
Volume 4, No. 2, Jan-Feb 2013

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 93

ISSN No. 0976-5697

Service Oriented Architecture Governance:A Review on SOA Governance Aspects and
Comparitively Study of IT Govenance and SOA Governance

Soniya Goyal
Computer Science & Engineering

Poornima Group of Institutions Jaipur,India
goyal_soniya@rediffmail.com

Abstract: This Paper Reviews the SOA governance and its aspects. SOA governance is a concept used for activities related to exercising control over
services in a service-oriented architecture (SOA).In the first section we describe a general SOA. In section 2 we describe SOA governance, in section
3 we compare IT Governance and SOA Governance, in section 4 we describe SOA Governance aspects. Finally, in the last section we summarize.

Keywords: Service Oriented Architecture, SOA Governance, IT Governance,

I. INTRODUCTION

A. Defining Service Oriented Architecture:
Software Oriented Architecture is an emerging approach

that addresses the requirements of loosely coupled, standard
based and protocol independent distributed
computing.[10].SOA is an architectural paradigm and
discipline that may be used to build infrastructures enabling
those with needs (consumers) and those with capabilities
(providers) to interact via services across disparate domains
of technology and ownership.

Figure 1: Service Oriented Architecture

Service Oriented Architecture (SOA) principles have
been the foundation for the evolution of transactional
systems to e-business and end-to-end business process
integration. Basically Service Oriented Architecture (SOA)
is a business-centric IT architectural approach that supports
integrating your business as linked, repeatable business
tasks, or services.

II. DEFINING SERVICE ORIENTED ARCHITECTURE
GOVERNANCE

a. Governance:
There are two fundamental aspects of governance. The first

aspect involves the processes established by an organization to
determine who is empowered to make certain decisions. The
second aspect includes the mechanisms and policies that are
used by the organization to measure and control the way those
decisions are implemented. Together, these aspects form a
governance framework. Governance is the structure of
relationships and processes to direct and control the SOA
components in order to achieve the goal of the enterprises.[1]

b. IT Governance:
The processes that ensure the effective and efficient use of IT

in enabling an organization to achieve its goals

c. Enterprise Architecture Governance:
A mechanism to ensure projects apply perspective guidance

provided by the EA process

d. SOA Governance extends IT Governance:

SOA governance is an extension of IT governance, which is
an extension of corporate governance.[2] Since SOA is a joint
business/IT environment, SOA governance is an extension of IT
governance to perform two functions:

(a). to define the decision rights for the new services within
IT

(b). to define the new decision rights that now exist
between the business and IT organizations.

The function of SOA Governance is primarily to:
(a). Establish decision rights for the development,

deployment, operations and management of new
services

(b). Monitor and report decisions and results for
communicating governance results

As a specialization of IT governance, SOA governance
suggests how IT governance’s decision rights, policies,

http://en.wikipedia.org/wiki/Service-oriented_architecture�

Soniya Goyal , International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 93-98

© 2010, IJARCS All Rights Reserved 94

procedures and measures need to be modified and
augmented for successful SOA adoption.

Figure 2: SOA Governance

A. Scope of SOA Governance:
a. Delivering value to the stakeholders: investments are

expected to return a benefit to the stakeholders-this is
equally true for SOA.

b. Compliance to standards or laws: IT systems require
auditing to prove their compliance to regulations like
the Sarbanes-Oxley Act.

c. Change Management: Changing a service often has
unforeseen consequences as the service consumers are
unknown to the service providers. This makes an
impact analysis for changing a service more difficult
than usual.

d. Ensuring quality of services: The flexibility of SOA to
add new services requires extra attention for the quality
of these services. This concerns both the quality of
design and the quality of services.

B. Purpose of SOA Governance:
SOA Governance begins with mapping corporate,

business and IT policies to identify specific SOA business
services. It then defines and enforces the compliance rules
and policies for managing those services, and dictates
policies for services reuse, IT, compliance and security.SOA
Governance is only as strong as the adoption and use of
clearly defined business requirements and processes by key
stakeholders and user groups. At the core of Governance is
the ability to monitor, measure, and analyze the
organization’s SOA service Network.[5]
C. SOA Governance benefit:
a. Agility: SOA governance can facilitate fast, effective

decision making across both business and IT, and
enhance the ability to rapidly build, configure and
assemble services to form innovative solutions in the
marketplace, reducing bureaucratic obstacles that get in
the way

b. Speed to Market: SOA governance can speed
resolution when things do not work according to the
plan. People will understand who to go to and how best
to resolve issues for maximum effectiveness. This
knowledge can help speed change, enabling
organizations to react more quickly and decisively to
competitive threats and marketplace opportunities

c. Reduced Cost: Acceptance of and agreement on services
that provide the greatest value encourages adoption and
reuse of those services and reduces wasted effort and cost.
Tracking and managing to standards helps guide users and
developers to know what to do and when and where to look
for available services. As existing service assets are
leveraged across the organization, return on investment
improves.

