

**International Journal of Advanced Research in Computer Science** 

**RESEARCH PAPER** 

Available Online at www.ijarcs.info

# A Comparative Study using Wavelet and SVM for Devanagri Characters Recognition

Anil Kumar N. Holambe\* (Research Student) Department of Information Technology College of Engineering Osmanabad,India anholambe@yahoo.com

Sushil Kumar N.Holambe Department of Information Technology College of Engineering Osmanabad,India Dr.Ravinder C. Thool Department of Information Technology Shri Guru Gobind Singhji Institute of Engg & Technology, Vishnupuri,India

Ganesh K. Pakle Department of Information Technology Shri Guru Gobind Singhji Institute of Engg & Technology, Vishnupuri.India

*Abstract:* This paper presents a wavelet-based approach for recognizing handwritten and printed Devnagari characters. In this paper we have used wavelet for feature extraction of the character. We have developed six handwritten data feature sets and six printed data feature set, each dataset is divided in four part for our experimentation. We have also used wavelet kernels and regular kernels in SVM classification. Each SVM kernel is applied on total 12 x4=48 feature datasets.

Keywords: Wavelet; MAT; Complex Wavelet; Autocorrelation.

# I. INTRODUCTION

Handwritten and printed character & digit recognition is an important topic in OCR applications and pattern classification. There are so many techniques of Pattern Recognition such as Template Matching, Neural Networks, Syntactical Analyses, Wavelet Theory, Hidden Markov Models, Bayesian theory etc have been used to develop efficient OCRs for different languages. OCR work on printed Devanagri script started in early 1970s. Some of the efforts on Devanagri character recognition are due to Sinha [1,7,8] and Mahabala [1]. Sethi and Chatterjee [5] also have done some earlier studies on Devanagri script and presented a Devanagri hand-printed numeral recognition system based on binary decision tree classifier. They [6] also used a similar technique for constrained hand-printed Devanagri character recognition. The first complete OCR system development of printed Devanagri is perhaps due to Palit and Chaudhuri [4] as well as Pal and Chaudhuri [3]. A survey for hand-written recognition of character is proposed [2]. In this paper we are using wavelet theory based feature extraction methods.

### **II. DATASET**

In the present work we have developed printed and handwritten database. For printed we have used different ISM office fonts. and for handwritten we have collect dat from people of different age groups and from different profession. This data were scanned at 600 dpi using a HP flatbed scanner and stored as gray-level images. A few samples from this database are shown in Figure 1.

