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Abstract: F-Set Theory is a natural generalization of Goguen's L-Fuzzy Set Theory which itself is a generalization of Zadeh's, both Fuzzy and
Interval Valued Fuzzy Set Theories. It naturally and neatly extends several of the crisp (Sub)Set-Map-Properties to: L-valued f-(sub) sets, f-maps
between L-valued f-sets and M-valued f-sets, where the complete lattice L-may possibly different from the complete lattice M, M-valued f-
image of an L-valued f-subset of the domain L-valued f-set and L-valued f-inverse image of an M-valued f-subset of the co-domain M-valued f-
set. However, for several of the results in this theory, the complete homomorphisms are assumed to be one or a combination of: 0-preserving, 0-
reflecting, 1-preserving and 1-reflecting. Further, some of the results use the infinite meet distributivity of the underlying complete lattice of the
domain and/or range f-set.

Now the aim of this paper is: 1. to separate this (these) hypothesis (hypotheses) of preserving/reflecting from the results in F-Set Theory and
restate and prove the corresponding results and 2. to remove the hypothesis of infinite meet distributivity of the underlying complete lattice for

truth values via altogether new proofs and 3. to add several new results that are needed/developed in this process.
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L. INTRODUCTION

Zadeh introduced the notion of fuzzy subset of a set in
his pioneering paper Zadeh[9] liberating mathematical logic
completely from the clasps of Boolean Values taking the
domain/range of applications of Mathematics to altogether
new fields that were unimagined even at the times of its
inception.

According to Zadeh[9], a fuzzy subset of a set X 1is any
function f from the set X itself to the closed interval

[0,1] of real numbers. An element X belonging to the set

X | belongs to the fuzzy subset f with the degree of

membership fX, a real number between 0 and 1 .

Goguen[1] generalized the Zadeh’ Fuzzy Set Theory to
even a higher level, introducing the notion of an L-fuzzy sub
set of a set, which takes its truth values in an arbitrary but
fixed complete lattice L.

According to Goguen[1], an L-fuzzy subset of a set X
is any function f from the set X itself to an arbitrary but

fixed complete lattice L. An element X belonging to the set
X, belongs to the fuzzy subset f with the degree of
membership fX, a lattice elemen L.

However, still the following are some lacunae that one
can easily observe with any of the above notions:

a. There is no such notion as fuzzy set (of course some
mathematicians observed that one can define the
notion of a fuzzy set to be the constant map assuming
the value 1, but it was not exploited further.)

b. It is predominant in Mathematics that, for a pair of

objects to be considered one as a sub object of the
other, they both must be of the same type, namely,
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both objects are sets, both objects are pairs, both
objects are triplets etc. and this type compatibility
between set and its fuzzy subset is absent in the sense
that fuzzy subset is a map while the set is not. (Of
course, one can make here two arguments namely, a
map is a particular type of relation which is a subset
and hence a set, and thus a fuzzy subset is also a set
and secondly one can identify a set with the map that
takes the constant value 1;but both of them are not
completely natural.)

There is no such notion as fuzzy map between fuzzy
sets with truth values in different lattices

It is not possible to accommodate the notions of fuzzy
weak-relative-sub algebra and fuzzy strong-relative-
subalgebra in the conventional way

The Axiom of Choice is not extendable to fuzzy
subsets without its dependence on the nature of the
complete lattice where the fuzzy subset takes its truth
values in. (Observe that the Axiom of Choice fails with
the existing definitions of L -fuzzy set and L -fuzzy

product as: For any pair of fuzzy sets AB: X—>L,
the fuzzy product Ax B is defined to be the fuzzy set
(AxB)(X) = AXABX forall X€ X . Letting L to
be the four element diamond looking lattice with two

incomparable elements @ and £ and letting A and
B to be the constant fuzzy sets with values o and f

respectively, the fuzzy product Ax B turns out to be
the empty fuzzy subset given by the constant map

assuming the value O of L while the fuzzy subsets A

and B are non-empty.
There is no transparent forgetful functor from the
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category of fuzzy topological spaces to the category of
topological spaces which forgets the fuzzy structure.

g. There is no transparent forgetful functor from the
category of fuzzy rings to the category of rings which
forgets the fuzzy structure.

h. Last but not least, in some L -fuzzy subsets of a set,

one must assign the value O for some elements of the
set when actually the membership value for them is
either not available or not relevant because for a fuzzy
subset of a set every member of the set must be
assigned a membership value.

Keeping these things in mind, Murthy[2] modified the
definition of an L -fuzzy subset of a set to that of an f-set,
addressing the first, second, fifth and the eighth issues
above, in such a way that each f-set carries along

a) its underlying set

b) its complete lattice where the fuzzy set takes its
truth values for members of its underlying set

¢) its fuzzy map that specifies membership values for
all elements in its underlying set and this
modification resolves the above mentioned issues.

Thus an f-set is a triplet A = (A, A LA) where
(a). A isa set, called the underlying (crisp) set of A
(b). LA is a complete lattice, called the underlying
complete lattice for truth values of elements of A

(c). A: A—L, is a map, called the underlying fuzzy map

that assigns a truth value for each element of A.

In the same paper Murthy[2] also introduced the notion
of an f-map between f-sets whose underlying complete
lattices for truth values are possibly, completely different,
addressing the third issue above, along with other notions
like f-image of an f-subset under an f-map and f-inverse
image of an f-subset under an f-map and studied the
standard (lattice) algebraic properties of, all f-subsets of an
f-set, all f-images of f-subsets of an f-set under an f-map and
of all f-inverse images of f-subsets of an f-set under an f-
map.

For a settlement of other issues and for elementary
studies of algebraic and topological (sub) structures on f-
sets, one can refer to Murthy[4,5,6] and Murthy and
Yogeswara[3].

For several of the results in Murthy[2], the complete
homomorphisms are assumed to be one or a combination of:
O-preserving, O-reflecting, 1-preserving and 1-reflecting
(C£3.3.6 and 3.3.18). Also, some of the results use the
infinite meet distributivity of the underlying complete lattice
of the domain and/or range f-set.

This (These) hypothesis (hypotheses) of preserving /
reflecting are separated from the results of Murthy[2] and
the corresponding results are restated and proved in this
paper. Further, in the proofs of some of the results in
Murthy[2], the use of infinite meet distributivity of the
underlying complete lattice for truth values is made and this
is avoided via altogether new proofs in this paper.

This paper is a part of the Ph.D. Thesis for which the
second author was awarded her doctoral degree in the month
of August, 2012.

In Section-1, Introduction, the goal of this paper together
with its lay out is described section wise.

In Section-2, Preliminaries, we recall some basic
definitions and some algebraic properties in the theory
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Lattices Theory like poset, least and greatest elements of a
poset, (least) upper bound, (greatest) lower bound, complete
lattice, complete ideal, complete homomorphisms etc., were
recalled along with some of their properties which are used
later.

In Section-3, Lattice Theory for f-Set Theory, results
about characterisation of complete ideals; complete ideals
generated by a set and a union of sets, and relations between
these complete ideals; lattice algebraic properties of
complete ideals; lattice algebraic properties of supremums
and infimums of images, inverse images and their
combinations; and lattice algebraic properties of images and
inverse images of ideals are recalled and several of them
will be used in the last two sections.

In Section-4, F-Set Theory, f-set, f-subsets of an f-set;
lattice algebraic properties of f-subsets of an f-set; lattice
theoretic relations between (crisp) subsets of the underlying
set of an f-set, Goguen-fuzzy and Zadeh-fuzzy subsets of
the underlying set of the f-set and the f-subsets of the f-set;
f-maps between f-sets; lattice algebraic properties of the f-
images and f-inverse images of f-subsets under f-maps; and
several other properties are restudied from Murthy[2].

1. PRELIMINARIES

Some basic notions in Lattice Theory like poset, least
and greatest elements of a poset, (least) upper bound,
(greatest) lower bound, complete lattice, complete ideal,
complete homomorphisms etc., along with some of their
properties are freely used and they can be glimpsed from
any standard text book on Lattice Theory. However, lattice
theoretic results that are used later are recalled in the next
section for a ready reference.

Here onwards, for notational convenience, for all posets
we always take < as the partial order in discussion.
However, we use a suffix of the underlying set for the <
whenever there is a possibility for confusion. Now that we
agreed to take uniformly < as the symbol for all partial
orders in a given discussion, we might as well drop it from
the pair (P, <) and simply write only P for a poset.

We adapt a similar practice even for the operations A,
Vv in additional structures on posets, like (meet/join)
(complete) (semi) lattices.

Always, the empty poset is a meet (join) semi lattice and
also a meet (join) complete semi lattice, a meet (join)
complete semi lattice is a meet (join) semi lattice and meet
(join) semi lattice is a poset.

(a) For any pair of posets P and Q and for any map

f : P — Q on the underlying sets of both P and Q, f
is an order preserving map or a monotone map or an
isotone, denoted again by f:P —>Q iff a<b in P
implies fa < fb. (b) For any pair of meet (join) complete
semi lattices L and M and forany map f:L—> M on
the underlying sets of both L and M, f is a meet (join)

complete homomorphism from L to M , denoted again by
f:L— M, iff for every non-empty subset A of L,

f(AA)=ATA (F(VA)=vVTA), where fA is the
image of A under f (c) For any pair of complete lattices
L and M and for any map f:L—>M on the
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underlying sets of both L and M, f is a complete

homomorphism from L to M, denoted again by
f:L— M, iff it is both a meet complete and a join

complete homomorphism. In other words for every non
empty subset A of L, f(AA)=AfA and

f(vA)=v fA, where fA is the image of A under f .
(d) An ordering preserving map f of posets is an order
isomorphism iff the underlying map f is a bijection. (e) A
complete homomorphism f of (Complete) (Semi) Lattices

is an isomorphism iff the underlying map f is a bijection.

I1l.  LATTICE THEORY FOR F-SET THEORY

In this section, results about characterization of complete
ideals; complete ideals generated by a set, a union of sets
and relations between these complete ideals; lattice
algebraic properties of complete ideals; lattice algebraic
properties of supremums and infimums of images, inverse
images and their combinations; and lattice algebraic
properties of images and inverse images of ideals are
recalled from Murthy[7]. For counter examples with regards
to the tightness of the hypotheses for various of these
results, one can refer to the same paper.

A. Elementary Properties Of Lattices:

The following are some of the frequently used
elementary results on complete lattices.
Theorem 1.1 In any complete lattice L, thefollowing

are true forall subsets (8;),, . (aj)jej , (bj)je.] and
(& )ijperxs of L:

a. Whenever an index set | is contained in another
index set J, we have Via & SVjEJaj and

Nie3 &) SN &

b, Vig Via@ = ViaViadij =Vijex &ij
and  Ajig Njey & Nies Niel &
A jreixa i

c. A, bra) = b A (A_3) and

Via(bva)=b v (v
d Vg @vh)=(vi,a) v (v

a,),where el

jEij) and
Nijel (aj/\bj) = (/\jeJaj) A (/\jerj)

e. vjej(aj/\bj) < (vjdaj) A (vjdbj)

and A @ vh) = (A,8) v
(/\jerj)
. b v (rn,3) € A (bva) and boA

(Vi a) > v, (baa),where bel
g (Agd) A (AjEJ bj) = N, je(1x) (& /\bj)
he (Vigd) v (Vi) = Vi @ VD)
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L Vig (/\ielaij) < Aiel (vjEJ aij)~
Theorem 1.2 In any complete lattice L, the following
are true, for any family (A,),_, of subsetsof L:

V(Ui A) = vig (VA)

b AU A) = A (AA)

c. Vi g (AA) = A(Mig A); in particular,
Nia (AA) = AN A)

d v(iuA) At (VA). However, equality

holds whenever A are complete ideals.

N

IN

B. (Complete) Sub lattices, (Complete) Ideals:

In this section several results involving the notions of
(Complete) Sub lattices, (Complete) Ideals and complete
ideal generated by a subset, are recalled. Further, the
collection of all complete ideals of a complete lattice is
shown to be a complete lattice itself.

Let us recall that a subset S of a complete lattice L isa
complete sub lattice of L iff it is closed under both meet
and join for every non empty subset of S. A subset | ofa
complete lattice L is a complete ideal of L iff it is closed
under the supremum for every non empty subset of | and
closed under all the elements of L that are smaller than
elements of | .

Let L be a complete sub lattice of M and bel.
Then the closed interval 0, D in L, denoted by [0,b], or
simply [0,0] when there is no ambiguity, is defined by
[0,b], = {aeL|a<h}.

It is easy to see that in any complete lattice L for any
bel, [0, b]L is always a complete ideal.

Later on we see that any non empty complete ideal of a
complete lattice is precisely of this form.

Lemma 2.1: In any complete lattice, 1. arbitrary
intersection of complete ideals is a complete ideal.
Consequently 2. the intersection of all complete ideals
containing a given subset is a complete ideal which is
unique and smallest with respect to the containment of the
given subset.

Definition 2.2: In any complete lattice L, for any given
subset X , the unique smallest complete ideal containing
the given sub set defined as in the above Lemma is called
the complete ideal generated by X and is denoted by

(X)), orsimply (X) when there is no ambiguity.