III. COMPARISON BETWEEN IT GOVERNANCE AND
SOA GOVERNANCE

IT governance is, well, governance for IT; namely: The
application of governance to an IT organization, its people,
processes and information to guide the way those assets support
the needs of the business. SOA governance is a specialization of
IT governance that puts key IT governance decisions within the
context of the lifecycle of service components, services, and
business processes. It is the effective management of this
lifecycle that is the key goal of SOA governance.

IT governance is broader than SOA governance. IT
governance covers all aspects of IT, including issues that affect
SOA like data models and security, as well as issues beyond
SOA like data storage and desktop support. SOA governance
addresses aspects of the service life cycle such as: planning,
publishing, discovery, versioning, management, and security.

Governance becomes more important in SOA than in general
IT. In SOA, service consumers and service providers run in
different processes, are developed and managed by different
departments, and require a lot of coordination to work together
successfully. For SOA to succeed, multiple applications need to
share common services, which means they need to coordinate on
making those services common and reusable. These are
governance issues, and they're much more complex than in the
days of monolithic applications or even in the days of reusable
code and components.[4]

As companies use SOA to better align IT with the business,
they can ideally use SOA governance to improve overall IT
governance. Employing SOA governance is a key if companies
are to realize the benefits of SOA. For SOA to be successful,
SOA business and technical governance is not optional, it is
required.[4]

SOA governance builds on existing IT governance
techniques and practices. A key aspect of IT governance when
using object-oriented technologies like Java 2 Platform,
Enterprise Edition (J2EE) is code reuse. Code reuse also
illustrates the difficulties of IT governance.[4]

While IT principles are a related set of high-level statements
about how IT should be used in the business, SOA principles
define the general guiding principles to be followed while
coming up with an enterprise SOA. The IT principles should be
derived from a higher-level set of business principles that
management owns. For example, the following is a sample list
of business principles:

a. Standardize processes and technologies wherever
possible.

b. Alignment and responsiveness to negotiated business
principles.

The following could be derived from those IT principles:

Soniya Goyal , International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 93-98

© 2010, IJARCS All Rights Reserved 95

a. Architectural integrity
b. Responsive, flexible, and extendible infrastructure
c. Rapid and efficient deployment of applications

The IT principles can be mapped to the business
principles as follows: Architectural integrity (the first IT
principle) provides for standardized processes and
technologies (the first business principle) while rapid and
efficient deployment of applications (the third IT principle)
promotes alignment and responsiveness to negotiated
usiness principles (the second business principle).

Some guiding SOA principles that drive the service
model could be:

a. Compliance to standards that are industry-specific
as well as cross organizational

b. Service identification and categorization
c. Service provisioning
d. Service monitoring and tracking
e. Capability of services to be composed in order to

realize different business services
The SOA principles also influence the IT principles.[4]

IV. SOA GOVERNANCE ASPECTS

A. Service Definition:
The most fundamental aspect of SOA governance is

overseeing the creation of services. Services must be
identified, their functionality described, their behavior
scoped, and their interfaces designed. The service's
boundaries should encapsulate a reusable, context-free
capability. The interface should expose what the service
does, but hide how the service is implemented and allow for
the implementation to change or for alternative
implementations. When services are designed from scratch,
they can be designed to model the business; when they wrap
existing function, it can be more difficult to create and
implement a good business interface.

An interesting example of the potential difficulties in
defining service boundaries is where to set transactional
boundaries. A service usually runs in its own transaction,
making sure that its functionality either works completely or
is rolled back entirely. However, a service coordinator
(a.k.a. orchestrator or choreographer) may want to invoke
multiple services in a single transaction (ideally through a
specified interaction like WS-Atomic Transactions). This
task requires the service interface to expose its transaction
support so that it can participate in the caller's transaction.
But such exposure requires trust in the caller and can be
risky for the provider. For example, the provider may lock
resources to perform the service, but if the caller never
finishes the transaction (it fails to commit or roll back), the
provider will have difficulty cleanly releasing the resource
locks. As this scenario shows, the scope of a service and
who has control is sometimes no easy decision. [3]

