or
Ka = I\a/\vl*(Lf)’ll_fa <
AaAvI'(L) (L) "Egfa = Ha.

(b): Let H, | and K be as in (a) above. Then it is
enough to show, when F is increasing and 0-p and when

G'E is L; -regular, that H < Kor (1)) HcK (2
I"(L,,) isacomplete ideal of 1" (L) and

© H < K|H.
(@): H = K asin (a) above.
(): 17(L,,) = 1"(Ly) again as in (a) above.
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(©):Let ac H =K = f 'g™E be fixed. Then gfacE,
facg™E = 1,

Ha = AaavI'(L,)'I'(L,)'Egfa  and
Ka = AaavI‘(L,)'lfa =

AaavI'(L,) (BfaavI™(L,) *Egfa).

gfacE implies Egfa ¢ EE < 17(L.) which
implies 17(L,)"Egfa < 17(Ly) 17 (Le) = 1°(L,)
c I'(L)I7(L,),since GE = 1 is |1 (L,) -regular.
since 1"(L;) is 0p and D = 1'(L,)"Egfa <
I"(L,)17(L,), by3.3.9,

(L) ('Lt (L)t Edfa) =
v I*(Lg)‘lggfa and
1"(L,)Ha = 1(L,)Aa A

(L) (L )17 (L,) " Egfa)

= I'(L)Aa A vI'(L,)'Egfa < Bfa &
vIT(L)™ nga = Ifa, where the last inequality is
due to the fact that F is increasing and hence 1™(L,)A
< Bf.

Again gfacE implies faeg™E =1 which
implies 1faell < 17(L,) < 1"(L,)I"(L,), since
G™E = I is I"(L,) -regular.

since Ifael™(L,)I"(L,) and 17(L,)Ha <
I fa, as above by 3.3.2, we get that
vIT(L)T(L)Ha < vIT(L,) I fa.
Hael"(L,)1"(L,)Ha  implies
Ha<vI'(L)M(L)Ha < vI'(L) I fa .

Sincealways Ha < Aa, it follows that Ha < Ka.
(c): Clearly, the proof follows from (a) and (b).

A strict containment in (a) is possible and the Example
4.5.29 serves here also.

The condition that G™*E is I (L, ) -regular is not
superfluous in (b) and the Example 4.5.30 serves here also.
The condition that E is I*(Lg) -regular is not

superfluous in (c) and the Example 4.5.31 also serves here
also.

But then

F.  More on M-Interval Valued Fuzzy Images and L-
Interval Valued Fuzzy Inverse Images:

In this section some more standard properties of the M
-ivf-images of L -ivf-subsets under an ivf-map and the L-
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ivf-inverse images of M -ivf-subsets under an ivf-map are
studied in detail.

Lemma 6.1 Forany0-p ivi-map F : A— B and for any
I"(L,) -regular ivf-subset H of B , always
F'HoF*(HNFA) . However, equality holds
whenever
@  F is increasing, 1 (L,) is 1-p and 1"(Lg) is

complete infinite meet distributive lattice

(OR)
(b) F is decreasing and 1" (L) is complete infinite meet
distributive lattice.

Proof: (A) Since H is 17(L,;) -regular and

HAFAcCH , by 553, F' is monotonic and so,
F'(HNFA) < F'(H).

B) Let F*H=C.Then C = f'H, I'(L.) =
1"(L)*17(L,,) and Ca = AaAvI™(L,)™H fa for

all aeC.
let FA = D . Then D=fA , I'(L,) =
(L)L) - and Db =

1" (Lg)
BbAvI“(L)A(f b A) forall beD.

Let HAD = E. Then E = HAD, I'(Ly)
1"(L, )~ 17(Ly) and Eb = Hb A Db forall be E.
let F'E=G . Then G = f'E, I'(L) =
1"(L,)™17°(L;) and Ga = AaavI™(L,) Efa for
all aeG.

We show that C = G o (1) C=G (
1"(Le) = 1"(Lg) 3) C =G when

() F isincreasing, 1 (L) is 1-p and 1 "(Lg) is complete
distributive lattice

infinite meet
(OR)

(b) F is decreasing and I*(LB) is complete infinite meet
distributive lattice.

@ C=f"™H=f*HNfA) = f'(HAD) =
f'E=G.