Theorem 2.3: In any complete lattice L the following
are true:

a. Foranysubset g # X c L,
a) (X)), =[0,vX], and v(X) =VvX
b) (X)_ = X, whenever X itself is a complete

ideal consequently (@), = ¢.

b. For any complete ideal ¢#M of L,
M =[0,vM], .

c. Non empty complete ideals are precisely of the form

[0,b] forsome belL.
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d. For any pair of non empty subsets X,Y of L, we
have v X =vY iff (X), =(),_.

e. For any family (X,),_, of sub sets of L, we have
(Ui X,)_ is the smallest complete ideal of L

iel
containing each complete ideal (X,), forall i€l .
In particular for any family (I i ) jes of complete ideals

of L, (UjEJ I j)L is the smallest complete ideal of L

containing each of the complete ideals | > jeld.

f. For any pair of non empty subsets X and Y of L
such that for each X € X there exists Y €Y such

that X<y we have v X <vY and (X) is a
complete ideal of (Y), .

g. For any pair of subsets X,Y of L suchthat X Y,
we have v X <vY and (X), isa complete ideal of
(Y.

h. For any subset (8,;);_, < L, the following are true:

iel

@ Nig [0,8;] = [0, &]
®) (U,,[0,8,]), = [0,v;,,&] whenever I is
non empty.

i. The collection of all complete ideals of the given
lattice L is itself a complete lattice with the least
element ¢ and the largest element L where, for any
famlly ([0: ai])iel
N [0,8] =M [0,8] and v [0,8]=
(Vi [0,8,],, =[0,v,,a] whenever I is non
empty ) .

Lemma 2.4: The following are true in any complete sub
lattice N :

of complete ideals of L,

(a). for any complete sub lattice M of N and for any
subset S of M, (S), =(S),. However, the
equality holds whenever M is a complete ideal in

N .

(b). for any pair of subsets L, M of N such that L isa

complete ideal of M and M is a complete ideal of
N , we have L is a complete ideal of N .
(c). for any pair of complete ideals L,M of N such that

L is contained in M , we have L is a complete ideal
of M.
The containment in (a) above can be strict in the above if

M is not a complete ideal of N .

C. Complete Homomorphisms:

In this section, the generalized Lattice Theoretic results
in Murthy[2], involving a. the inverse of a complete
homomorphism b. the partial orders of the domain and co-
domain complete lattices and c. the meet and the join of
both the domain and co-domain complete lattices, for 0-
preserving, 1-preserving, O-reflecting and 1-reflecting
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complete homomorphisms, are recalled from Murthy[7].
Definition 3.1: Let L,M be a pair of complete lattices,

Let ¥ < LxM bearelationand T beasubsetof L.

is said to be

a. (V,A) complete relation on T iff for any subset S
of T » Vv V/(ASES S) = /\SES (VWS)

b. (A,v) complete relation on T iff for any subset S
of T > AW(VSES S) = VSeS (Al/js)

c. (V,v) complete relation on T iff for any subset S
of T > V lr//(vSeS s) = VSES (Vlr//s)

d.  (A,A) complete relation on T iff for any subset S
of T, AW(AesS) = Ags (AWS)

e. Vv-increasing on T iff for any a,beT such that

as<b, vpa<vyb
f.  A-increasing on T iff for any a,b €T such that
a<b, aAya<apb

Lemma 3.2: For any complete homomorphism
n:L—> M and for any ¢c,d € M such that d e 7L
and C<d, vy'c < vp'd.

Corollary 3.3:  For any complete homomorphism
n:L—> M, nis v-increasing on 7L .

The above Lemma is not true whenever d & 7L

Lemma 3.4 For any complete homomorphism
n:L—> M andforany ¢c,d € M such that C € 7L and
c<d, anp'c < Ap'd.

Corollary 3.5: For any complete homomorphism
n:L— M, n'is A-increasingon 7L .

The above Lemma is not true whenever C ¢ 77 .

Definition 3.6: For any complete homomorphism
n:L>M, (1) 5 is 0-p iff 70 =0 or more clearly,
170, =0, orequivalently 0, € 77_10M .(2) n is 1-piff
nl=1 or more clearly, 771, =1, or equivalently

-1
l,en1,.

For any map between complete lattices 7: L — M , 7
is (1) 0-p complete homomorphism iff 7(vS) = v (1S)
for each S such that ¢ ScL (2) 1-p complete

homomorphism iff 7(AS) = A (nS) for each S such
that pc S L.

Lemma 3.7: For any O-p complete homomorphism
n:L>M and for any gcDcM, n(vn'D)

<vD.
The above Lemma is not true whenever 7 is not 0-p.

Lemma 3.8: For any 1-p complete homomorphism
7:L—>M and forany gc DM, 7(Ap'D) >

AD
The above Lemma is not true whenever 7 is not 1-p.

Lemma 3.9: For any complete homomorphism
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n:L—>M and for any gDcrnl, n(vyp'D)=
v D .However, D can equal ¢ whenever 7 is 0-p.
In the above Lemma D cannot equal ¢ whenever # is

not 0-p.
Lemma 3.10: For any complete homomorphism

n:L—>M and for any g=DcnL, n(rp'D)=
A D .However, D canequal ¢ whenever 7 is 1-p.
In the above Lemma D cannot equal ¢ whenever # is

not 1-p.
Corollary 3.11: For any complete homomorphism
n:L— M the following are true:

a. whenever 7 is 0-p, for all g DcylL,

n(vn'D)=vD
b. whenever 7 is 1l-p, for all g Dcl,
n(an~'D)=AD

c. forall BenL, (@ n(vp'B)=p and (b)
n(an”p)=p
d. Forall feM, (a) n(vy"'f)< [ whenever

7 is 0-p and (b) (AR~ )= B whenever 7 is

1-p.
Lemma 3.12: For any 0-p complete homomorphism
n:L—> M andforany g T 7L,

A (Vpar D) = Vi (~n7'b).

Corollary 3.13: For any 0-p complete homomorphism
n:L—>M,n"is (A,V)-complete on 77L .

The above Lemma is not true whenever 7 is not 0-p or
Tgnl.

Corollary 3.14: For any complete homomorphism
n:L—>M andforany ¢ 2T < M ,

-1 -1
A7 (vﬂeTﬂ) < vﬂeT (/\77 ﬂ)
However, T can equal ¢ whenever 7 is 0-p.
In the above statement T cannot equal ¢ whenever 7

is not 0-p.
Lemma 3.15: For any 1-p complete homomorphism
n:L—> M andforany g T 7L,

VI (AperD) = Ay (vi77'b).

Corollary 3.16: For any 1-p complete homomorphism
n:L—>M,n"is (v,A)-complete on 7L .

The above Lemma is not true whenever 7 is not 1-p or
TgnL.

Corollary 3.17: For any complete homomorphism
n:L—>M andforany g 2T <M,

-1 -1
) (/\beTb) = Npet (V77 b)
However, T canequal ¢ whenever 7 is 1-p.
In the above statement T cannot equal ¢ whenever 7

is not 1-p.
Definition 3.18: For any complete homomorphism
n:L—>M, nis
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a.  O-reflecting or simply O-r iff 7a =0 implies a= 0
or equivalently 7771 0 < {0} (Note that 7771 0 may be

empty).

b. 1-reflecting or simply 1-r iff 7a =1 implies a =1or
equivalently 77'1< {1} (Note that 7'l may be
empty).

Lemma 3.19: For any O-r complete homomorphism
n:L—> M andforany g T 7L,

v (Vi D)=V, (V777'D) whenever M is a finite

chain.

Corollary 3.20: For any 0-r complete homomorphism
n:L—> M, n"is (v,v)-complete on 7L, whenever

M is a finite chain.

The above Lemma is not true whenever T & 7L, but

n is O-r.

Also, the above Lemma is not true whenever

n:L—> M isnotOrbut T L.

The above Lemma is not true whenever 7: L — M is

O0-rbut M is not a finite chain.

Corollary 3.21: For any complete homomorphism
n:L>M and for any ¢<T <M such that

VT enl, Vog (VD) < v (Vs D).
A strict inequality can hold in the above Corollary.
Lemma 3.22: For any I-r complete homomorphism
n:L—> M andforany gT 1L,

AN (Ayr D)= Ay (A177'D) whenever M s a finite

chain.
Corollary 3.23: For any 1-r complete homomorphism

n:L>M, " is (A,A)-complete on 7L, whenever
M s a finite chain.
The above is not true whenever T ¢ 7L .

The above Lemma is not true whenever 7: L —> M s

not 1-r.

The above Lemma is not true whenever M is not a
finite chain.

Corollary 3.24: For any complete homomorphism
n:L>M and for any =T <M such that

-1 -1
/\TGUL’/\U (/\ﬁeTﬂ) < /\/S’ET (/\77 IB)
A strict inequality can hold in the above Corollary.

D. Complete Homomorphisms and Complete Ideals:

Complete ideals of a complete lattice play a major role
throughout the Theory of f-Sets, f-Maps, L -interval valued
f-sets and interval valued f-maps between L -interval valued
f-setsand M -interval valued f-sets.

In this section, results involving complete ideals,
complete ideals generated by subsets, complete
homomorphism, complete homomorphic images of a
complete ideal, complete homomorphic images of a
complete ideal generated by subsets, complete
homomorphic inverse images of a complete ideal and
complete homomorphic inverse images of a complete ideal
generated by subsets, are recalled and all these results are
used in the last two sections.
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Proposition 4.1: Let 7:L—> M be a complete
homomorphism. Then the following are true:
a. N is a complete sub lattice of L implies nN is a
complete sub lattice of both 7L and M .

b. N isa complete ideal of L implies 17N is a complete
ideal of 77L, but not necessarily of M .

In (b) above 77N is not necessarily a complete ideal of
M .

Proposition 4.2: Let 7: L—>M be a complete
homomorphism. Then the following are true:
(@) N isa complete sub lattice of M implies 777] N is
a complete sub lattice of L.
(b) N isa complete ideal of M implies 77le is a

complete ideal of L.
Lemma 4.3: For any complete homomorphism

n:L—> M andforany a€ L, the following are true:
a. Always n[0,a]c[0,n7a] for all @€ L. However
n[0,a] = [0,7a]nyL = ([0,77a] ).
b. However, (77[0,a]),, =[0,7a],,
c. 1[0, a] = [0,7a] whenever 7 is onto.

If 7 is not onto then the conclusion (3) of the above
lemma is not true.

Lemma 4.4: For any complete homomorphism 7;:
L — M and for any subset X of L, we have

(X)) = 17Xy -

Corollary 4.5: For any complete homomorphism 7 :
L—M such that 7 is onto, we have n(X),) =

(17X -
Lemma 4.6: For any complete homomorphism
n:L— M, the following are true:

a. Always 77'[0,b] < [0,vn77'([0,b]"7L)] for all
beM . However, Equality holds in the above, whenever
n is 0-p.
b. Always [0,vn~'b] < 77'[0,b] for all beM,
whenever 77 is 0-p
c. However, [0,v'b] = 17'[0,b] for each benlL,
whenever 77 is 0-p.

The conclusion (1) of the above lemma is not true if 7
is not 0-p.

The conclusion (2) of the above lemma is not true if 7
is not 0-p.

The conclusion (3) of the above lemma is not true if
b enL but 7 is 0-p.

Lemma 47: Let n:L—> M be a complete
homomorphism. Then
(a) 7771(/\iel [0,b])= A 7771[0,bi] where b, enl,n
is 0-p and 1-p.
(b) \

jed

n'[0,b;1c [0,

b.] whenever
jed J
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bj S 77L and 7 is 0-p equality holds when M is a finite

chain.
Lemma 4.8: For any pair of maps 77, : X —> M into

a complete lattice M and for any subset A of X such
that 7|A>w|A, we have ARPA>AWA and

vnA=viyA.

E. Complete Lattice Of Complete Ideals Of a Complete
Lattice:

In this section relations between, modularity,
distributivity and the complete infinite (meet, join)
distributivity of, a. the complete lattice of complete ideals in
a base complete lattice and of, b. the base complete lattice
itself, are recalled.

Let us recall that a complete lattice is,

a. a complete infinite meet distributive lattice iff it
satisfies the complete infinite meet distributive law

namely, Vv, , (aAb,) = anav, b
b. acomplete infinite join distributive lattice iff it satisfies
the complete infinite join distributive law namely,
Nig (@avb) =ava,, b, and
c. a complete infinite distributive lattice iff it is both the
complete infinite meet distributive lattice and the
complete infinite join distributive lattice.
Further, for any complete lattice L, the collection of
complete ideals of L, is itself a complete lattice with the

least element ¢, the largest element L and the meet and
joined given by: For any non empty family of ([0,8;]);.,
of complete ideals of L, A;_ [0,8;] = [0,A,,,&] and
Via [0,8] = (Ui [0,8 ) = [0,vi, &].

Definition 5.1: For any complete lattice L, the
complete lattice of all complete ideals of L whose meet and
join are defined as above is denoted by CI(L).