B. Service deployment life cycle:
Services don't come into being instantaneously and then

exist forever. Like any software, they need to be planned,
designed, implemented, deployed, maintained, and
ultimately, decommissioned. The application life cycle can

be public and affect many parts of an organization, but a
service's life cycle can have even greater impact because
multiple applications can depend on a single service. While
there is no one-size-fits-all life cycle that is appropriate for all
services and all organizations, a typical service development life
cycle has five main stages:
a. Planned: A new service that is identified and is being

designed, but has not yet been implemented or still being
implemented.

b. Test: Once implemented, a service must be tested (more on
testing in a moment). Some testing may need to be
performed in production systems, which use the service as
if it were active.

c. Active: This is the stage for a service available for use and
what we typically think of as a service. It's a service, it's
available, it really runs and really works, and it hasn't been
decommissioned yet.

d. Deprecated: This stage describes a service which is still
active, but won't be for much longer. It is a warning for
consumers to stop using the service.

e. Sunsetted: This is the final stage of a service, one that is no
longer being provided. Registries may want to keep a
record of services that were once active, but are no longer
available. This stage is inevitable, and yet frequently is not
planned for by providers or consumers. [2]

One stage which may appear to be missing from this list is
"maintenance." Maintenance occurs while a service is in the
active state; it can move the service back into test to reconfirm
proper functionality, although this can be a problem for existing
users depending on an active service provider. Maintenance
occurs in services much less than you might expect;
maintenance of a service often involves not changing the
existing service, but producing a new service version.

C. Service versioning:
No sooner than a service is made available, the users of those

services start needing changes. Bugs need to be fixed, new
functionality added, interfaces redesigned, and unneeded
functionality removed. The service reflects the business, so as
the business changes the service needs to change accordingly.

With existing users of the service, however, changes need to
be made judiciously so as not to disrupt their successful
operation. At the same time, the needs of existing users for
stability cannot be allowed to impede the needs of users desiring
additional functionality.

Service versioning meets these contradictory goals. It
enables users satisfied with an existing service to continue using
it unchanged, yet allows the service to evolve to meet the needs
of users with new requirements. The current service interface
and behavior is preserved as one version, while the newer
service is introduced as another version. Version compatibility
can enable a consumer expecting one version to invoke a
different but compatible version.

While versioning helps solve these problems, it also
introduces new ones, such as the need to migrate.[5]

D. Service migration:
Even with service versioning, a consumer cannot depend on

a service -- or more specifically, a desired version of that service

Soniya Goyal , International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 93-98

© 2010, IJARCS All Rights Reserved 96

-- to be available and supported forever. Eventually, the
provider of a service is bound to stop providing it. Version
compatibility can help delay this "day of reckoning" but
won't eliminate it. Versioning does not obsolete the service
development life cycle, but it enables the life cycle to play
out over successive generations.

When a consumer starts using a service, it is creating a
dependency on that service, a dependency that has to be
managed. A management technique is for planned, periodic
migration to newer versions of the service. This approach
also enables the consumer to take advantage of additional
features added to the service.

However, even in enterprises with the best governance,
service providers cannot depend on consumer migration
alone. For a variety of reasons -- legacy code, manpower,
budget, priorities -- some consumers may not migrate in a
timely fashion. Does that mean the provider must support
the service version forever? Can the provider simply disable
the service version one day after everyone should have
already migrated? [5]

E. Service registries:
How do service providers make their services available

and known? How do service consumers locate the services
they want to invoke? These are the responsibilities of a
service registry. It acts as a listing of the services available
and the addresses for invoking them.

The service registry also helps coordinate versions of a
service. Consumers and providers can specify which version
they need or have, and the registry then makes sure to only
enumerate the providers of the version desired by the
consumer. The registry can manage version compatibility,
tracking compatibility between versions, and enumerating
the providers of a consumer's desired version or compatible
versions. The registry can also support service states, like
test and (as mentioned before) deprecated, and only make
services with these states available to consumers that want
them.

When a consumer starts using a service, a dependency
on that service is created. While each consumer clearly
knows which services it depends on, globally throughout an
enterprise these dependencies can be difficult to detect,
much less manage. Not only can a registry list services and
providers, but it can also track dependencies between
consumers and services. This tracking can help answer the
age-old question: Who's using this service? A registry aware
of dependencies can then notify consumers of changes in
providers, such as when a service becoming deprecated.