(b): First, () H is 17(L,) -regular implies
(L) S (L)1 (L) = (L L),

where the last equality is due to 4.2.7. By 4.1.11, the
preceding statement implies L, < L,L, and

(i) F is 0-p implies by definition, 1 (L) is 0-p which
by 4.2.5, implies that L is 0-p.

Next, by 428 and 4112, | (L) =
(L) (L) = 17 (L'L,) and so L = Li'L,, and
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I"(Lg) =17 (L) (L) =1"(L'L) and so
L = L.

By 4.2.7 and 4.1.12,
(o) = (ML (L), =17 (L L),,) and
so L, =(L LA)LB and by 4116 and 4.1.12
(L) =17 (L) AT (L) =1 (Ly ALy) and so
L =L, ALy,

Now as in 5.6.1(B)(2) above, the above implies that L; =
L. andhence I (Lg)=17(L.).

©): Let acG = f'E = C=f"'H be fixed. Then
faeHNE.

(@): Let F bedecreasing.Then Bf < 17(L,)A.

Further, for all ce f *fan A, 1"(L,)Ac > Bfc =
Bfa or vIT(L)A(f fan A) >
AL )A(f“fanA) > Bfa, implying Dfa =
Bfa A v I*(L,)A(f *fanA) = Bfa which in turn
implies B B

Ga = A A VvI(L,)'Efa = Aa A
vI'(L,) (HfarnDfa) = Aa A
v I"(L,)*(H fanBfa)

= A A vl*(Lf)’lﬁfa = Ca, because E =
HADand H<B.

(b): Let F beincreasing.Then Bf > 17(L,)A.

Forall ce f*famA, 1"(L,)Ac < Bfc = Bfa or
vI*(L)A(f “fanA) < Bfa implying
Dfa =  BfaavI’(L,)A(f tfanA)
vIT(L)A(f *fan A).

Therefore Efa = HfaaDfa

HfaavI™(L)A(f tfan A).

Next, since (i) H is I*(Lf) -regular and hence
Hfael (L) < 1'(L)I" (L)

(i) VvIT(L)A(F*fanA)e I (L)IT(L,)  as
f*fam A= ¢ and (iii) 1 (L,) is 1-p, by 3.3.15,
vIT(L) T (HfaavI™(L)A(f Hfan A)) =
vI'(L,) Hfa A
v IT(L) (I (L )A(f tfan A)) Further, since
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vIT(L)A(f fanA) e I'(L,)L, as
f*fam A= ¢ and

VIT(LO)A(ffanA) > I17(L,)Aa, by 332
vIT(L)™ (VIT(L)A (fifanA))

> vIT(L,) 7 (1°(L,)Aa) > Aa, where the last
irfquality is due_ to the fact that
Aael”(L,)™"(1"(L,)Aa) Consequent from the above,
Ga = AaavI®(L,)‘Efa =
AaAvI'(L)H(HfaavIT(L)A (ffanA)

= A A (vI"(L)*Hfa A
v IT(L) T (VIT(L)A(f ™ fan A)))

=(Aa A VINL) V(LA HfanA) A
vI'(L,) H fa

=Aa A vI'(L,)'Hfa = Ca.

The above Proposition is not true if F is decreasing,
I"(Ly) is a complete infinite meet distributive lattice but

H is not 17(L, ) -regular and the Example 4.6.2 serves

here also.
The above Proposition is not true if F is increasing,

1"(L;) is 1-p and 17(L,) is a complete infinite meet

distributive lattice but H is not 1" (L, ) -regular and the

Example 4.6.3 serves here also.

Lemma 6.2: For any O-p ivf-map F: A = B and for any
I*(Ly)-regular ivf-subset Y of B, we have F~'F, F~'Y =
F7lY,whenever * =i or d or p.

Proof: Let F%Y =C. Then C = £, I'(L.) =
I"(L) (L) and Ca = AaavI®(L,)Y fa for
all aeC.

Let FC = D. Then D = fC, 1'(Lpy)

(NI (5S) B and Db =

BoAvI“(L)C(f hNC) forall beD.
let F'D = E. Then E = f7'D, I'(L)
I"(L)*17(L,) and Ea= AaavI'(L,)'Dfa for
all aeE.