Theorem 5.2: For any complete lattice L, then the

following are true

a. L is complete infinite meet distributive lattice iff
CI(L) isso

b. L is complete infinite join distributive lattice iff
CI(L) isso

c. L is complete infinite distributive lattice iff CI (L) is
)

d. L is distributive lattice iff CI(L) is so

e. L is modular lattice iff CI (L) is so.

iel

iel iel

IV. F-SET THEORY

As mentioned earlier in the introduction, f-Set Theory
was developed in Murthy [2] as a natural generalization of
Goguen's L -Fuzzy Set Theory which itself is a
generalization of Zadeh's, both Fuzzy and Interval Valued
Fuzzy Set Theories.

For several of the results in this paper, the complete
homomorphisms are assumed to be one or a combination of:
0-preserving, O-reflecting, 1-preserving and 1-reflecting (Cf.
3.3.6). This (These) hypothesis (hypotheses) of
preserving/reflecting are separated from the results of
Murthy[2] and the corresponding results are reproved in this
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section.

Further, in the proofs of some of the results in this paper,
the use of infinite meet distributivity of the underlying
complete lattice for truth values, is avoided via altogether
new proofs in this section.

Thus in this section, f-set, f-subsets of an f-set; lattice
algebraic properties of f-sub- sets of an f-set; lattice
theoretic relations between (crisp) subsets of the underlying
set of an f-set, Goguen-fuzzy (and hence Zadeh-fuzzy)
subsets of the underlying set of the f-set and the f-subsets of
the f-set; f-maps between f-sets; lattice algebraic properties
of the f-images and f-inverse images of f-subsets under f-
maps; and several other properties are restudied.

All the results of this section are naturally and neatly
extended to: L -interval valued f-(sub) sets, interval valued
f-maps between L -interval valued f-sets and M -interval
valued f-sets, where the complete lattice L may possibly be
different from the complete lattice M , M -interval valued
f-image of an L -interval valued f-subset of the domain L -
interval valued f-set and L -interval valued f-inverse image
of an M -interval valued f-subset of the co-domain M -
interval valued f-set, in our next paper Murthy-Prasanna[ ].
A. f-Sets and f-Subsets:

In this section the notions of f-set, (c-total, d-
total,total,strong)-f-subset, f-union and f-intersection for f-
subsets of an f-set are recalled from Murthy[2].

Definition 1.1: An f-set is a triplet A = (A/AL,),

where A is a set, called the underlying set of/ffor A, L, is
a complete lattice, called the underlying complete lattice of

truth values of/for A and z\: A—> LA is a map, called the
underlying fuzzy map offfor A .Inanfset A, AL, and
A are uniquely determined.

The f-set (A,Z, LA) , where A=¢, the empty set
with no elements, L, = ¢, the empty complete lattice with

no clements and A the empty map, is called the empty f-
set and is denoted by @.

For any pair of f-sets A = (A,Zs, L,) and B =
(BBL,). A-Biff A=B,L,=Lyand A= B.

Through out this section the letters
A,B,C,D,E, X,Y,Z together with their suffixes always

denote the f-sets, unless otherwise stated. Also, any such
script P always denotes the triplet (P, P, LP) where P is
the underlying set for the f-set P, LP is the underlying
complete lattice of the truth values for the f-set P and
P:P—> LP is the underlying fuzzy map for the f-set P.
The letters F,G always denote the f-maps
(f, Lf ),(g, Lg) respectively.
Definition 1.2: Let A,B be a pair of f-sets.
a. A isan f-subset of B iff (1) A is a subset of B
(2) L, is a complete ideal of Ly (3) A <

B|A.
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b. A isa d-total f-subset of B iff A is an f-subset
of Band A = B
c. A isa c-total f-subset of B iff A is an f-subset

ofBand L, = L,
d. A isa total f-subset of B iff A is both a c-total
and a d-total f-subset of B
e. A isa strong f-subset of B iff A is an f-subset
of Band A = B|A.
The Following are easy to see:
a) Always the f-set @ = (@,0,¢) is an f-subset of
every f-set A .
b) A=B iff AcB and BC A iff A=B,
L,=Lg and A=B.
Definition 1.3: For any family of f-subsets (A;),_, of
A ’
(a). the f-union of (A,),_, , denoted by U
by the f-set A, where

A, , is defined

iel

a A= U, Al is the usual set union of the collection
(A of sets
b. Ly = v, LAi where v LAi is the complete ideal

generated by U

iel

L, in L,

c. A:A—L, is defined by Aa = v Kia, where
a

iel

l,={icl|lacA} and

(b). the f-intersection of (A,),_, , denoted by M,_, A,, is
defined by the f-set A, where
a. A = M, A is the usual set intersection of the

collection (A);_, of sets

b. L, = M, L, is the usual intersection of the complete

A
ideals of (L, ), in L,

C. Z\:A—)LA by Za= A Zia.

B. Algebra of f-Subsets:

In this section some (lattice) algebraic properties of the
collection ofall f-subsets of an f-set are studied. Further
some lattice theoretic relations between the complete lattice
of all f-subsets of an f-set and the underlying complete
lattice for truth values are recalled from Murthy|[2].

Proposition 2.1: The set F(X) of all f-subsets of an f-

set X is a complete lattice.

Proposition 2.2: For any f-set X the following are true:
a. The complete sub lattice of all c-total, strong f-subsets of
X is complete isomorphic to the complete lattice of all
(crisp) subsets of X .

iel

b. Whenever X is the constant map from X assuming the
value 1 of Ly the complete sub lattice of all total f-subsets
of X is complete isomorphic to the complete lattice of all
L, fuzzy subsets of X (in the sense of Goguen [5]).
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C. f-Maps:

In this section the notions of, an (increasing, decreasing,
preserving) f-map between an L -f-set and an M -f-set and
the f-composition of such f-maps were introduced.

Definition 3.1: For any pair of f-sets A and B, the pair

F = (f,Lf) where f:A—B is a map and
Lf : LA - LB is a complete homomorphism, is said to be

an f-map and is denoted by F: A —>B.
Definition 3.2: For any f-map F: A —>B, F is

(a) increasing, denoted by F or (f,L;),, iff Bf >
L, A
(b) decreasing, denoted by F, or (f,L;),, iff Bf <

L, A
(c) preserving, denoted by F, or (f,L¢), . iff Bf =
L, A.

Definition 3.3: For any pair of f-maps

F=(f,L,):A>B and G=(g,L,):B—C thet

composition of F by G, denoted by GF: A — C, is
defined by the f-map GF = (gf,L;L;).

D. f-Images and f-Inverse Images under f-Maps:

In this section the notions of, the M -f-image of an L -

f-subset under an f-map and the L -f-inverse image of an
M -f-subset under an f-map were introduced and were
shown to be well defined.

As mentioned in the beginning of this paper, for several
of the results in Murthy[2], the complete homomorphisms
are assumed to be one or a combination of: 0-preserving, 0-
reflecting, 1-preserving and 1-reflecting (Cf.3.3.6 and
3.3.18). Also, some of the results use the infinite meet
distributivity of the underlying complete lattice of the
domain and/or range f-set.

Now in this section this (these) hypothesis (hypotheses)
of preserving/reflecting are separated from the results in this
paper and the corresponding results are restated and proved
here. Further, in the proofs of some of the results in the
same paper, the use of infinite meet distributivity of the
underlying complete lattice for truth values, is avoided via
altogether new proofs in this paper.

Definition 4.1: Let F: A —B be an f-map. Then
a. For any f-subset C of A, the f-image of C, denoted by
FC , is defined by D, where

(@ D=fC ) L, = (LiLk), © 5:D—>LD is

given by Dd - Bd /\VLfE(ffld NC) for all

deD.
b. For any f-subset D of B, the inverse f-image of D,

denoted by F'D, is defined by C, where
@C=1"'D®L =L'L, ¢ C:CoL.is
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givenby CC = AcAvL,'Dfc forall ceC .
_ The following example shows that without the term,
Bd , the f-set D need not be an f-subset of B:

Example 4.2: Let F: A — B,C < A be given by:
A={a}=C, B={b}, A={@l)}=C, L, -
0,1} = Ly = L., B ={(b,0)}, f:A—B givenby
f = {(a,b)} and L; = {(0,0), (1,1)} . Then F is a
decreasing f -map because §fa =0<L, Aa=1.
LetD=FC.Then D = fc = {b}; L = (LfLC)LB =

{O,I}ande:v LfE(f_lb('\C) = 1, implying
D = ({b},{(b,1)},{0,1}) . Clearly D is not an f -

subset of B because Db = 1 is not less than or equal to
Bb = 0.

E. F-Set Theory Revisited:

In this section some standard lattice algebraic properties
of the collections of, M -f-images of L -f-subsets under an
f-map and the L -f-inverse images of M -f-subsets under
an f-map are studied in detail.

Definition 5.1: Let F: A—>B be an f-map and let D
be an f-subset of B . Then D is said to be an L -regular f-
subsetof Biff Ly = LiL,.
Definition 5.2: An f-map F=(f,L,) is
a. O-preserving, or simply 0-p iff L; is a 0-
preserving complete homomorphism (Cf£.3.3.6)
b. 1-preserving or simply 1-p iff Lf is a 1-preserving
complete homomorphism (Cf.3.3.6)
c. O-reflecting or simply O-r iff Lf is a O-reflecting
complete homomorphism (Cf.3.3.6) and
d. l-reflecting or simply 1-r iff Lf is a l-reflecting
complete homomorphism (Cf.3.3.6).

Proposition 5.3: For any f-map F:A—>B and for
any pair of f-subsets A, and A, of A such that

FA, . FA

A1 - A2 we have 2 whenever * =1 or d

or p.
Proof : Let FA, = D, and KA, = D,. We show
that D, =D, or (1) D, =D, (2) LDl is a complete
ideal of LD2 3) Di<D:|D,.
Since A1 C Az, we have A| c Az’ LAl is a complete

ideal of LA2 and AL< A |A.

a. SinceAlgAz, D1= fA C fAZ= D2~
b First, Ly = (LiLy)y» Lo, = (LiLy)y, -
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Next, since LAl C LA2 , we have |, LAl c L, LA2 clg.
Therefore, by 3.2.3(7) we get v L, LAl < vl LA2 and
LDl = (LfLA1)'-B is a complete ideal of

(LfLAz)LB =Ly -

2

c. Let deD,. Since AcA,
f'dnA cf'dnA,.  Since Z1SE\2|A,,
szl SLfK2|A1.

Therefore, by 3.4.8, we get that v L, Ai(f'd " A)
SvL A(f'dNA) SVvL A(f'dNA)  and
Bd AvL, A(f'dnA) <
BdAvL, Ax(f'dnA) = Dd o D <
D:|D,.

Lemma 5.4: Forany F: A —B, the set F.(B) ofall

A\

hence 51d =

Lf -regular f-subsets of B is a meet complete sub semi
lattice of the complete lattice F(B).

Proof : (1) B, ©B, and B, is L; -regular implies B,
is Ly -regular as follows:

B, is L; -regular implies LBz cLL, and B, =B,
implies LBl is a complete ideal of LB2 , in particular
LBl c LBZ and hence LBl cL.L, or B, is L -regular.

) Let B, eF.(B) forall i€l and B= N,_, B, . Then

iel
since BC B, and B, is L -regular, by (1) above B is
Lf -regular.

The following example shows that F, (B) is not closed
under finite unions:

Example 55: Let F:A—>B be given by: A =
({a}, {(a,1)},{0,a,5,1|0<a,f <L;a| p}).

B = ({b},{(b,D}, {0, ., B,7.1
|0<a,B.y <Ll Bllr}), f ={@b),

Li = {(0,0), (a,@),(8, §).(1,1)} ,B, = ({b},
{(b,2)},{0,a |0 < a})and

B,=({b}.{(b, ) },{0, B0 < B}).

Now B, is L;-regular because LBl = {0,a}
g{O,a,ﬂ,l} = LfLA'
B, s L; -regular  because Ly =

2

{O,ﬂ}g{O,a,ﬂ,l} = LfLA’
B = BIUBZ = ({b},{(b,l)},{0,61,,6,}/,1}) But
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LB = {O,Cf,ﬂ,}/,l} g {O,Q,ﬂ,l} = LfLA7
implying that B, UB, isnotan L; -regular subset of B.

Therefore F,(B) is not closed under even finite joins.
Proposition 5.6: For any f-map F: A —B and for any

B, cB,
a

pair of f-subsets B1 and B2 of B such that nd

-1 -1
82 is f—regular, we have F'B, cFR'B
=i or d or p.

Proof : Let F'B, = A,. Then A =f"B,

LAl = L_flLBl and K1a:z\a/\\/L}IE1 fa for all aeA1

2 whenever *

Let F'B, = A, . Then A,=f'B,, L, = L_flLBz and

A
Aja=AaAvL]B:fa forall a€ A, .

We show that A, C A, or (1) ACA (2 LAl is a

complete ideal of L A 3) Z1 < A A1

Since B, < B,, we have B, = B,, Lg, is a complete
ideal of LB2 and B < B: |B,.
a. Since B,cB,,wehave A = f'B, ¢ f7'B, =
A, .
b. First, since LBl c LBz , we have LAI = L_flLBl c
L;‘LBz = Ly, -

Since LAl is a complete ideal of L,, LA2 is a

complete ideal of L, and L a S L, ,wegetthat L

Ay a1

a complete ideal of L A

c. Let aeA = f'B, be fixed. Then faeB, B,
.Since Aa=Aanv L}1E1 fa  and A -
AdAv L}lgz fa, itis enough to show that v L}lgl fa
<v L;Igz fa.