| क          | का                     | तर्ण     | की  | कु       | कू     | के    | कै           | को    | कौ    | कं       | कः   |
|------------|------------------------|----------|-----|----------|--------|-------|--------------|-------|-------|----------|------|
| नहरू:      | का                     | 降        | की  | P        | Ŧ      | के    | के           | को    | कि    | क        | 毒:   |
| ap         | ंका                    | ta       | की  | Ŧ        | æ      | 市     | æ            | को    | की    | कं       | æ:   |
| क          | का                     | top      | की  | 99       | -      | के    | do           | को    | को    | àp       | \$:  |
| æ          | TOP                    | कि       | की  | 35       | ₹.     | के    | an           | को    | को    | ân       | Tr=  |
| - qp       | का                     | a        | की  | -gr      | - Ch   | के    | के           | को    | को।   | कं       | 00 : |
| æ          | का                     | A        | an  | F        | T      | के के | के           | को    | को    | 南        | वह : |
| 奉          | ক্য                    | fap.     | al  | Ŷ        | R      |       | cke (        | को    | ক্ল   | *        | Ŧ:   |
| Ŧ          | কা                     | 届        | की  | F        | R      | 1     | ₹£           | की    | को    | ÷        | 事:   |
| ₹ <b>₽</b> | 1 to the               | A        | की  | the cost | St Jan | 30    | BW. BLIBY BY | की    | 3.9.4 | T.       | \$P: |
| क          | ani                    | Tah<br>O | का  |          |        | de la | 4            | को    | को    | àn<br>àn | an:  |
|            | ani                    | कि<br>कि | की  | 37       | Ŧ      | के के | 4.4          | को    | AN    | an<br>Th | do : |
| क          | का                     |          |     | E        | \$     | \$    |              | वेत्र | को    |          | an:  |
| P          | क                      | Tab.     | æ٩  | P        | æ      | के    | ¥            | \$    | æ¥    | æ        | कः   |
| æ          | কা                     | 命        | for | P        | 18     | के    | ¥            | æ     | कार्र | Þ        | 202  |
|            | ٩                      |          |     |          |        |       |              |       |       |          |      |
| _          | 2                      |          |     |          |        |       |              |       |       |          |      |
| _          | ~                      |          |     |          |        |       |              |       |       |          |      |
|            | 2                      |          |     |          |        |       |              |       |       |          |      |
| _          | $\mathbf{\mathcal{S}}$ |          |     |          |        |       |              |       |       |          |      |
| -          | 0                      |          |     |          |        |       |              |       |       |          |      |
|            | Я                      |          |     |          |        |       |              |       |       |          |      |
|            | C.                     |          |     |          |        |       |              |       |       |          |      |
| _          | ~                      |          |     |          |        |       |              |       |       |          |      |
|            | S                      |          |     |          |        |       |              |       |       |          |      |
| _          | 7,                     |          |     |          |        |       |              |       |       |          |      |
| _          | 8                      | _        |     |          |        |       |              |       |       |          |      |
|            | 5                      |          |     |          |        |       |              |       |       |          |      |
| _          | <u> えままま そのこの</u>      |          |     |          |        |       |              |       |       |          |      |
| _          | $\sim$                 |          |     |          |        |       |              |       |       |          |      |

Figure 1.Samples from database of handwritten Devanagari characters and numerial.

The database is exclusively divided into training and test sets. The distribution of samples in these training and test sets over 10 digit classes for numerical data. For Devnagari character has about 11 vowels ('svar') and 33 consonants or ('vyanjan'), and 11 modifiers so we organized data in 55 character classes. The handwritten database is collected from marathi peoples.

# **III. FEATURE EXTRACTION**

### A. Wavelet Theory

A character image of size NXN can be decompose into its wavelet cofficents by using Mallat's pyramid algorithm [8]. Mathematically, it can be describes as the following recursive equations [9]:

| $LL^{(K)}(M,N) = [[LL^{(k-1)}_{rows} * \overline{H}]_{2\downarrow 1} * \overline{H}]_{1\downarrow 2}, m = 1,, N \mid 2^{k}; n = 1,, n \mid 2^{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (1) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $LH^{(k)}(m,n) = [[LL^{(k-1)}_{nows} * \overline{H}]_{2\downarrow 1} * \overline{G}]_{1\downarrow 2}, m = N/2^{k} + 1,, N \mid 2^{k-1}; n = 1,, N/2^{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (2) |
| $HL^{(k)}(m,n) = [[LL^{(k-1)}_{rows} * \overline{H}]_{2^{\lfloor 1}} * \overline{H}]_{1^{\lfloor 2}}, m = 1,, N/2^{k}; n = N/2^{k} + 1,, N/2^{k-1}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (3) |
| (k) $(k)$ |     |

 $\begin{array}{l} HH^{(k)}(m,n) = [[LL^{(d-1)} * \overline{G}]_{2_{11}} * \overline{G}]_{l_{12}}, m = N/2^{k} + 1, ..., N/2^{k-1}; n = N/2^{k} + 1, ..., N/2^{k-1} \quad (4) \\ \text{Here LL, LH, HL, and HH represent four subimages of the} \end{array}$ 

image being decomposed. After wavelet decomposition, the object image energy is distributed in different subbands ,each subband image contains one feature.

# B. Feature set S1: Directional – Based Wavelet Features

Kirsch nonlinear edge enhancement algorithm is used to extract statistical features from the characters and then wavelet transform is applied on these statistical features to form original features. Kirsch nonlinear edge enhancement algorithm is applied to an NxN character Image to extract horizontal, Vertical, Right-diagonal and left-diagonal directional features and global features; then 2-D wavelet transform is used to filter out the high frequency components of each directional Feature image and character image, respectively, and to convert the feature matrix into a 4x4 matrix.Apply Daubechies -4 wavelets to four directional feature matrices and the character image, and only keep 4x4 low frequency components of each as features. Total, 16x5=80 features can be extracted from each character, detail can be found in [10][11][12][13][14].