IBMâ€™s WebSphere Service Registry and Repository
is a product for implementing service registries. It acts as a
repository for service definitions, and registry for providers
of those services. It provides a centralized directory for
developers to find the services available for reuse, as well as
use at runtime for service consumers and enterprise service
buses (ESBs) to find providers and the addresses for
invoking them.[9]

F. Service message model:
In a service invocation, the consumer and provider must

agree on the message formats. When separate development
teams are designing the two parts, they can easily have difficulty
finding agreement on common message formats. Multiply that
by dozens of applications using a typical service and a typical
application using dozens of services, and you can see how
simply negotiating message formats can become a full-time task.

A common approach for avoiding message format chaos is to
use a canonical data model. A canonical data model is a
common set of data formats that is independent of any one
application and shared by all applications. In this way,
applications don't have to agree on message formats, they can
simply agree to use existing canonical data formats. A canonical
data model addresses the format of the data in the message, so
you still need agreement around the rest of the message format --
such as header fields, what data the message payload contains,
and how that data is arranged -- but the canonical data model
goes a long way toward reaching agreement.

A central governance board can act as a neutral party to
develop a canonical data model. As part of surveying the
applications and designing the services, it can also design
common data formats to be used in the service invocations.[5]

G. Service monitoring:
A composite application, one that combines multiple

services, is only as reliable as the services it depends on. Since
multiple composite applications can share a service, a single
service failure can affect many applications. SLAs must be
defined to describe the reliability and performance consumers
can depend on. Service providers must be monitored to ensure
that they're meeting their defined SLAs.

A related issue is problem determination. When a composite
application stops working, why is that? It may be that the
application head, the UI that the users interface with, has
stopped running. But it can also be that the head is running fine,
but some of the services it uses, or some of the services that
those services use, are not running properly. Thus it's important
to monitor not just how each application is running, but also
how each service (as a collection of providers) and individual
providers are also running. Correlation of events between
services in a single business transaction is critical.

Such monitoring can help detect and prevent problems
before they occur. It can detect load imbalances and outages,
providing warning before they become critical, and can even
attempt to correct problems automatically. It can measure usage
over time to help predict services that are becoming more
popular so that they can run with increased capacity.[8]

H. Service ownership:
When multiple composite applications use a service, which

is responsible for that service? Is that person or organization
responsible for all of them? One of them; if so, which one? Do
others think they own the service? Welcome to the ambiguous
world of service ownership.

Any shared resource is difficult to acquire and care for,
whether it's a neighborhood park, a reusable Java framework, or
a service provider. Yet a needed pooled resource provides value
beyond any participant's cost: Think of a public road system.

Soniya Goyal , International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 93-98

© 2010, IJARCS All Rights Reserved 97

Often an enterprise organizes its staff reporting structure
and finances around business operations. To the extent that
an SOA organizes the enterprise's IT around those same
operations, the department responsible for certain operations
can also be responsible for the development and run time of
the IT for those operations. That department owns those
services. Yet the services and composite applications in an
SOA often don't follow an enterprise's strict hierarchical
reporting and financial structure, creating gaps and overlap
in IT responsibilities.

A related issue is user roles. Because a focus of SOA is
to align IT and business, and another focus is enterprise
reuse, many different people in an organization have a say in
what the services will be, how they will work, and how
they'll be used. These roles include business analyst,
enterprise architect, software architect, software developer,
and IT administrator. All of these roles have a stake in
making sure the services serve the enterprise needs and
work correctly.

An SOA should reflect its business. Usually this means
changing the SOA to fit the business, but in cases like this, it
may be necessary to change the business to match the SOA.
When this is not possible, increased levels of cooperation
are needed between multiple departments to share the
burden of developing common services. This cooperation
can be achieved by a cross-organizational standing
committee that, in effect, owns the services and manages
them. [7]

I. Service testing:
The service deployment life cycle includes the test stage,

during which the team confirms that a service works
properly before activating it.

SOA increases the opportunity to test functionality in
isolation and increases the expectation that it works as
intended. However, SOA also introduces the opportunity to
retest the same functionality repeatedly by each new
consumer who doesn't necessarily trust that the services it
uses are consistently working properly. Meanwhile, because
composite applications share services, a single buggy
service can adversely affect a range of seemingly unrelated
applications, magnifying the consequences of those
programming mistakes.

To leverage the reuse benefits of SOA, service
consumers and providers need to agree on an adequate level
of testing of the providers and need to ensure that the testing
is performed as agreed. Then a service consumer need only
test its own functionality and its connections to the service,
and can assume that the service works as advertised. [6]

J. Service security:
Security is a difficult but necessary proposition for any

application. Functionality needs to be limited to authorized
users and data needs to be protected from interception. By
providing more access points to functionality (that is,
services), SOA has the potential to greatly increase
vulnerability in composite applications.