Since Bi < B |B,, Bifa<B:fa.

Since B, fa e L.L, by L;-regularity of B,, by
join monotonicity of L_f1 asin 3.3.2, we get that
vL'Bifa < vL/B:fa.

The following example shows that the above proposition
is not true if B2 is not Lf -regular:

Example 5.7: Let F: A—>B be defined by: A =
({a},{(a.1)},{0,a,1/0<a <1}),B =

({b},{(b’l)}a{o’aaﬂal | 0<a< ﬂ <1}), f =
@by, Ly = {(0,0), (a,a).(1,1)}.
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Then 1 = Efa = foa =
F, : A—B is preserving.

Let B, = ({b},{(b,2)},{0,a|0<a}) and B, =
({b},{(b,£)},{0,a, B0 <a < B}).

Then B, =B, because B, < |32,LBl is a complete

Lf(l) = 1 implies

ideal of L, and Bib - @< =Bib.

Let A =F,'Bi(i=1,2). Then A = {a} = A,
L‘flLBl = {0,a} = L, isa complete ideal of L, =
{0,a} = Li'Lg,

Aa = AaavLlBifa = lana = o ¢ A =
AaAvL'B:fa = 1nvg = 1A0 =0, implying that

A < A, or Flel < Flez .
Proposition 5.8: For any f-map F:A—B and for any f-
subset C of A, CcF:'F.C, whenever * = i or p.

Proof: Let FC = D. Then D = fC, L, =
(LfLC)LB and Dd - Bd /\\/Lf(_:(ffld NC) for all
deD.

Let F'D = E. Then E = f'D, L = L}ILD and
Ee = AeavL; Dfe forall ecE.

We will show that CCE or (1) CCE (2) L, isa
complete ideal of L and (3) C < E|C
a. Ccf'fC=f"'D=E.

b L. < L;lLch = L;I(Lf LC)LB = L;ILD = Le.

Now, since both Lc and LE are complete ideals of LA
such that L. < L., we get that L. is a complete
ideal of L.

c. Let C€C be fixed. Then EC = Ac A v L;'Dfc

where Dfc = Bfc A va(_: (f'fcnC)

= EfC AV LfEa.

efl fenC

Bfc>L;Ac. But

Since F s increasing,
L, Ac> L, Cc because A|C>C and CeC.

Further, forall ae f 'fcAC, fa = fc and Bfa
_ Bfc.so, Bfc =Bfa > L, Aa > L,Ca forall
aef'fcnC.
Bfc > vL,C(f'fcnC),
implying, Dfc = BfcavL,C(f'fcnC) -

Therefore,
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vL,C(f'fcnC). But Dfc -
vL,C(f'fenC) = L,(vC(f'fcnC)), where
the last equality is due to the facts that f ' fcNC # ¢

and hence C(f71 fCﬁC) # ¢ and Lf is a complete

homomorphism,

vC(f'fcnC)eL, Dfc.
Now, since Ce f fcnC , from the above it

follows that, C¢ < vC(f'fcnC) < vL,Dfc

implying that

implying Ec - KC/\VL}IBfC > AcACC = Cc,
since Z\|CZE

The following example shows that the above proposition
is not true for decreasing f-maps:

Example 5.9: Let F: A—B be defined by: A =
({a},{a,1},{0,1]0<1}), B =

({b}, 0,0}, {0,1[0<1}), f = {(@ab} L =
{(0,0), (1,1)} and C=A.

Then Bfa = Bb = 0<1=L,1=L, Aa implying
F is decreasing.
LetD=F,C.Then D = fC = {b}, L, = (L, Lo,
= Ly and Db = BbavL,C(f'bnC)= 0Al =0.
Let E=F,'D.Then E = f'D = {a}, L = Li'L,
= L;'L, = L, and Ea = Aanvl,Dfa= 1A0 = 0.
Further, (a) C = {a} = E (b) L, = {0,1} = Lg but
© C@) =1 ¢ 0= E(),implying C £ E|C or
C ¢ F,'F,C.

Proposition 5.10: For any 0-p f-map F: A—B and

for any f-subset C of B, we have F,F,'C = C, whenever
*=dorpori.
Proof: Let 'C = D. Then D = f7'C, Ly =

L;'L, and Da = AaavL;'Cfa forall a€D.
Let ED = E. Then E = D, L = (LiLp),, and
Eb=BoaL,D(f 'bnD) foral beE.

It is enough to show that (1) EcC (2) L; is a
complete ideal of L. and (3) E < E| E.
. E=fD= ff'C < C.
b. LE = (LfLD)LB = (Lf L}ILC)LB - (LC)LB = L.
Further, since both Ly and L. are complete ideals of Lg

such that Ly < L., we get that L¢ is a complete ideal of
Lc.
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c. Let DbeE be fixed Then Eb =
gb/\VLfB(fqbﬁD), where Da =
AaAvLlCfa.

Now for all ae f 'bnD, fa=b, aeD and
L,Da = L,AaAL,(vL;Cfa) < L,AanCfa <

Cfa= Cb forall ae f 'bN D, where the first < is
by 3.3.11(4) and the fact that F is 0-p.

Therefore, vaB(f"bm D) < Cb and Eb -
BbAavL,D(f 'bnD) < BbACh < Cb.

The following Example shows that if F is not 0-p then
the above proposition need not be true:

Example 5.11: Let F: A—B be givenby: A =
({a},{(a,1)},{0,1]0<1}),B=

(b}, {(b,1)}, {0,a,1|0< <1}), C=
(b,{(b,0)},{0,,1|0<a <1}), f = {(a,b)} and

Lf = {(0,0{),(1,1)}

Then Efa =1= Lfﬂa implying F is preserving. If
F,)/C=D.then D= f'C={a}.Ly=L{L, =L,
and Da = AaavLlCfa=1avg =1A0=0.
IprD=E,then E = fD = {b} = C, L =
(LiLp),, L, - L ad Eb =
BbAvL,D(f'bnAD) = lna = ¢ > 0 = Ch,
implying FngIC =g ¢ C.

Proposition 5.12: For any 0-p f-map F: A —B such
that f , Lf are one-one and for any f-subset Cof A , We

have C = F,'F.C whenever * =i or p.

Proof : Let FC =p. Then D= fC, L, =
(LiLc),, and Dd = Bd AvLC(f'd NC) forall
deD.

However, since f is one-one, BfC =
BfcAvL,C(f 'fcnC) = BfcaL,Cc forall
ceC.

Let F'D =g. Then E = f7'D, L. = L}l L, and
Ee = AeavL, Dfe forall e€E.

It is enough to show that E = C or (1) E = C (2)

L. =L, ¥ E=C.
a. E = f7'D = f'fC = C where the last equality is

due to the fact that f is one-one.

b Lg = Li'Lp = L' (LyLe)y, - Now by 3230), L =
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[0,a] forsome a€L,.
By 343@2). (LiLo), = (L[0,a]), = [0,La].
L_fl(LfLC)LB Li[0,La] =
[0vL/'L.a] = [0,a] = L

C

Therefore LE

where the 4th equality
follows from the fact that L; is one-one and the 3rd
equality follows from 3.4.6(3), since LyaeL;L, and L,
is 0-p.

c.Let € € E be fixed. Then f)fe above, together with the
facts (i) L Cee L,L, @i L_f1 is join increasing (3.3.2)
and (iii) Bfe A L, Ce < L, Ce (iv) L; is one-one
implies that Ee = Aen vL_lefe =

Ae vl (BfenL,Ce)< AeavL;'(L,Ce) =
Pe~Ce = Ce because ESE\|C.
C cF'FC

On the other hand, since for * =i or pby

4.5.8, we get that C<E or C =g
The following example shows that the proposition is not

true if, only f is one-one and not Lf :

Example 5.13: Let F: A —>B be defined by: A =
({a},{a,1},{0,2,1[0<a <1}) . B =

(b}, {b,1},{0,1[0<1}), f = {(a,b)}, L¢=
{(0,0), (@,0),(1,1)} and C = ({a},
{a,0},{0,a,1|0 < <1}).Then f isone-one; L is
not one-one because L, 0 = L &, but 0# & and Bfa
- Bb=1=L,Aa=1 impliesF is preserving.
LetD=F.C.Then D = fC = {b}, Ly = (L,Lc),,
= L and Db = BoavL,C(f 'bnC)= 1A0=0.
Letg=F,'D.Then E = f'D = {a} =C, L =
'L, - L'Ly = L'{0,1} = L. and Ea

Ka/\vL’f‘Bfa =lAha=a = 0= Ea, implying
F,'F,C =E=C.
The following example shows that the above Proposition

is not true if, only Lf is one-one but f is not:

Example 5.14: Let F: A —B be defined by: A = ({a,,
a,}. {(a,l), (a,1)}, {0,1]0<1}),B = ({b},
{,13, {0,1]0<1}), f={(@.b).(a,b)} L=
{(0,0), (1,1)} and C = (fa,},{a;,1},{0,1]0<1}).

Then f is not one-one, Lf is bijective. Further, Bfal =
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1= Lfﬂal and Bfa, = | = szaz implying F is
preserving.

LetD= FpC.Then D= fC = {b}, Ly = (L LC)I_B
—Lyand Db= Bb A vL,C(f'bnC)=
IAl=1.

Let E = F'D. Then E-f'D={a,a,} = C,
implying FPF}; 'C =E = C. Note here that L. = L_f1 Lo
~ 'Ly - L, - L. and Ea - Aa AvL/'Dfa, -
In1-1- Ca,.

The following example shows that the above proposition
is not true if F is decreasing and both f and Lf are
bijections:

Example 5.15: Let F: A —B be defined by, A
({a},{a,1},{0,1[0<1}) B =
(b}, 0,03, 10,1 [0<1}), f = {(@a,b)}. L,

{(0,0), (1,1)} and C = A.Thenboth f and L are

bijections. Further, Efa =0<L, Aa=1, implying F
is decreasing.
Let D = F,C.Then D = fC = {b}, L, = (Lch),_B
—Lgand Db = Bb A vL,C(f'bnC)=
0OAl =0.
Let E = F,'D.Then E = f'D = {a} = C, L. =
;'L = L, = L. and Ea = AanvL,'Dfa =
IANO =0 = 1 = Ea, implying E # E or
C=F,'F,C.

Proposition 5.16: For any f-map F: A —B such that
both f and L; are onto and for any f-subset C of B,
we have F,F,'C = C, whenever * =d or p.

Proof: Let p = F'C. Then D = f7'C, L, =
LfflLC and Da = KaAvaC_:fa forall aeD.
Let E=pgp.Then E= fD,Lg=(L, LD)I_B and for all
beE, Eb=Bb A vL,D(f 'bnD).

We will show that E= C or (1) C = E (2) L¢ = L,
and(3) C = E.
a. Since fisonto, C = ff 'C = fD = E.
b Le = (Likp), = (Liki'Lo)y, = (Lo, = L
since (i) L is onto and hence L, L_flLC = L. and

(i1) complete ideal generated by a complete ideal is itself.
c. Let b€ E = C be fixed. Since F is decreasing and
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CcB, we have Bf SLfK and ESE|C.
Consequently for all d € f'b, Cfd <Bfd < L, Ad .

Further, since L; is onto, Cfd e L. c Ly = LiL,, by

33.11(3), L,(vL;'Cfd) = Cfd and hence L, Dd
L (AdAvL;Cfd) = L,AdAL,(vL;Cfd)
L, AdACfd - Cfd - Cb,
vL,D(f b D)= Ch.
Now, Eb = BoavL,D(f 'bnD) = BobaCb =
Cb, because C < B|C.

The followingexample shows that theabove proposition

implying

is not true if F is increasing and both f and L; are
bijections:

Example 5.17: Let F: A —>B be defined by: A
(1a},{a,0},{0,1[0<1}) B =

({b},{b,1},{0,110<1}), f = {(a,b)}, Ly
{(0,0), (1,1)} and C =B..

Then f is a bijection, L, is identity and Bfa = 1

> L, Aa = 0, implying F is increasing.

Let D =F'C.Then D = f7'C = {a}. Lpy=L;'L.=
L, and Da=AarvL;Cfa=0Al=0.

Let E = FD. Then E = fD = {b} =C, L
= (LiLp), =Ls =L and Eb -

BbAavL,D(f'bnD) = IAn0 =0 = 1 = Cb,
implying FiFi_IC= gz C.

The following example shows that the above proposition

is not true if, only f is onto but Lf is not:

Example 5.18: Let F: A —B be defined by: A = ({a},

{a,1}, {0,a,1|0<a <1}),B= ({b}, {b,1},

{0,a,p1|0<a<p<1}), f={@b} L =

{(0,0), (@), (1,1)} and C = ({b},{b, B}, Lg).
Then f isabijection, L is not onto and Bfa = 1=

L, Aa , implying F is preserving.