### C. Feature Set S2: MAT based Gradient Features

Medial Axial Transformation Algorithm is used to finding a binary image centre skeleton and to converts a binary image into a grayscale image with maximum values on the central skeleton of the character. we can extract MAT Gradient-based features by Normalize the MAT image with its pixel values from  $0.0 \sim 1.0$ ; we use sobel operator to convolute the normalized image to generate the amplitudes and phases of the gradient image. We count the gradient direction of each pixel of the convoluted image with nonzero gradient magnitude values as a direction feature. Finally to get the features each gradient direction is quantized into one of eight directions at  $\pi/4$  intervals. Each normalized gradient image is divided into 16 subimages. The number in each direction of each sub-image is counted as a feature. The total number of features are 4x4x8=128 detail can be found in[10][11][12][13][14].

# D. Feature Set S3: Complex Wavelet Features

A character image of size 28(N)X28(N) is divided into four sub band images : LL, LH,HL,HH at the first level of

tree and each of the sub band images has a size of  $\frac{1}{2} \times \frac{1}{2}$ . At each higher level, the decompositions are based on the LL sub band image at the previous level. The feature extraction is conducted at the third level. The number of features = 4X4(for each sub band image) \*3 (high frequency sub band image for each tree) \*2 (trees) +4X4(for each sub band image) \*2(trees)\*2(parts: real and imaginary) =160 detail can be found in[10][11][12][13][14].

# E. Feature Set S4: Median Filter Gradient Features

For this feature extraction set we convolute a character image by a 2D median filter; weo use Robert operators on the median –filtered image to generate the amplitudes and phases; and finally count the gradient direction of each pixel with nonzero gradient magnitude values as a direction feature. So the total number of features is 128 detail can be found in [10][11][12][13][14].

### F. Feature Set S5 : Image Thinning Distance Features

In this feature set, the distance features in both horizontal and vertical directions are extracted firstly, an NxN character image is thinned and the thinned image is scaled into an 8x8 array. The thinned image is scanned both horizontally and vertically respectively. In the horizontal scanning, for each pixel in the 8x8 thinned image, if the value of the pixel is 0 (black), then the distance is 0; otherwise, the distance is set to the distance from that pixel to the nearest black pixel in both horizontal directions on the scanning line. For any pixel, if there are no nearest black pixels in both directions, the distance of the pixel is set to the distance from the pixel to one of two edges, whichever has longer distance to the edge. In the vertical scanning, the same algorithm is applied. In total there are 128 features detail can be found in[10][11][12][13][14].

# G. Feature set S6: DCT – Based Wavelet Features

The discrete wavelet transform (DWT), which is based on sub-band coding is found to yield fast computation of wavelet transform .Binarize the image using Otsu method apply morphological thinning, operation.In order to extract local features compute the standard Deviation of the image block. In order to get image bock Apply DCT and divide the magnitude (image) of DCT into 4 equal non-overlapping block,Perform Wavelet (Daubechies 4) decomposition for the magnitude (image) of DCT to obtain approximation ,vertical, horizontal and diagonal coefficients.Compute the Standard Deviation for each frequency bands separately. Store all the computed features in a vector detail can be found in[14][15].