We show that E = C or 1) E=C (2) 17(L;) =
1"(L.) and(3) E = C.
@@: E=f'D= f'fC=f'ff'B= f'B=C,
since f*ff'B = f'B.
(b): First, since F is 0-p, by definition, 17 (L) is 0-p and

by 4.2.5, L; is 0-p.
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Next, since Y is 17(L,) -regular by 427, 1°(L,) <
"(L)I"(L,) = 1'(L,L,) andby4.1.11, L, c L,L,.
By4.28, 1" (L:) = 1"(L,)*I7(L,) = I"(LL,) and
1"(Le) = 17(L) ™1 (L) = ' (L'Ly)

and by 4.1.12, the previous statements imply L. = L’flLY
and Lg = Li'L,.

Now by 427, 1°(Ly) = (I*(Lf)l*(LC))I*(LB) =
(L, L)y, ) andby4.112, Ly = (LiLc),, -

Now as in (2): of 564, L.=L. and hence
(L) = I'(Le).

(3): Let acE = f'D =C = f 'Y be fixed. Then
faeYND.

for
E.

(a): Let F be increasing. Since
an CcA

Therefore it is enough to show that E< 6
But since Ea = AaavI'(L,)'Dfa and Ca =

AaAvI®(L) ™Y fa , it is enough to show that
vI'(L)'Dfa < vI'(L,)Y fa.
Let ce f *fanC.Then ceC and fc = fa. Further,

CcF'FC _ g
<

when * = 1 or p,wehave E

since Y is  1°(L,) -regular, Yfc =
Yfael (L)< I"(L,)1"(L,) and hence by 3.3.11(3),
(L) (vI'(L,)™ Yfe) = Yfc=Yfa.

Now 1°(L,)Cc = I"(L,)(AcAvI™(L)Yfe) =
I"(LO)AC A (L)L) fo)

=1"(L))Ac A Yfc < Yfc = Yfa, implying
vI'(L)C(f tfanC) < Yfa.

Therefore Dfa = BfaavI’(L,)C(f ‘fanC) <

BfanYfa =Y fa, because Y cB.
Now, again Y is 1°(L,) -regular and hence

Yfael (L,)I"(L,) and Dfa<Y fa imply, by 3.3.2,
vI'(L) ™ Dfa <vI7(L,)™Y fa, asrequired.

(b): Let F be decreasing. Then Bf < I*(Lf)K.Since
Y<B, Yf<Bf <I'(L,)A. Therefore for any
ceC,I1"(L,)Cc=

(L O)ACA (L)L) fe)
=1"(L,)AcAY fc =Y fc =Y fa, because
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(i)Y is 17(L,) -regular and hence Yfce 1"(L,) <
I"(L )1 (L,) and (ii) by3.3.11(3),
(LI (L)Y fe) = Y fe.

In particular, v (L, )E( f'fanC) =
VCef’lfamC | (Lf)CC - VCef’lfamC Y fa = Yfa !
implying

Dfa=Bfa A vI'(L,)C(ffanC) = Bfa A
Yfa = Yfa, because Y = B and hence Y <B]Y .
Now clearly, Ea = Ka/\vl*(Lf)‘lea =
AaAvI®(L,) Y fa = Ca.

The above Proposition is not true if Y isnot 17(L,)-

regular and the Example 4.6.5 serves here too.
Definition 6.3: For any F : A— B and for any ivf-

subset C of A, C is said to be 1 (L, ) -coregular iff
BfC < 1" (L)1 (L,).
Proposition 6.4: For any 0-p ivf-map F : A— B and

for any 17(L,) -coregular ivf-subset C of A, we have

,1 .
FETRC — EC oids whenever * = 1 or  or P
Proof: Let FC=D . Then D= fC, 1'(L,)

(1" (L)1 (L), and

1 (Lg)
Db =BbavI'(L,) C(f*hNC)forall beD.
let F!D = E. Then E = 7D, I'(L.)
1"(L,)™ 17 (Ly) and Ea = AaavI™(L,) ™ Dfa for
all aeE.

let FE =G . Then G = fE , I'(L) =

(I*(Lf)l*(LE))I*(L | and Gb=Bb A vI'(L,)E
B

(f '0NE) forall beG.

we show that D = G or (1) D=G (2
1"(Ly) = 1"(Lg) and (3) D=G.
@@:G = fE= ff'D = ff 'fC = fC = D.
(b): First, since F is 0-p, by definition, 17(L,) is 0-p and
by 4.2.5, L, is0-p.