Let D = F;C. Then D = f'C = {a}, Ly = L'L.

= L/'Lg = L, and Da - AaavLlCfa= 1avg =

IA0=0.

Let g = FpD. Then E = fD = (b} = C, L

(LfLD)LB = (L, LA)LB =Lg =L and
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Eb = BbavL,D(f 'bAD) = 1A0=0 » B -
Eb,implying FpF;C =E=C.

The following example shows that the above proposition

is not true if, only L is ontobut f is not:

Example 5.19: Let F: A —B be givenby: A =
({a},{a,1},{0,110<1}) . B=
({0, b,},{(B;,1),(b,,1)},{0,1]0<1}), f =
{(ab)}, Ly = {(0,0), (1,1)} and C =B.

Then f is not onto, Lf is identity and §fa =1=
L, Aa , implying F is preserving.
Let D = F'C.Then D = f7'C = {a}, Ly = Li'L¢
=L/'Ly =L, and Da - AanvLl;/Cfa =
IAnl=1.
Let g = FpD. Then E = fD = {b} #C, implying
FDF;IC =g = C.

Proposition 5.20: For any 0-p f-map F: A—B and
for any family of f-subsets (Cj)jEJ of A,F*(L)jeJ Cj):

v, RC j Whenever * =i or d or p and LB is a complete

jed
infinite meet distributive lattice.

Proof: Let C = Ve Cj.Then C-= Yia Cj, Lc

= Vg LCj = (Y LCj)LA and C:C > L. is given

by Ca = v._ Cia, |

a

= {jEJ |aECj} for all

jela
aeC.
Let D = FC .Then D= fC, L= (LfLC)LB and for all

beD,Db=Bb A vL,C(f'bnC).
Let E; = FC,. Then E; = ij, LEJ_ = (LfLCj)'—B

and Ejb = Eb/\vaEj(fflbﬁCj),forall bEEj.

Letg= Ujg Ej.Then E=VUgy Ej, L = Vies LEJ_
and Eb = Vi, E b, where I, ={jeJ |b€Ej},for
albeE.

Now we show thatD=pgor (1) D=E (2) L, = L¢
3)D=E.

aD= fC = f(UjEJCj) = Yia 1:Cj = Yije EJ -
E

b. By 3.2.3(3), LCJ_ = [0,;] for some &; €L, for each
jeld.

By 323®)0), Lo = Vi, le,
[0,V

Vio[0,0;] =
a].
€™
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On the other handby 3.4.3(2), (L, LCJ_ )LB

(Lf[Oaaj])LB = [OaLfaj] and Ly = (L, LC)LB =
(Lf[o’vjeJaj])LB = [0,L; (Vje.] aj)]:
[0,v jes |_f a J-], where the last equality is due to the fact

that Lf is 0-p (needed when J =¢) and is complete

homomorphism.
Again by 3.2.3(8)(b), Lz = Vv LEJ- = Viy (L; Lcj)'-B

= Vig [O,Lfaj] = [O,vjEJ Lfaj].
Clearly, LD = LE.
@®: Lt yefc = f(u,C), U, =

{jeJ|xeCj} and V, = {jeJ|ye fC;}. Then
forall xe f'ynC, U, #4, Vy¢¢, fx=1y and
xeC.

Further, DY = By A vL,C(f'ynC) = By

v o, LiCx=
xef ynC
By N V et lync Li (View, CiX) =
ByAVXEf*IymC Vi, L;Cix.

On the other hand, since L is a complete infinite meet
distributive lattice,

Ey =vjeVy Eiy = Viev, (gy/\v

L,C;z) =
zef_lymcj f J)
ByAv., v L.Cjz.
y Jevy ZEf’lyij U

Therefore it is enough to  show  that
VieUX Lf Cix :VjeVy VZGFIW\CJ Lf ciz.

Let Q = {L,Cjz|ze f'ynC,,jeV,} and P =

Voo
xef ynC

{LfEiX|Xef’lymC,ieUx}. Then clearly, it is

enough to show that P = Q, because VvP =
v Viy L Cix =
Xefﬁlyr‘wC ieU, ! and VQ
Viy V L, Cjz.
iVy T getlync, f !

j
Let o€ Q. Then a:LijZ, Zefﬁlyr‘\Cj,

jev,. sinee C;cC, zef'ynC, jeU,.
Therefore ze f'ynC, jeU, or a:LijZeP,
implying Q < P.

Let SeP. Then B = LfEix, xe f'ynC,
ieU,. But then xef™y and xeC,  or
xe f'yNC, which implies y = fx e fCi or i €V,
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which in turn implies X € f"ymCi, i eV, or p =
LfEiX € Q,implying P Q.

Proposition 5.21: For any 1-p f-map F: A—B and
for any family of f-subsets (C j ) jeg of A,

F(M,Cj) en
Proof: Let C=F\jEJ Cj. Then C=(‘\jEJ Cj, L=
/\jeJ LCj:mjeJ LCJ
acA.
Let p = FC Then D= fC ,LD: (Lf LC)LB and for

FCJ- , whenever * =iord or p.

jed jed

and 62':1:/\jEJ (_:ja, for all

albeB, Db=Bb A vL E(f-‘me).
Let E FC Then E f (L Lc )LB

and Ejb = Eb/\vaEj(fflbﬁC),forall bEEj.

Let = Mjg E-.Then E =Ny E Le Njes LEJ_

=N LE and Eb = JEjb,forallbeE.

jed
Now we show that DCE or (1) DcCE (2) LD is a
complete ideal in Lg (3) 5<E| D.
a D= fC = f(n,C)cn
E.
b. By 3.2.3(3), LCJ_ = [O,aj], for some & € LA and for

fC:m E. =

jed jed —j

each jelJ.

So, by 323(8)(@), Lo =Aj; [0,;] = [08 ;5]
On the other hand, by 3.4.3(2), (L; LC,-)LB
(L[0,2;]), = [0,L;@;] and

L, = (LfLC)L (Lf[oa/\jeJaj])LB
[0,Li(Aj; )] = [0 L], where the last

equality is due to the fact that Lf is 1-p (needed when

jed

J = ¢) and is complete homomorphism.

Now Lg = Ay LEJ- Njes (LfLCj)LB
Nied [O,Lfaj] [0,A Lfaj].Therefore LD = LE.
c.Let ye fC = f(mJEJCj) be fixed.
ByAavL,C(f'ynC)

jed

Then By =

By Av L,Cx.

Xef_lymc
On  the  other  hand, Ey Ajes .y _
Ajed (Ey/\VLij(f%yr\Cj))_

But by 3.1.13), A, (Ey/\VLij(fflymcj)) _
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Ey/\/\jEJ \/Lij(f_lyﬁCj),implying

Ey = §y/\/\jEJva6j(f_lyﬂCj) =

Ey/\/\jEJv _ LijX.

xef lyij
Next, for all xe f'ynC, Xe f’lyij for all
jeJ and EXSEjX,implying
L, Cx<L,Cjx < Voo LfEJ-x <

xef ynC

_ L ij for all j € J which in turn implies
xe f lyij f

LfEXS/\jEJ(v

retlync. L;CiXx) for all
i

xe f'yNC which finally implies V L,Cx

xefl ynC

L,CiX).

<Ay (Vv
JE‘]( xef™ ymC

Therefore Dy = By AV - ync L, Cx <
€

L, CiX) = Ey for all yeD,

Ey/\/\jej(\/X

ef™ ymC

implying D < E| Do DcE.
Proposition 5.22: For any O-p and O-r f-map
F: A —B and for any family of f-subsets (C; )jEJ of B

,we have F. (L)J€J )= Via kR C , whenever

(a) LB is a finite chain, LA is a complete infinite meet
distributive lattice.
(b) Cj is Lf -regular foreach jeJ and*=i or d or

p-
Proof: Let C = U;; C;. Then C = U,; C;, L,

Ve Lcj = (UjeJ LCJ-)LB and
Ch=v
beC.
Let D =F'C.Then D=f'C, L, = L;'L; and Da
= AanvL;Cfa,forall a€D.

Let E; = F'C,. Then E; = f7'C,, Lg = L{'L,

! 7 j

Ejb,where I, = {jeJ |bECj},forall

jelb

and Eja = AaavL;'Cjfa, forall aek;.

Letg= U, E;. Then E = U, E;, L Le

jed jeJ

i

= (Y LEj) and Ea:vje,a Eja, Where

={j€J|a€Ej},forallaEE.
We show that D = E or (1) D=E (2) LD:LE and (3)
D=E.
a D = f7C = F(u,C) ~u, T7C) -

275



Nistala V. E. S. Murthy et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan —Feb, 2013, 262-286

U Ej= E.
b. By 3.2.3(3), Lcj = [O,ﬂj] for some ,Bj € Ly and for
each jeJ.

By 323@)b), Vijgy LCJ-

[OijeJ ﬂ,] .

Next, since (i) F and hence Lf is 0-p and (ii) CJ- is

Vi [0.5;]

L; -regular and hence ﬂj € Lcj cL(L,, by 3.4.603),
L}chj = L}I[O,ﬂj] = [O,vL}lﬂj]_

Since Vg, ﬂj e L;L,, again as above L = L_f1 L.=
L;l (VjeJ I—cj )= L_fl[oa\/jeJ ﬂj] = [07VL_f1(vjeJ ﬂj )]
But since |_f is O-r, ,Bj € Lf LA and LB is a finite chain,
by 3.3.19, v L_f](\/jEJ ,BJ) = Vi \/L_flﬂj and we get

from the above that L = [O,VjEJ \Y, L}lﬂj].

On the other hand, again 3.4.6(3) and 3.2.3(8)(b) as above

. -1

imply Lg =V, jes Ly I—cj
—1 -1

=Via L [0, 81= v, [O,vLy B 1=

[O,Vj‘EJ \% L}lﬂj], since L; is 0-p. Clearly, now L, =

L.

c. Let X€ D=E be fixed. Then DX = Ax A vL;'Cfx

=z‘x/\vL}1(vjE,fXEj X) = KX/\Vjelfx vL'Cifx,

LEj=v

where the last equality is due to 3.3.19, since (i) LB is a
finite chain and (i) L is O-r.

On the other hand, since L, is a complete infinite meet
distributive lattice,

Ex = Vi,
RX/\vjE,X vL'Cifx,where | = {jeJ|xe E;}.
From the above, clearly it is enough to show that

o VL;ICj fx = Vier VL}IEK X , where
X

Eix = v (AXAVL/Cifx) =

vjel

I = {jed| xeC}, I, =
tked|xeE =f7"C}.

But in order for the equality it is enough to show that
I = 1.

Let J €ly,. Then fXECj which implies X € f’ICj
= Ej,implying jel,.

Conversely, ke l, implies Xe E, = f"Ck which

implies fx € C, implying K€ I, .
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Therefore |, = I, and hence D=EoD =E.
The following example shows that the proposition is not

true if some C j is not L; -regular:

Example 5.23: Let F: A—B be givenby: A = ({a},
{(@D}, {0,a,110<a<1}),8= ({b}, {(b,1)},
{0,a,,1|0<a<p<1}), f ={@b)} L =
{(0,0), (a,a). (1,1)}.
Let C,=({b},{b,a},{0,2|0<a}) and C, =
({b}, {(b, )}, {0, x, B 10 <@ < B}) .

Then Bfa =1 = sza, implies F is preserving 0-p
and 0-r. LCl = {0,a}cL;L, = {0, ,1} , implies
C, is L; -regular, but ch = {0,a,8) € LiL, =
{0, a,1} , implies C, isnot L -regular.

UJ—:MCJ—, then C ={b}, L.=

VjeJ LCJ: LCl v LC2 - ch = {0,0f,ﬂ} and
Cb=v A Ejb = Elb\/azb = Ezb =p.
Let D = F;C.Then D=f'C={a},L,=LL
= {0,a} and Da - Ka/\vL}IEfa =
Iavg = 1A0=0.
Let EJ- = F;ICJ-. Then E, = f7'C, = {a}, E, =
7C, —fa}. L - Like = (0.0,
L., = L, = (0.}, Ea = AanvL/Cifa

2

Further, if C

jel

Ihna = ¢ and Eza = Z\a/\\/L}IC_:z fa =
Invg =0.

Letg= U, E;. Then E = E,UE,={a} = D, L¢

=L vig = L, and Ea = Eiav E.a =
av0=qg = 0= Ba,implying DzE.

The following example shows that the Proposition is not
true if Ly is not a finite chain:

Example 5.24: Let F: A —B be defined by: A =
({a}, {(a,)},[0,1]) ., B = ({b},{(b,1)},[0,1]) ,
f = {(a,b)} and L; = {(x,0)|x€[0,1/3]} U
{(x,3(x—-1/3)) | x e[1/3,2/3]} ©

{(x,1)| xe[2/3,1]} .

Then §fa =1= sza, implies F is preserving.

Let B, = l1-1/n,n>1 and B, =
({b},{(b, 51,10, 8, ]) -

Let A, = F,'B,. Then A, = f7'B, - @, L, -
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Liks = L1041 = [OvL{A] = [0,a,],
@, <2/3 and Ava = AanvL;Bnfa = lnq, =
a, < 2/3 forall N>1.