# **IV. SUPPORT VECTOR MACHINE**

The support vector machine (SVM) was first developed by Vapnik and used for classification in many applications such as handwritten digit recognition, image classification, face detection, object detection, text classification etc. [16-20]. Given training example an set  $\{(X_{1,}y_{1}),...,(X_{n},y_{n})\}, where X \in \mathbb{R}^{N}, y \in \{-1,1\}.$ The kernel function can map the training examples in input space into a feature space such that the mapped training examples are linearly separable. The problem can be converted to maximize the following dual optimization problem:

$$W(\alpha) = \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} y_{i} \alpha_{i} y_{j} K(X_{j}, X_{j}), (5)$$

Subject to

 $\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$  $\alpha_{i} \in [0, C].$ for  $i \in [1, n].$ 

The decision function becomes

$$f(x) = sign \left( \sum_{i=1}^{n} \alpha_{i} y_{i} K(X_{i}, X_{j} + b) \right), (6)$$
$$b = Y_{r} - \left( \sum_{i=1}^{l} \alpha_{i} y_{i} K(X_{r}, X_{i}) + b \right), (7)$$

Where  $(X_r, y_r)$  is any training example. We are using following SVM kernels.

# A. Polynomial

A polynomial kernel is a popular method for non-linear modeling.

 $K(X, X') = \left\langle X, X' \right\rangle^d \quad (7)$ 

Where d is the degree of the polynomial

# B. Gaussian radial Basis function

Gaussian radial basis function is defined as

$$K(X, X') = \exp\left(-\frac{\|X - X'\|^2}{2\sigma^2}\right).$$
 (8)

### C. Exponential radial basis function

Exponential radial basis function is defined as

$$K(X, X') = \exp\left(-\frac{\|X - X'\|^2}{2\sigma^2}\right).$$
 (9)

It produces a piecewise linear solution that is attractive when discontinuities are acceptable.

#### D. Spline

A spline kernel is defined as

$$K(X,X') = 1 + \langle X,X' \rangle + \frac{1}{2} \langle X,X' \rangle \min(X,X') - \frac{1}{6} \min(X,X')^3, \quad (10)$$

#### E. Wavelet

The Wavelet kernel is defined as

$$K(X, X') = \prod_{i=1}^{N} \left( \psi \left( \frac{x_1 - x_i'}{a} \right) \right), (11)$$

Where  $\Psi$  (x) = cos(1.75x) exp(-x<sup>2</sup>/2), N is the dimension of the input feature vector, and a is the scale factor.

### F. Autocorrelation Wavelet kernel

A Translation invariant kernel K(X, X') = K(X - X') is an admissible support vector (SV) kernel if and only if its Fourier transform is non-negative [21]. This can be satisfied by defining the following auto-correlation wavelet kernel [22]:

$$K(X, X') = \prod_{i=1}^{N} \left( \psi \left( \frac{x_1 - x_i}{a} \right) \right), (12)$$

Where N is the dimension of the input feature vector and a is the scale factor. It should be mentioned that we can choose any compactly supported wavelet function to construct auto correlation wavelet kernel K(x,x').Details can be found in [23].

#### V. RESULT AND OBSERVATION

Data used for the present work were collected from different individuals. We considered 15000 basic characters (vowels as well as consonants) and 10000 numerical samples of Devnagari for the experiment of the proposed work.we have collected this data from different writer.The age group of writter is from 5years child to 60 years old man.we have also consider the profession of the writer i.e. student, clerk, officer, lecturer ect.we also formed printed database of ISM office fonts, in which we have used font size of 16 and different fonts. Here we have developed the six feature sets from our data collected and six for printed characters.Each feature set is divided in four parts i.e. vowels ('svar'), consonants ('vyanjan') without modifiers, consonants ('vyanjan') with modifiers, Number. Then we have used SVM with six different kernels. The results are given in following tables for different kernels used with SVM classifier.

| Table I. | : Result polynomial kernel |
|----------|----------------------------|
|----------|----------------------------|