By 427, 1'(Ly) = (ML) (). . =

1" (Lg)

F(Lkedig) and 17(Le)= (ML) 1 (Led) e

= 1"((LyLe), ) and by 4112, Ly = (L, L), and L =
(Lf LE)LB'
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By 428, 1'(L.)=1"(L)™ 1" (Ly)=17(L'Ly)
andby 4.1.12, L, = L{'L.

Now as in (2): of 56.7, Ly =L, and hence
"(Ls) = 1"(Lp).
(c): Let beG (= fE = fC = D) be fixed. Then
f'oNC=¢pand f'DNE=g.
(@) Let F be decreasing. Then Bf < |*(|_f)ﬂ. Since

DcB, D<B|D and hence Df <Bf <17(L,)A
Since(i)
(LG BAC) 2 (L )EC £ (L) (L) < (L)L)

(i) Bbe BfC < 1"(L,)1"(L,) because Cis I"(L,) -
coregular and (iii) 17(L,)17(L,) isa complete

sublattice, we get that Db = Bb A vI7(L,)
C(f™NC) e I"(L)I"(L,). So, by 33.11(3),
1" (L, )(v17(L,)*Db) = Db.

Now forall ee f "D E, fe =D and from the above,
I"(L)Ee = 17°(L,) (AeavI’(L,)"'Dfe) =
I"(L)Ae A I°(L,)  (vI'(L,)'Dfe) =
I"(L,)Ae A Dfe = Dfe = Db, where the last but one

equality follows from F being decreasing.

Therefore, vI'(L)E(f'bNE) =
Y eetlonE I (L,)Ee - Y eetlonE Dfe -
. Db = Db.
eef bnE
On the other hand, Gb = Bb A

v I"(L)E(f " NE)= BboADb= Db since Dc B

andhence D<B|D.
(b): Let F be increasing. Then For any increasing ivf-
map,by6.5.4, C c F,'F.C for all C = A. So, by 6.5.2,
monotonicity of F, implies D = F.C c F.F,'F.C =
G . Hence it is enough to show that G<D.
For all ecfnE , fe=b ,
fee fC(=D=G=fE) and as in (a) above,
Dfee l"(L)I"(L,) and 1"(L,)(vI"(L,) ™ Dfe) =
Dfe=Db.

Now Ee<vI'(L,)'Dfe for all ee f'hnE ,
implying 17(L,)Ee < 17(L,)(v1"(L,) ™ Dfe) = Dfe

=Dband Gbh=Bb A vI(L)E(fbNE) <
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VIT(LOE (FbnE)=v ., I"(L,)Ee < Db

1o
or G<D.
The above proposition is not true if C isnot 17(L,) -

coregular but F is 0-p and the Example 4.6.8 serves here
also.

Proposition 6.5: Forany increasing f-map F: A— B
and for any pair of f-subsets C of A and D of B,

FC < D implies C = F'D whenever D is 17(L,) -
regular.
Proof: Let FC = E .Then E = fC, I'(L;) =

(1L (L)) - and Eb =

1" (Lg)
BoAvI“(L)C(fbNC) forall beE.
Let F'D = G . Then G = f7'D, I'(L,) =
1"(L,)™1"(L,) and Ga = AavI (L) Dfa for
all aeG.

Since Ec D, Ec D, 1"(Lg) isacomplete ideal of

1"(L,) and E<D|E.

We show that Cc G or (1) C<= G (2) 1'(L.) isa
complete ideal of 17°(Lg) and(3) C<G|C .

(a):Since fCcDifCcf'D,Ccf™D=G.

(b): Since 17(Lg) is a complete ideal of 17(Ly) and
L) SOV, =1 (k) S
1"(Lp) . we get that 1"(Lo) < 17 (L)7" (L) =
1" (Lg)-

Since 17(Lg) and 17(L.) are complete ideals of
I"(L,) , it follows from 17(L.) < 17(Lg) that
I"(L.) isacompleteideal of 1”(Lg).

(c): Let aeC be fixed. Then fae fC=E. Ga =
Ka/\vl*(Lf)’lﬁfa . Since Aa>Ca to show

C<G|C , it is enough to show that
vI(L,)"'Dfa>Ca.