Let D = UB,.Then D =UB, = {b}, Lp=vL, =

n

v[0,8,] = [0,v3,] = [0,1] and Db = vBnb =
v g, =1

Letg = UA, . Then E = UA ={a}, Le=vL, =
n

v[0,e,] = [0,va,] = [0,2/3] and Ea = v Asa =
2/3.

Let C = F;D.Then C-f'D=1{a =E, L. =
L/'L, = L;'[0,11=10,1] # Lg =[0,2/3] and

Ca = Ka/\vL}IEfa =1al=1=% 2/3 = Ea,
implying C#E.

Proposition 5.25: For any O-p and 1-p f-map
F: A —B and for any family of f-subsets (Cj)jEJ of B
, we have

—1 -1
F(MuCy) = miu BCy,
regular for eachj € Jand *=iord orp.

Proof : Let C = M, C;. Then C=N;_; C;, L=

jed jed whenever Cj is Lf-

Njes Lcj:mjeJ LCJ_ andCC:/\jEJEjC, for all

ceC.
Let D = F'C.Then D = f°'C, L, = L_fch and

Da = AaavL/Cfa.forall aeD.
Let E; = Ffle. Then E; = f’ICj, LEJ_ = L'

]
and Eja= AaavL,'Cjfa,forall a€E;.

Letg= N, E;. Then E =N, E;, Lg = A

jed

jed jeld I_EJ

= Nijgy LEJ- and Ea = N Eja,forall ack.
From the above it is enough to show that D =g or (1)
D=E @ L,=Lc and(3 D=E.

a. D= f7'C= f‘l(r\jEJCj)=r\jeJ f‘ICj -Nu E
=E.

b. By 3.2.3(3), LCJ_ =[0,5;] for some B; € Ly and for

i

each jel.

By 323®)@). Ajey Le; = Aoy [0.5;1 = [0 3.
Next, since (i) F and hence Lf is 0-p and (ii) CJ- is Lf -
regular and hence ,BJ- S LCJ- c Lf LA s

by 3.4.6(3), L;ILCJ_ = L7[0,8,1 = [0 5],
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Since A ﬂj elL,, again as above L =L;'L.=
-1 -1 -1

Ly (Ao Lcj):Lf (0.7 ﬂj] = [0,vL; (/\jeJ ﬂj)]a

by 3.4.6(3).

But since F and hence L is 1-p, ﬂj el;L, for all
j € J,by3.3.16, we get that

\Y, L_fl(/\jEJ ﬂj) = Nja \/L_flﬂj , and from the above that

-1
Ly = (0.7, VLT 5]
On the other hand, again 3.2.3(8)(a) with the above implies
-1 -1

Le = A LEJ- = Aoy (L Lcj) = Ao [0vL B, 1=

[(),/\jEJ \% L_flﬂj], implying that Ly = L¢.

¢.Let X D=E be fixed. Then DX = AX A VL}IEfX

= AXAvL(A,Cif) = KX/\/\jEJ v L;'C;fx,

jed
where the last equality is due to 3.3.16, since (i) Lf is 1-p
and

@ T = Cifkljed} < Ul < L,
because each Cj is |_f -regular.

On the other hand, by 3.1.1(3), EX = Nja ij =
Ajes (AXAVL'Cifx) = KX/\/\jEJ v L;'Cfx,

implying DX = EX.
The following example shows that the Proposition is not

true if some Cj is not L -regular:
Example5.26: Let F:A—>B be defined by: A =
({a},{(a,D},{0,a,1|10 <a<I1}), B =
({b},{b,1},{0,a, B, 1|0<a < pg<1}), f=
{(a,b)} and Ly = {(0,0), (@, ), (1,1)} .
Let C, = ({b}, {(b,a)}, {0,a|0<a}) and C, =
({b}. {(b,B)}. {0,a,810<a < p}).

Then Efa =1-= sza, implying F is preserving,
L, = 10,23 LiLy = {0, 0,1}, implying F is 0-p
and 1-p, C, is Ly -regular, and LC2 = {0,a,p} &

L;L, = {0, a,1} , implying C, isnot L; -regular.

Let C= C,NC,.Then C = C,NC, = {b}, L.
= L AL, = {0z} = L, and C = CinCs
{(b,a); {(0,8)} = {(b,anp)} = {(b,a)}

C,.
Let D

>

F'C.Then D = f'C = {a}, L,
L'L. = L'{0,@} = {0,a} and Da =

AarvlCfa=1ra=aqa.
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Let E; = F'C,.Then E, = f7'C, E, = f'C,
={a). Ly = Ll = {00}, Lg = Ll =
{0,a}, Eia = AaavL,Cifa = lAa = o and
E.a - AaavLCifa=1avg = 1A0=0.

Let E = mj:l,2EJ Then E = ElﬁEz = {a.}

D, L = LEl /\LE2 =L, and Ea = E18./\E2a =

an0=0 = g = Ba, implying D#E.
Proposition 5.27: For any pair of f-maps F: A —>B

and G:B—>C and for any f-subset E of A, the
following are true:

@ (G.F)E) = G.(FE)
(b) (G4R)E = G4 (RE), when L is a complete infinite
meet distributive lattice
(©) (Gpr)E = Gp(FpE), when L. is a complete
infinite meet distributive lattices.

Proof: Let (GF)E = H. Then H

(LyLy LE)I_C and
Ccavl L E((gf)'cNE) forall ceH.

= ofE, L, =
Hc =

Let FE = 1. Then 1= fE, L,=(L,Lg), and Ib =
BoavL,E(f'bNE) forall bel.

Let Gl = K. Then K=gI, L= (L,L,),_ and Kc =
Ccavl,l(g™'cnl) forall ceK.

(a): From the above it is enough to show that g = K or (1)
H=K@L,=L and@) H = K.

a H =gofE = g(fE) =gl = K.

b. By 3.23(3), Lp = [0,a] for some ael,. By
3432, L = (Lo, = (Li[0,a]) = [0,Lsa].
Again by 3.4.3(2), L = (LgL)y, = (Lyl0. Lia]), =
[0,L,Lia].

On the other hand, again by 3.43(2), L,=

(LLLe)y, =(LL[0,a]), = [0, L a]. Cleary,
L =L,.
c. Let yel. Since f is increasing and EC A,
Bf >L,A >L,E.Forany xe f 'ynE, fx=y
and L Ex<L,Ax < Bfx - By, implying
VLLE(f'ynE) < By o ly -
ByAvL,E(f'ynE) = vL E(f'ynE) forall
yel.
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Let zeH =K be fixed. Then ﬁz =
CZ/\VLg L, E((of )712ﬁ E) and Kz

Czavll(g7'znl) = CZ/\vyeg*Im| Lly.

Since (i) ze H implies z = gfx for some X€& E,
implying: (a) xe(gf)'znE implying
(of Y 'znE=¢ () y=1fxeg'znIl implying
g'znl#¢ and () xef'ymE implying
f'YyNE#¢ (i) pisincreasing (iii) EC A (i)

(of Y 'znE = U f'yNE and

yeg’lszE

a = V. Vv o, we getthat Kz =

iel ae
L, Ex) =

V) v

asig) A

Czav L Ly (v

yeg znl xef_lymE

CzAv v LgLfEX =

yegflzrwl xefﬁlymE

Czav 4 L,L Ex =
Xeu a1 fynE 9
yeg znfE

Czav L. Ex

L
xe((gfy lznE) 9 f

- CzavL,L,E((gf)'znE) = Hz.

(b): Let H,l and K be as in (a) above. Then it is enough to
show, when G is decreasing, that 1y = K or

aH=K @ L,=Lcand(3) H=K.

b. H = K asin (a) above.

c. LH = LK again as in (a) above.

d. Let zeH=K be fixed Then Hz =
CZ/\ngLfE((gf )_lZﬂE) and Kz =

Czavll(g'znl)=Czav._ Ly,

yeg znl

Since G is decreasing, Cg < ng. So, for each

yeg'znl, gy=z, yel and Cz - Egy <
L, By, implying Cz AL By = Cz.
L, L Ex

Let c=Cz, a,=L,By.b = Ve

andY = g'zn1.
Again since (i) ze H implies z = gfx for some
XeE, implying: (@) Xe(gf)'zNE implying
(ofY'znE=¢ () y=1fxeg'znIl implying
g'znl#¢ and () xef'ynE implying
f'ymE=#¢ (i) L. is a complete infinite meet
(of ) 'znE =
f'ynE and (iv) v

distributive lattice (iii)

1

o
yeg~lznfE acVic) A

V.,V __,oa, from the above we get that

iel ae
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Kz = Czav o LiByav . LEX) -
Cz AV (L,ByAL, (Vxef_lyﬁE L; Ex))

=-Cz AV (L, ByAVXEf*IymE L,L; EX) =
CAV, (@, Ab) =V, (Cra, Ab)
=V, (CAb) = CAV, b,
Czav v . L L/EX

yeg znl xef ynE 9
=CzAv 4 L,L, Ex =

xeu 1 f~lynE 9
yeg znl

Czav IR i Ex

xe(gf) " znE 9

~CzavL L E((gf)'ZnE) = Hz, implying Kz
_ 1.
(c): Clearly, the proof follows from (a) and (b).

Proposition 5.28 : For any pair of f-maps F: A—B and

G:B — C and for any f-subset g of C, the following are
true:

) (G, E)f1 EoF' (GEIE) , whenever E is Lg -regular
) (G )7l Ec Fif] (G;IE) , whenever G'E is L -

regular and F is 0-p
(c) (Gpr)flE = F;I(G:E), whenever G'E is L; -

regular and E is Lg -regular and F is 0-p.

Proof: Let (GF)"'E=H.Then H = (gf ) 'E, Ly
= (LL)'Lg and Ha= Aanav(L,L,)"'E(gf)a
forall a€H .

Let G'E= I. Then I=g7'E, L, = L;LE and

Ib=BbAvL, Egb forall bel.
Let F =K. Then K=f"l, LKZL}ILI and
Ka=AaavLlfa forall aeK.

From the above it is enough to show that HDOK or (a)
KcH (b) L isacomplete ideal of L, and

(c) R£ﬁ|K.

a K=f"l=f'g'E=H.

b L =L =L L =L

c.Let ae f'g7'"E=H =K be fixed. Then gfacE,
facg”E = I, Ha = AaavL/L/Egfa and
Ka=KaAvL;1|_fa= Ka/\vL}l(Efa/\vL;nga)

Firstly, g is |_g -regular implies LE (- Lg LB;
nga el. c Lg L, implies nga IS Lg Ly; so, by
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33.110), L, (vL, Egfa) - Egfa.
Sincee G is decreasing and E < C we have

Egfa <C gfa<L,Bfa L Tfaz
9

—_ = = — =
L,Bfaal,(vL, Egfa)= L,BfanEgfa = Egfa,
implying Ifae L;l Egfa which implies
L'l fac L_flL;lnga which in turn implies v L;'I fa
< VL}IL;'nga or Ka=KaAvL;ITfa <
Aanv 'L Egfa = Ha.

(b): Let H,l and K be as in (a) above. Then it is enough to

show, when F is increasing and 0-p and when G'E is
L; -regular, that § < K or 1) HcK 2) L, isa

complete ideal of L, and (3) H < R| H.
(a): H = K asin (a) above.
(b): L, = L again as in (a) above.
(c)LetacH=K=f"'g"E befixed. Then gfa e E
, facg™E = 1, Ha = AaavL/L,/Egfa and
Ka = AanvLl'lfa =
AdAv L (Efa AV L;nga) )
gfac E implies ngaeEEg L. which implies
L, Egfac L'Le=L, <LL,.since G'E = I'is
Lf -regular.

Since L is0O-pand D = L;‘nga c LiL,. by
339, L, (vL{L,'Egfa) = vL,'Egfa and
L, Ha = L, Aan L, (vL{'L,'Egfa) =
Lfﬂa/\vL;nga < Efa/\vL;nga - Ifa,
where the last inequality is due to the fact that F is

increasing and hence sz < Bf.

Again gfa € E implies fa € g7'E = | which implies
Ifaell clL, cLL,,since G'E=1 isL;-regular.
Since |fa e L,L, and Lfﬁa < Tfa, as above by
3.3.2, we get that v Lj'L,Ha < v L;'Ifa. But then
Hael/L,Ha implies Ha <vL;'L,Ha <
v L‘flffa. Since always Ha < Za, it follows that

Ha<Ka
(c): Clearly, the proof follows from (a) and (b).

The following example shows that a strict containment
inthe conclusion (a) may hold in the above proposition:
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Example 5.29: Let F: A—>B and G:B—>C be
definedby A = ({a}, {(a,D}, {0,a,c0,, B, fs.
1|O<ailﬂj <Ly < o fi< p; ai”ﬂj})vB
= ({b}, {(b,0)}, {0, B. 1|0< a, f<I;

al p}), C=({c}.{(c0},{0,1]0<1}), f=
{(a,b)}, g= {(b,0)}, L=
{(0,0),(1,1), (e, @), (B, /)i =12}, Ly=

{(2,0),(0,0), (B,1), (1,1)} and g = ({c}, {C,0},
{0,1{0<1}).