| polynom<br>ial kernel | Feature<br>Set | vowels<br>('svar')<br>(%) | consonants<br>('vyanjan')<br>without<br>modifiers(<br>%) | consonants<br>('vyanjan')<br>with<br>modifiers<br>(%) | Numbe<br>r |
|-----------------------|----------------|---------------------------|----------------------------------------------------------|-------------------------------------------------------|------------|
| Handwri               | S1             | 85                        | 83                                                       | 80                                                    | 89         |
| tten                  | S2             | 84                        | 81                                                       | 78                                                    | 90         |
|                       | S3             | 82                        | 79                                                       | 81                                                    | 87         |
|                       | S4             | 81                        | 84                                                       | 82                                                    | 88         |
|                       | S5             | 83                        | 85                                                       | 79                                                    | 90         |
|                       | S6             | 84                        | 85                                                       | 81                                                    | 89         |
| Printed               | S1             | 90                        | 88                                                       | 89                                                    | 89         |
|                       | S2             | 89                        | 89                                                       | 88                                                    | 91         |
|                       | S3             | 91                        | 87                                                       | 88                                                    | 92         |
|                       | S4             | 90                        | 89                                                       | 87                                                    | 90         |
|                       | S5             | 92                        | 86                                                       | 90                                                    | 91         |
|                       | S6             | 90                        | 88                                                       | 91                                                    | 92         |

Table II. Result Gaussian Radial

| Gaussia<br>n radial | Featur<br>e Set | vowels<br>('svar')<br>(%) | consonants<br>('vyanjan')<br>without<br>modifiers(%) | consonants<br>('vyanjan')<br>with<br>modifiers<br>(%) | Numbe<br>r |
|---------------------|-----------------|---------------------------|------------------------------------------------------|-------------------------------------------------------|------------|
| Handwr              | S1              | 82                        | 79                                                   | 81                                                    | 87         |
| itten               | S2              | 87                        | 80                                                   | 80                                                    | 86         |
|                     | S3              | 85                        | 81                                                   | 83                                                    | 85         |
|                     | S4              | 83                        | 85                                                   | 79                                                    | 90         |
|                     | S5              | 82                        | 84                                                   | 81                                                    | 89         |
|                     | S6              | 84                        | 85                                                   | 84                                                    | 90         |
| Printed             | S1              | 90                        | 88                                                   | 87                                                    | 88         |
|                     | S2              | 92                        | 90                                                   | 85                                                    | 89         |
|                     | S3              | 93                        | 85                                                   | 86                                                    | 90         |
|                     | S4              | 90                        | 84                                                   | 88                                                    | 86         |
|                     | S5              | 89                        | 90                                                   | 82                                                    | 84         |
|                     | S6              | 84                        | 83                                                   | 85                                                    | 89         |

| Exponen<br>tial<br>radial<br>basis | Feature<br>Set | vowels<br>('svar')<br>(%) | consonants<br>('vyanjan')<br>without<br>modifiers<br>(%) | consonant<br>s<br>('vyanjan')<br>with<br>modifiers<br>(%) | Number |
|------------------------------------|----------------|---------------------------|----------------------------------------------------------|-----------------------------------------------------------|--------|
|                                    | S1             | 80                        | 78                                                       | 81                                                        | 89     |
| Handwri                            | S2             | 79                        | 82                                                       | 87                                                        | 88     |
| tten                               | S3             | 81                        | 85                                                       | 84                                                        | 87     |
| tten                               | S4             | 78                        | 88                                                       | 85                                                        | 84     |
|                                    | S5             | 85                        | 87                                                       | 82                                                        | 84     |
|                                    | S6             | 89                        | 86                                                       | 81                                                        | 86     |
|                                    | <b>S</b> 1     | 89                        | 89                                                       | 83                                                        | 81     |
|                                    | S2             | 90                        | 87                                                       | 86                                                        | 82     |
| Printed                            | S3             | 87                        | 89                                                       | 87                                                        | 83     |
| 1 mileu                            | S4             | 91                        | 88                                                       | 85                                                        | 84     |
|                                    | S5             | 90                        | 89                                                       | 88                                                        | 81     |
|                                    | S6             | 87                        | 88                                                       | 84                                                        | 86     |