Since (i) aef'fanC
I"(L)Ca<vI'(L)C(f*fanC)  and (i
ES5|E , we get that
Bfanl"(L,)Ca<Bfaavl (L, )C(f*fanC) =
Efa < Dfa.

Since CcA and F is
1"(L,)Ca<17(L,)Aa<Bfa which implies 1"(L,)
Ca=Bfan 1"(L, YCa < Dfa, from the above.

increasing,
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since (i) Dfael™(Ly) < I"(L)1"(L,) asDis
I"(L,) -regular(ii) I (L, )Ca < Dfa,by33.2,
Ca < vI'(L)™M"(L)Ca < vI'(L,) Dfa as

required.
The above Proposition is not true if D isnot 17(L,)-

regular but F is increasing and the Example 4.6.10 serves
here also.

The above Proposition is not true if F is decreasing but
D is 17(L,) -regular and the Example 4.6.11 serves here

also.
Proposition 6.6: For any ivf-map F : A— B and for
any pair of ivf-subsets C of A and D of B,

C c F'D implies FC = D, whenever F is0-por D
is 17(L,) -regular.

Proof: Let FC = E. Then E= fC, I'(L.) =
(1 (L) (LC))I*(LB) and

Eb = BoavI'(L,)C(f 'bNC) forall beE.
Let F'D =G . Then G = f'D, I'(L) =
I"(L,) 17 (Lp) and
Ga :Ka/\\/l*(Lf)_lﬁfa forall aeG.

Since CcG , we hae CcG , I'(L.) is a
complete ideal of 17(L) and C<G]|C.

We show that Ec D or (1) Ec D (2) I'(L;) is a
complete ideal of 1°(L,) and(3) E<D|E.
(@: CcG = f'D implies fC < D which implies
EcD.
(): since 1'(L)c17(L) = '(L)™ 17(Lp) |
I"(L )1 (Le) < 17 (L) and 17(Ly) is a complete
ideal of 1"(Lg) implies I"(Ly) =
(I*(Lf)l*(LC))I*(LB) < I'(Ly). Since 1"(L.) and
I"(L,) are complete ideals of I°(Lg) such that
I"(Lg) < 17 (Ly) , we get that 17(L.) is a complete
ideal of 17(L).

(c): Let be E = fC be fixed. For any ae f 'bnC,
aeCand b=faefC=D.

Since (i) F and hence 17(L;) is O-p, by 3.3.11(4),
(L )(vI7(L,)*Dfa) < Dfaor
(i) D is 17(L,)-regular, so 1"(Ly) < 1" (L,)I"(L,)
and hence Dfael™(Ly)c I"(L,)I"(L,) . by
3.3.11(3), 1"(L,)(vI"(L,)*Dfa) = Dfa.
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But as CcG , C<G|C and this implies
1"(L,)C < 1"(L,)G and hence from the above,

1"(L,)Ca < I"(L,)Ga =
1"(L,)(AaAvI™(L,)"Dfa)

= (L) AaA " (L )(vI*(L,) " Dfa) <
I"(L,)AaADfa < Dfa=Db forall ae f b C,

implying  1°(L,)C(f "b~C) < Db and Eb =

IN

BbAVvI“(L)C(f bC)
v I™(L)C(f 'b~c) < Db, implying E<D or
FC = E < D.

The above Proposition is not true if both F is not 0-p
and D is not 17(L,) -regular and the Example 4.6.13
serves here also.

Lemma 6.7: For any ivf-map F : X —Y and for any
ivf-subset A of X, A = @ iff FA = ©.

Proof: (=): A = @ implies A=¢, 1 (L,)=¢
and A=¢ . FA = C implies C=fA=fgp=¢ ,

(o) T aTorw )., =g and

17 (L)
CcCxI17(L.) = @,implying FA=C=0.
(&) FA=C=® implies, C = fA = ¢ which implies

A=¢ ,  since fA=¢g iff A=¢
I*(Lf)l*(LA) = *(Lf)l*(LA))I*(LB) = I*(I—c) =¢
,  implying 1"(L,)17(Ly) =¢ Which  implies

1I"(L,) =¢ and Ac AxL, = ¢x¢ implies A= or
A=D.

Corollary 6.8: For any 1-p ivf-map F: X —Y and
for any nonempty family (A ), of ivf-subsets of X ,
M. FA = @ implies Ny, A = D.

Proof: It follows from the above Lemma and 6.4.9.
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