Then Lg = {0,1} = LjLg implying E is L -regular;
Bfa - 0<L,Aa=1, implying F is decreasing and
Cgb=0=L,Bb,implying G is preserving.

Let (G,F,))"'E = H. Then H = (gf)'E =
f'g"E = {a}. Ly = (LL) 'L = L'L'Le -
L0, 81} = L, and Ha -
Aaav(L,L,)'Egfa = Ina, = a,.

Let GJE =1.Then | = g7'E = {b}, L, = Lj'L¢
— Ly and Ib = gb/\vL;lEgb =0Aa =0.

Let F;'l =K .Then K = f'I ={a} = H, L =
'L = 'Ly =L, = L, and Ka = AanvL,'lfa

IANO = 0<ea, = ﬁa, implying H > K or
HoK.
The following example shows that the condition on

G'E is Lf -regular is not superfluous in (b) of the above
proposition:

Example 5.30: Let F: A—>B and G:B—>C be
defined by: A = ({a}, {(a,a)},

{0,a,1[0<a<1}),B= ({b}, {(b,5)},

{0,a,8.110<a<p<1}), C=({c}, {(c,6)},
{0,5,1]0<85<1}) =E,

f ={@b)}, g={bo)} L =
{(0,0), (@, @),(1,1)} and L=
{(0,0), («,9), (5,5),(1,1)} :
Then Ly is 0-p, Bfa =f2a = L;Aa implies F is
increasing, Cgb = & = L, Bb implies G is preserving,
Le=1{0,6,1} =L Lg. implying g isL-regular and
LyLe = {0,a,8,1} & {0,a,1} = L¢L,, implying
G 'E isnot L -regular.

Let (G,R)'E = H. Then H = (gf)'E =
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f197'E = {a}, Ly = L' L = L/{0,0, 8,1} =
{0,a,1} = L, and Ha = AaavL/L, Egfa
ana = a.

Let G:E =1.Then | = g'E = {b}, L, = L;LE
= {0,a,f,1} = Ly and b = BbAvL,Egb
BrB=P.

Let F'l =K .Then K = 'l ={a} = H, L, =
L'L, = L'0,a, 8,1} = {0,a,1} =L,=L,, and Ka

=Aaavliifa = aavg = an0 =0 < o =

Ha , implying H ¢« K o H & K or
(G,F)'E¢F'GE.

The following example shows that the condition on E
that it is Lg -regular, is not superfluous in (c) of the above
proposition:

Example 5.31: Let F: A—>B and G:B—>C be
defined by: A = ({a}, {(a,l)}’

{0,a,p.110<a,p<1}), B=({b}, {(b,1)},

{0,1]0<1}), C=({c}. {(c,1)} .
{0,6,1[0<5<1}), f ={@b)}, g={(b0o)},

L = {(0,0), (2,0, (8.1, (1,1}, Ly = {(0,0),
(L)} andg=({c}, {(c,0)}. {0,5|0<5}).
Then Bfa = 1 = L, Aa, implies F is preserving;
Cgb=1-= L, Bb, implies G s preserving;
Le = {0,6} & LyLg = {0,1}, implies E is not L-
regular and Lj'Le = {0} LL, = {0,1}, implies
G,E is L -regular.
Let (GF)'E = H Then H = (gf)'E =
f'g'E = {a}. L, = L'/ = LT(0) = {0,a}
and Ha = AaAvL,L'Egfa = Iavg = 1A0 =0
Let G)E =1 Then | = g'E = {b}, L, = Lj'L¢ =
{0} and Ib = BbAvL, Egb = 1avg = 1A0 =0

Let F)'l =K. Then K = f7'l = {a} = H, L =
'L, = L'(0) = {0,a} = L, and Ka =
Za/\\/L_flffa =lrha=a = 0 = ﬁa,implying
(G,F)'E=n=# K =F,'G/E.

F. More on f-Images and f-Inverse Images:
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In this section some more standard properties of the M
-f-images of L -f-subsets under an f-map and the L-f-
inverse images of M -f-subsets under an f-map are studied
in detail.

Lemmas.1: For any 0-p f-map F: A—B and for any
L, -regular  f-subset H of B, always

F'HoF'(HNFA) holds. However, equality holds
whenever

(a) F is increasing, Lf is 1-p and LB is complete infinite
meet distributive lattice (OR)

(b) F is decreasing and LB is complete infinite meet
distributive lattice.

Proof: (A) Since H is L, -regular and HNFA cH,
by 4.5.6, F™' is monotonic and so, F_I(HﬁFA) c
F'(H).
B)Let F'H=C.Then C = f'H, L. = L.'L,, and
Ca - AaavL,Hfa foral acC.
Let FA =D.Then D= fA, L, = (LfLA)LB and for

albeD, Db=Bb A vL, A(f'bAA).

Let HND =E. Then E = HND, LE = LH(\LD
and Eb = ﬁb/\Bb forall DEE.

Let F'E=G.Then G = f'E, L, = L;'L; and Ga
= AaAvLEfa forall a€G.

We show that C = G or (1) C=G 2) L, =L, 3)
E = 6 when

(a) F is increasing, Lf is 1-p and LB is complete infinite
meet distributive lattice

(OR)

(b) F is decreasing and Lg is complete infinite meet
distributive lattice.

(@: C= f'H =
f'E=G.

(b): By 3.2.333), L, = [0, 8] for some felg. By
3.4.6(3), since (i) F and hence |_f is 0-p

f'"HNfA) = f'(HAD) =

(i) H is L -regular and hence el cLL,, we get
that L. = L'L,, = L{'[0, 8] = [0,vL; B].

Since (L¢L,),, isa complete ideal in L., the above
implies [0, #] < (L; LA)I_B which implies
Lynlp = [Oﬁﬂ]m(LfLA)LB =[0,] = Ly and Lg
= Li'Le = Li(Ly nLp) = Li'Ly = L.
(¢ Let a€G = f'E = C=1f"'H be fixed. Then
faecHNE.
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(2): Let F be decreasing. Then Bf <L, A. Further, for
al cef'fanA, L,Ac > Bfc - Bfa or
VL, A(f'fanA) > AL, A(f 'fanA) > Bfa,
implying Dfa = BfaavL, A(f'fanA) - Bfa
which in tum implies Ga = AaavL,/Efa =
Ka/\vL‘fl(ﬁfa/\Bfa) = KaAvL}l(ﬁfa/\gfa)
- MaavL,/Hfa = Ca,because E = HND and

(b): Let F be increasing. Then Bf > Lfﬂ. For all

cef'fanA, L,Ac<Bfc - Bfa o
VL, A(f'fanA) < Bfa implying Dfa -
BfaarvL, A(f'fanA) = vL,A(f'fanA).
Therefore Efa = HfasDfa -
HfaavLl, A(f'fan A).

Next, since (i) H is L;-regular and hence
Hfael,cL,L,

(i) vL A(f'fanA) el.L, as
f'fanA#¢ and

(iii) Ly is 1-p, by 3.3.15, VL7 (Hfa AV LA(f fan
A)=vL'Hfa A vL(vL, A(f 'fan A)).

Further, since \/fo(f_1 famnA)elL,L, as
f'fanAz#g¢ and vL A(f 'fanA) > L Aa,
by 332, vL(vL, A(f 'fan A) > v L(L, Aa)
> Aa, where the last inequality is due to the fact that
AaeL](L, Aa).
C_onsequent from the above,
Ga = AaAvLEfa=
AaavLl (HfaavL, A(f ' fan A))
Aan (v HfaavL (VL A(f " fan A))
= (AaavLl(vL, A(f'fanA))avLHfa =
AanvL'Hfa = Ca.

The followingexample showsthat theabove Proposition

is not true if F is decreasing, LB is complete infinite meet
distributive lattice but H is not Lf -regular:

Example 6.2: Let F: A —>B be defined by: A =

({a}, {(a,D}, {a,e,B,1| 0<a< p<l1}),
B =
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(b} A0, /)},{0,a, B, 7,110 <a < B,y <L; Bl 7})
, f =1{(a,b)} and

Lf = {(0’0)3 (a>a)’(ﬂsﬁ)’(l’l)} Let H=
({b},{(0, 1)}, {0, a, 7| O<a<y}).
Then Ly is one-one, 0-p and 1-p. L, = {0,a,7} &

L;L, = {0,a, 3,1} implies H is not L, -regular and
Bfa- g <1- L, Aa implies F is decreasing.

Let F;'H = C. Then C = {a}, L. = {0,a} and Ca =
AarvLlHfa =1avg = 1A0=0.

Let Fy;A =D Then D = {b}, Ly = (L;L,),, = Ly
and Db = BoAvL, A(f 'bnA) = Bal= B.

Let HAD = E. Then E = HAD = {b}, L =
L, Ly = L,NLy =L, and Eb = HbADb
yYAP = a.

Let F;'E = G.Then G = f'E = {a}, L, = /'L =
{0,} and Ga - AarvLlEfa=lra=a = 0
- Ca, implying G#=C or F'(HNB) #F'(H).

The following example shows that the above Proposition

is not true if F is increasing, Lf is 1-p and LB is complete

infinite meet distributive lattice but H is not |_f -regular:

Example 6.3: Let F: A —B be defined by: A = ({a},
{(@.p)}, {0,a,6,1] 0<a<p<l}),

B= ({b}, {(b,1)},
{0,0,8.7,1[0<a<p,y<LBl7r}).

f = {(a,b)} and

Li = {(0,0), (@,@), (B,5), (1D}.Let H= ({b},
b7}, {0,a,y[0<a<y}).

Then Ly is complete infinite meet distributive lattice,
Lf is l'p I_H = {0,0!,7} g LfLA = {O,Q,ﬂ,l},
implies H is not L -regular and Bfa-=1> L, Aa = p
, implies F is increasing.

Let E'H = C. Then C=f"'H = {a}, L, =
'L, = {(0,a)} and Ca = AaavL Hfa
BAavg=BA0=0.

Let FA = D. Then D=fA = {b}, Ly =
(LiLy),, = Lgand Db = BbAvL A(f b A) =
IAnf=p.

Let HAND = E. Then E = HND = {b},
Le=L,nL, =L, Ly =L, and
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Eb- HbADb = yAf = a.
Let Fi_lE = G. Then G = f'E = {a}, Lg =
L/'Le = {0,a} and Ga - AanrvL'Efa = Bra
az 0 = Ca , implying GgC or
F'(HAB)zF'(H).
Lemma 6.4:For any 0-p F:A—B and for any |_f -regular
f-subset Y of B, we have

-l -1 -1
FRRTY- 7Y holds whenever * =i ord orp.
Proof: Let F'Y = C. Then C = {7, L. =

L;'L, and Ca = AaavL,Yfa forall a€C.
Let FC =D .Then D = fC, L = (LfLC)LB and for

albeD, Db = Bb A vL,C(f'bnC).
Let F'D =E.Then E = f'D, Ly = L}'L, and
Ea - AaavL,'Dfa forall acE.
We show that E = C or (1) E=C (2) L = L. and (3)
E-C.
@@ E=f'D=f"'"fC=f"'ff'B=f'B=C,
since f'ff'B=f'B.
(b): By 3.2.3(3), L, = [0, B] for some [ € Lg. Since (i)
F and hence L; is 0-p and
(i) Y is L;-regular and hence Bel, cLL,, by
34.603), L, = Lj'L, = L/'[0, 8] = [0,vL}' B].
From 3.432), Lp = (LiLc) = (Li[OvL{ 8D, =
[0,L, (VL' B)] = [0, 8] = L,, where the last but one
equality follows from 3.3.11(3), since Y is Lf -regular and
hence fel, cLL,.

So from the above, Ly = L{'Ly = L;'L, = L.
(c):Let a€E = f7'D = C = 'Y be fixed. Then
faeYNnD.
(a): Let F be increasing. Then Bf > L, A.

-1
CQF* F*C - E for all CQA

Since when * = | or

P , we have C<E . Therefore it is enough to show that
E<C.
But since Ea = Aan \/L}IBfa and Ca =
AaAv L}IV fa , it is enough to show that
vL;'Dfa < vLYfa.
Let ce f'fanC. Then C€C and fc= fa.
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Yic -

Yfae L, cL;L, and hence by 33.11(3),

Further,  since Y is Lf -regular,
L, (vL,'Yfc) = Y fc - Yfa.

Now L,Cc = L,(AcavL]'Yfc) = L Ac &
L, (vL'Yfc) = L AcaYfc < Yfc - Yfa,
implying v/ LfE(ffl fanc) < Y fa.

Therefore Dfa - BfaavL,C(f'fanC) <
BfaaYfa - Vfa,because Y cB.

Now, again Y is L -regular and hence Y fae L, L,
and Dfa<Yfa imply, by 332 vL/'Dfa <
v LY fa, as required.