Table III. Result Exponential Radial Basis

Table IV. Result Spline kernel

| spline<br>kernel | Feature<br>Set | vowels<br>('svar')<br>(%) | consonants<br>('vyanjan')<br>without<br>modifiers<br>(%) | consonants<br>('vyanjan')<br>with<br>modifiers<br>(%) | Number |
|------------------|----------------|---------------------------|----------------------------------------------------------|-------------------------------------------------------|--------|
|                  | S1             | 87                        | 85                                                       | 85                                                    | 89     |
| TT 1             | S2             | 88                        | 84                                                       | 86                                                    | 87     |
| Handw<br>ritten  | S3             | 85                        | 86                                                       | 82                                                    | 88     |
| inten            | S4             | 87                        | 82                                                       | 83                                                    | 87     |
|                  | S5             | 85                        | 83                                                       | 82                                                    | 89     |
|                  | S6             | 87                        | 89                                                       | 81                                                    | 90     |
|                  | S1             | 90                        | 90                                                       | 89                                                    | 90     |
|                  | S2             | 88                        | 94                                                       | 92                                                    | 91     |
| Printed          | S3             | 89                        | 93                                                       | 91                                                    | 92     |
|                  | S4             | 91                        | 92                                                       | 93                                                    | 93     |
|                  | S5             | 92                        | 91                                                       | 94                                                    | 94     |
|                  | S6             | 89                        | 83                                                       | 86                                                    | 87     |

Table V. Result wavelet kernel

| wavelet<br>kernel | Feature<br>Set | vowels<br>('svar')<br>(%) | consonants<br>('vyanjan')<br>without<br>modifiers<br>(%) | consonants<br>('vyanjan')<br>with<br>modifiers<br>(%) | Number |
|-------------------|----------------|---------------------------|----------------------------------------------------------|-------------------------------------------------------|--------|
|                   | S1             | 89                        | 89                                                       | 88                                                    | 90     |
| <b>TT</b> 1       | S2             | 87                        | 88                                                       | 87                                                    | 91     |
| Handw<br>ritten   | S3             | 89                        | 85                                                       | 86                                                    | 89     |
| inten             | S4             | 85                        | 86                                                       | 85                                                    | 92     |
|                   | S5             | 86                        | 87                                                       | 84                                                    | 91     |
|                   | S6             | 87                        | 87                                                       | 88                                                    | 92     |
|                   | S1             | 90                        | 91                                                       | 89                                                    | 93     |
|                   | S2             | 89                        | 89                                                       | 87                                                    | 94     |
| Printed           | S3             | 88                        | 91                                                       | 89                                                    | 89     |
|                   | S4             | 91                        | 88                                                       | 90                                                    | 91     |
|                   | S5             | 90                        | 92                                                       | 91                                                    | 90     |
|                   | S6             | 89                        | 88                                                       | 84                                                    | 89     |

Table VI. Result Autocorrelation Wavelet kernel

| Autocorr<br>elation<br>Wavelet<br>kernel | Featur<br>e Set | vowels<br>('svar')<br>(%) | consonants<br>('vyanjan')<br>without<br>modifiers<br>(%) | consonants<br>('vyanjan')<br>with<br>modifiers<br>(%) | Number |
|------------------------------------------|-----------------|---------------------------|----------------------------------------------------------|-------------------------------------------------------|--------|
|                                          | S1              | 88                        | 87                                                       | 86                                                    | 81     |
| TT 1                                     | S2              | 85                        | 86                                                       | 82                                                    | 80     |
| Handwrit                                 | S3              | 87                        | 84                                                       | 84                                                    | 83     |
| ten                                      | S4              | 86                        | 82                                                       | 83                                                    | 79     |
|                                          | S5              | 87                        | 85                                                       | 86                                                    | 81     |
|                                          | S6              | 87                        | 81                                                       | 81                                                    | 84     |
|                                          | S1              | 90                        | 90                                                       | 90                                                    | 81     |
|                                          | S2              | 92                        | 93                                                       | 89                                                    | 82     |
| Printed                                  | S3              | 91                        | 91                                                       | 92                                                    | 83     |
| Printed                                  | S4              | 89                        | 92                                                       | 94                                                    | 84     |
|                                          | S5              | 88                        | 89                                                       | 88                                                    | 81     |
|                                          | S6              | 87                        | 87                                                       | 81                                                    | 86     |

### VI. CONCLUSION

we can conclude from abov result is that wavelets serve as a good feature set for the character images. The result obtained for recognition of Devnagari characters show that reliable classification is possible using SVMs kernels.