(b): Let F be decreasing. Then Bf < L, A. Since
YcB, Yf<Bf <L,A. Therefore for any C€C,
L,Cc = L, AcaL,(vL{'Yfc) = L,AcAYfc =
Yfc=Yfa, because (i) Y is L -regular and hence
Yfcel, c L L, and (i) by 3.3.113), L, (vL;'Y fc)
~ Yfc. W paticular, vL,C(f'fanC) =

L,Cc = VCEf_l c Y fc = Y fa, implying

cef anc fa

Dfa - BfaavL,C(f 'fanC) - BfarYfa -
Y fa, because Y =B and hence Y <B]|Y .
Now clearly Ea = Aaav L'Dfa = AaavL]Yfa
- Ca.

The following example shows that the above proposition

is not true if Y isnot L -regular:

Example 6.5: Let F: A —B be defined by: A =
({a}, {(a,D},10,a,1[0 <a <l1}),

B= ({b},{(b,D}, {0, p,1]0< g <1}), f={(a,b)}
' Lf = {(070), (a,O),(l,l)} '
Let Y = ({b},{(b, $)}.{0, B10<B}).

Then L, = {0, 8} & L,L, = {0,1}, implying Y
is not Lf -regular and Efa =1= sza, implying F is
preserving.

Let F'Y =C.C=f"Y = {a}, L. = L{'L, = {0}
and Ca = AaavL;Yfa=1avg = 1A0=0.
Let F,C =D .Then D = fC = {b}, L, = (LfLC)LB

= {0} and Db = BbAvL,C(f'bNC) =
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IA0 =0.
Let FEID =E.Then E = f'D ={a} =C, L =
L/'Ly = {0,a} D L. andso F;leFle =E =
C F;lY.Infact, also, Ea = Ka/\vL}‘Bfa = 1A
=g >0= Ea,implying E?ﬁE or

-l -1 -1
FprFpY:E # C:FpY.

Definition 6.6: For any F: A—B and for any f -
subset C of A, C is said to be L;-coregular iff
BfCcL,L,.

Proposition 6.7: For any 0-p F:A->B and for any
C FF'FC _

Lf -coregular f -subset of A, we have

FC holds whenever * =1 or d or p.
Proof: Let FC = D. Then D = fC, L, =

(LiLe),, and Db = BbAvL,C(f 'bNC) forall
beD.

Let F'D =E.Then E = f'D, L = /'L, and
Ea = AaavL;Dfa forall acE.

Let FE=G. Then G= fE., Ls=(L;L¢),, and Gb
= BoavL, E(f'bNE) forall beG.

we show that D = G or (1) D=G (2) L, =L, and
3) D=G.
@:G=fE = ff'D = ff'fC = fC = D.
(b): By 3.233), L. = [0,] for some a€l,. By
3432). Ly = (LiLe), = (Li[0, @], =[0,Le].
By 3.4.6(3), since F and hence L; is 0-p and
Laell,, L = L'L, = L'0La] =
[0,vL'L,a].
Againsince Liax e L;L, by3.4.3(2)and 3.3.11(3), L
= (L), = (Le [0, v L_flLfa])LB =
[0, L; (vL}lLfa)]= [0,L;a] = L.
() Let beG (= fE = fC = D) be fixed. Then
f'bNC#¢ and T 'DNE=¢.
(a) Let F be decreasing. Then Bf < L, A.Since DcB,
D<B|D andhence Df <Bf <L, A.
Since (i) L,C(f'bnC)cL,CCcL,L.cLL,
(iiy Bbe BfC = L, L, because C is L, -coregular and
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(iii) L¢L, is a complete sub lattice, we get that Db =
BbavL,C(f'bnC) e L;L,. Consequently,
by 33.11(3), L, (vL; Db) = Db.

Now for all ee f'bNE, fe=b and from the
definition of Ee above, L, Ee = L, (Ae AvL; Dfe)
- L, Aeal,(vL;'Dfe) = L,AenDfe =
Dfe=Db, where the last but one equality follows

because of F being decreasing.

Therefore, Vv L, E( f'bNE)=v

. _L;Ee =
eef "bNE

Dfe = v Db = Db.

Voo 1
eef bnE eef bnE

On the other hand, Gh- Eb/\va E(fﬁlbﬁ E) =

BbADb - Bb,since DcB andhence DSB|D.
(b): Let F be increasing. Then For any increasing f-map, by
558, CcF'FC for all CcA. So, by 5523,

monotonicity of F, implies D = F,.C c F,F,'F.C = G.
Hence it is enough to show that ESB

For all eef'bnE, fe=b,
fee fC=D=G=1fE) and as in (a) above,
Dfeel,L, and L,(vL;'Dfe)=Dfe=Db.
Now Ee<vL;Dfe for all ec f 'bNE, implying
L, Ee<L,(vL,Dfe) - Dfe- Db and
Gb= BbAavL,E(f'bnE) < vL,E(f'bNE)
=V LfEe < Dbor GED.

eef bnE

The following example shows that the above proposition

is not true if C isnot Lf -coregular but F is 0-p.

Example 6.8: Let F: A —B be defined by: A =
(1a},{(a,1)},{0,1[0<1}),
B = ({bl, {(b,a)}, {0,@,1|0 < <1}) and F =

({(a,b)}, 1(0,0), (1,D)}) .

Then ¢ = Bb = Bfa < L,Aa = L1 = 1,
implying F is 0-p and decreasing, and BfC ¢ L,L,,
implying C is not L -coregular.

Letting C=A and D=F,C, we get that Db = Bb
AvLC(fbNC)=anl=q.

Letting E=F,;'D, we get that Ea = Aa A vL,'Dfa
=1avg = 1A0=0.

Letting G=F,E, we get that Gb = Bb A
VL, E(f'bAE) =Bb A0 = 0, implying
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FF'FC ¢ F,.C.

Proposition 6.9: Forany increasing f-map F: A —B
and for any pair of f-subsets C of A and D of B,
FC <D implies Cc F'D whenever D is Lf -regular.

Proof: Let FC = E. Then E = fC, L. =
(LiLc),, and Eb = BbavL,C(f 'bAC) for all
beE.

Let Fi_ID =G.Then G= f'D, Ls = L}ILD and
Ga = AaavL;'Dfa forall a€G.

Since ECD, Ec D, L; is a complete ideal of L
and ESB| E.

We show that CcG or (1) CcG (2) L. isa
complete ideal of L and (3) 636|C.

(a):Since fCcDiff Ccf'D,Ccf'D=0G.
(b):  Since LE is a complete ideal of LD,
L, L. g(Lch)LB =L < Ly So, Lo cLi'L, =
L.

Since L and L are complete ideals of L, it follows
from L. < Lg that L. is a complete ideal of L.

(©): Let a€C be fixed. Then fac fC=E. Ga =
AanvL,'Dfa.since Aa>Ca toshow C<G|C,
it is enough to show that v L' Dfa > Ca .

Since @) aecf'fanC,
L,Ca<vL,C(f 'fanC) and (i) E<D|E, we get
that Bfaanl,Ca<BfanvL,C(f'fanC) =
Efa < Dfa.

Sinee CcA  and F s
L,Ca<L,Aa<Bfa which implies L,Ca =

Bfan L, Ca<Dfa , from the above.

increasing,

Since (i) Dfaely cL,L, as D is Ly -regular (ii)

L,Ca<Dfa, by 332, Ca < vL]/'L,Ca <

v L Dfa as required.
The following example shows that the above proposition

is not true if D is not Lf -regular but F is increasing:

Example 6.10: Let F: A —>B be defined by: A =
({a},{(a, D)}, {0,a.,1] 0<a<1}).B=

({b}, {(b,1)}, {0, B,1|0< B <1}), f={(a,b)} and
L, = {(0,0), (,0), (1,1)} . Let C =
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({a},{(a,@)}, {0, |0 <a}) and D = ({b},
{(0, )}, {0, 810<B}).

Then L, = {0, 8} & {0,1} = L;L,, implying D
is not L -regular, Bfa - 1 = foa, implies F is

preserving.

Let F,C =E.Then E = fC = {b} = D, L; =
(LiLe), = 10 Lp = {0, B} and
Eb = BoavL,C(f'bnC) = 1A0 = 0<Db
B, implying FCcD.

Let F'D = G.Then G= f'D ={a} =C, L =
'L, = {0,a} = L, but Ga = AaavL,Dfa =

Iavg = 1A0 =0 < o = Ca, implying Ca%Ga
o C ¢ F'D.

The following example showsthat the above proposition

is not true if F is decreasing but D is |_f -regular:

Example 6.11: Let F: A —>B be defined by: A =

({a},{(a,D},{0,a, B,

rH0<a<p,y<Liflly}), B=

(b}, A0, B)}. 10,2, B, 7,110 <a < B,y <1; Bl 7})

, f = {(a,b)}andL; =

{(050)’ (a’a)’ (ﬂ’ﬂ)’ (7/’ }/)’(131)} : Let C =

({a}a{(aay)}aLA) and D = ({b}a{(baa)}aLB)
Then Bfa = pg<i= sz‘a, implying F is

decreasing and L, = Ly = LL,, implying D is L;-

regular.

Let F,C = E. Then E = fC = {b} = D, L =
(LfLC)LB = (LfLA)LB = LB = I-D and
Eb = BoavL,C(f'bNC) = BAy = a = Db,
implying F,C =E =D
Let F;D=G.Then G= f 'D=1{a} =C, L, =
'L, = Li'Ly = L, and Ga = AanvL,Dfa =
Ina=a # = Ca,implying C ¢ G=F'D.
Proposition 6.12: For any f-map F: A —>B and for

any pair of f-subsets C of A and D of B, CgF_lD
implies FC < D, whenever F is 0-p or D is L -regular.

Proof: Let FC = E. Then E = fC, L. =
(LiLo),, and Eb = BboAvL,C(f 'bNC) foral

beE.
Let F'D = G.Then G = f7'D, Ly = Lj'Ly and
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Ga - AaavL,'Dfa forall a€G.

Since Cc G, we have Cc G, L. is a complete
ideal of L and ESG|C.

We show that ECD or (1) EcD (2) L; is a
complete ideal of L and (3) E£5| E.
(a: CcG = f'D implies fC < D which implies
EcD.

(b): Since L, c Ly = Li'Ly, Lilc €Ly and Ly is
a complete ideal of Ly implies Lg = (L, LC)LB c L.
Since Ly and L, are complete ideals of Lg such that
LE c LD , we get that LE is a complete ideal of LD.

(3): Let beE = FC be fixed. For any
aecf'bnC, acCand b=fae fC=D.

Since (i) Fand hence L; is 0-pby 3.3.11(4),
L, (vL;'Dfa) < Dfa or
(i) D is L;-regular, so Ly < L;L, and hence
Dfael,cL,L,. by 33.113), L,(vL;'Dfa) =
Dfa.
Butas CC G, C<G|C and this implies L,C <
L,G and hence from the above, L,Ca < L, Ga =
L, (AaavL/Dfa) = L,AaalL,(vL,Dfa)

A

IN

L, AanDfa < Dfa - Db forall acf'bnC,
implying vL,C(f'bnC) < Db and Eb =
BoAavL,C(f'bnC) < vL,C(f'bnC)
Db, implying E<D or FC =E < D.

The following example shows that the above

IA

proposition is not true if both F is not 0-p and D is not Lf
-regular:

Example 6.13: Let F: A —B be defined by: A =
({a},{(a,1)},{0,a,1] 0<a<l1}),B=

({b}, {(b,)},{0, B,y,1|0< B <y <1}), f=
{(aab)} and Lf = {(Os 7)3 (aa 7/)’(1,1)} '

Let C=({a},{(a,0)},{0,a|0<a}), D =

({b}, {(b, £)}.{0, B,y [0< B <y}).

Then F is not 0-p, Ly = {0,8,7} &€ {r.1} =
Lf LA implying, D is not Lf -regular and Efa =1-=
L, Aa implying F is preserving.

Let F;D =G. Then G= f'D=1{a} =C, L, =
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'L, = {0,a} = L. and Ga = AaavL; Dfa
Ianvg =1A0=0=Caor C=G=F'D.

Let FpC =E.Then E = fC = {b} = D, L =
(Lilo),, 0,75 = Ly ad Eb -

gb/\vaE(f_lme): Iany=y9y > f= Db or
FC-E 5D o FC ¢D.

Lemma 6.14: For any f-map F: X—Y and for any
f-subset A of X, A = QO iff FA = @.

Proof: (=): A = © implies A=¢, L, =¢ and
A=¢.FA = C implics C = fA= fgp =g,

Le = (LiLy),, =¢ and C=CxLe = g, implying
FA - C=.

(<): FA = C = @ implies, C = fA=¢ which
impliess A=¢, since fA=¢ iff A=¢;
LiLy = (L LA)LB =L.=¢, implying LiL,=¢
which implies L, =@ and Ac Ax L, =¢x¢@ implies
K=¢ or A=0.

Corollary 6.15: For any 1-pf-map F: X—Y and
forany nonempty family (A;),_, of f-subsets of X,
M.

it FA; = © implies N, A = ©.

Proof: It follows from the above Lemma and 5.5.21.
Lemma 6.16: For any f-map F: X —>Y, F'® = ®.
Proof: F'g=C implies C=f"9=¢,
L. = L}1¢=¢ and EQCX L. =¢x¢=¢, implying
Flg =C=(s.0.0)=9¢.
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