#### **VII. REFERENCES**

- [1] R.M.K. Sinha, H. Mahabala,,"Machine recognition of Devanagri script", IEEE Trans. System, Man Cybern. 9(1979) 435-441.
- [2] Plamondon, R. Srihari, S.N., Ecole Polytech, Montreal, Que.; Online and Offline Handwriting Recognition: A comprehensive Survey, 1EEE Transactions on Pattern Analysis and Machine Intelligence. VOL. 22, NO. 1. JANUARY 2000 63
- [3] U. Pal, B.B. Chaudhuri, "Printed Devanagri script OCR system", Vivek 10 (1997) 12-24
- [4] S. Palit, B.B. Chaudhuri,,"A feature-based scheme for the machine recognition of printed Devanagri script", P.P. Das, B.N. Chatterjee (Eda.) Pattern Recognition, Image Processing and Computer Vision, Narosa Publishing House: New Delhi, India 1995, pp. 163-168
- [5] I.K. Sethi, B. Chatterjee, "Machine recognition of constrained hand-printed Devanagri numerals", J. Inst.Electron. Telecom. Eng. 22 (1976) 532-535.
- [6] I.K. Sethi, B. Chatterjee, "Machine recognition of constrained hand-printed Devanagri characters", Pattern Recognition 9 (1977) 69-76
- [7] R.M.K. Sinha, "A syntactic pattern analysis system and its application to Devanagri script recognition", Ph.D. Thesis, Electrical Engineering Department, Indian Institute of Technology, India, 1973.
- [8] K. Jain, P. W. Duin, and J. Mao, "Statistical Pattern Recognition: A Review," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 22, no. 2, pp. 5-37, 2000.
- [9] S. G. Mallat, "A Theory for Multiresolution Signal Decomposition: the Wavelet Representation," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 11, no. 7,pp. 674-693, 1989
- [10] W.K. Pratt, Digital Image Processing. New York Wiley, 1978.

- [11] Ping Zhang, Reliable recognition of handwritten digits using a cascade ensemble classifier system and hybrid features, Ph.D. thesis, Concordia University, Montreal, P.Q., Canada, 2006.
- [12] N. G. Kingsbury, Image Processing with Complex Wavelets, Phil. Trans. R. Soc. Lond, A 357, 1999, pp. 2543-2560.
- [13] C. K. Chu, Wavelets: A Mathematical Tool for Signal Processing, Philadelphia: Society for Industrial and Applied Mathematics, 1997.
- [14] S. Mallat, A Wavelet Tour of Signal Processing, Second Edition, Academic Press, 1999.
- [15] Kannada, English, and Hindi Handwritten Script Recognition using multiple features, Proc. of National Seminar on Recent Trends in Image Processing and Pattern Recognition (RTIPPR-10), Editors: Dr. P. S. Hiremath et. al., Excel India Pub., New Delhi, ISBN: 93-80043-74-0, pp 149-152.
- [16] V.N. Vapnik, The Nature of Statistical Learning, Springer-Verlag, New York, 1995.

- [17] V.N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
- [18] C. Cortes, V.N. Vapnik, Support vector networks, Machine Learning 20 (1995) 273–297.
- [19] Q. Song, W.J. Hu, W.F. Xie, Robust support vector machine for bullet hole image classification, IEEE Transactions on Systems, Man and Cybernetics – Part C 32 (4) (2002) 440–448.
- [20] L. Zhang, W. Zhou, L. Jiao, Wavelet support vector machine, IEEE Transactions on Systems, Man, and Cybernetics – Part B 34 (1) (2004) 34–39.
- [21] Smola, B. Scholkopf, K.-R. Muller, The connection between regulation operators and support vector kernels, Neural Network 11 (1998) 637–649.
- [22] G.Y. Chen, G. Dudek, Auto-correlation wavelet support vector machine and its applications to regression, in: Proceedings of the 2nd Canadian Conference on Computer and Robot Vision, May 9– 11, British Columbia, 2005.
- [23] G.Y. Chen, W.F. Xie,Pattern recognition with SVM and dual-tree complex wavelets, Image and Vision Computing 25 (2007) 960–966