SOA creates services that are easily reusable, even by
consumers who ought not to reuse them. Even among

authorized users, not all users should have access to all data the
service has access to. For example, a service for accessing bank
accounts should only make a particular user's accounts available,
even though the code also has access to other accounts for other
users. Some consumers of a service have greater needs than
other consumers of the same service for data confidentiality,
integrity, and no repudiation.

Service invocation technologies must be able to provide all
of these security capabilities .Access to services has to be
controlled and limited to authorized consumers. User identity

Access to services has to be controlled and limited to
authorized consumers. User identity must be propagated into
services and used to authorize data access. Qualities of data
protection have to be represented as policies within ranges. This
enables consumers to express minimal levels of protection and
maximum capabilities and to be matched with appropriate
providers who may, in fact, include additional protections.[5]

V. DISCUSSION AND CONCLUSIONS

This paper reviewed the SOA Governance and its various
aspects. SOA governance has many aspects, such as: Service
definition (the scope, interface, and boundaries of a
service),Service deployment lifecycle (the lifecycle
stages),Service versioning (including compatibility),Service
migration (deprecation and sunsetting),Service registries
(dependencies),Service message model (canonical data
models),Service monitoring (problem determination),Service
ownership (corporate organization),Service testing (duplicated
testing),Service security (including ranges of acceptable
protection).This paper also addressed the importance of
implementing an effective SOA and IT governance in any
enterprise which considers IT to be one of its key assets to
generating revenue and staying competitive in the market.
Governance is about creating a system of incentives and
penalties to influence the right behavior. The best way to
incentivize the organization to meet SOA Governance objectives
is to establish formal goals, by which each IT group will be
evaluated throughout the year.

VI. REFERENCES

[1]. Michael Niemann, “Governance for SOA:An Implementation
Approach”, CEUR workshop proceedings vol-374,March
2008,p 5, ,ISSN 16/3-0073.

[2]. William A. Brown,Garry Moore,William Tegan,”SOA
Governance-IBM’s approach” , White paper, August 2006.

[3]. David J.N. Artus, "SOA realization: Service design principles,"
IBM developerWorks; February 2006 .

[4]. Tilak Mitra, "A case for SOA governance," IBM
developerWorks; August 2005.

[5]. Tony Cowan,"Services security with WebSphere Application
Server V6, Part 1: Introduction to security architectures," IBM
developerWorks; April 2006.

[6]. Bobby Woolf,"SOA development using service mocks," IBM
developerWorks; December 2005.

http://www.ibm.com/developerworks/webservices/library/ws-soa-design/�
http://www.ibm.com/developerworks/webservices/library/ws-soa-govern/�
http://www.ibm.com/developerworks/websphere/techjournal/0603_cowan/0603_cowan.html�
http://www.ibm.com/developerworks/websphere/techjournal/0603_cowan/0603_cowan.html�
http://www.ibm.com/developerworks/websphere/techjournal/0603_cowan/0603_cowan.html�
http://www.ibm.com/developerworks/webservices/library/ws-mocks/�

Soniya Goyal , International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 93-98

© 2010, IJARCS All Rights Reserved 98

[7]. Mandy Chessell and Birgit Schmidt-Wesche,"SOA
programming model for implementing Web services, Part
10: SOA user roles," IBM developerWorks; February
2006.

[8]. Wilfred Jamison and Richard Duggan,"Monitor business
IT services using IBM Tivoli Monitoring for Transaction
Performance," IBM developerWorks; June 2005.

[9]. Jenny Ang, Luba Cherbakov, and Mamdouh Ibrahim, "SOA
antipatterns: The obstacles to the adoption and successful
realization of Service-Oriented Architecture," IBM
developerWorks; November 2005

[10]. Mike P.Papazoglou and Willem-jan van den Heuvel,” Service
Oriented Architectures:approaches, technologies and research
issues”,The VLDB Journal 16,2007,p389-415,doi
10.1007/s00778-007-0044-3

http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel10/�
http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel10/�
http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel10/�
http://www.ibm.com/developerworks/webservices/library/ws-soa-progmodel10/�
http://www.ibm.com/developerworks/ibm/library/i-odoebp10/�
http://www.ibm.com/developerworks/ibm/library/i-odoebp10/�
http://www.ibm.com/developerworks/ibm/library/i-odoebp10/�
http://www.ibm.com/developerworks/ibm/library/i-odoebp10/�
http://www.ibm.com/developerworks/webservices/library/ws-antipatterns/index.html�
http://www.ibm.com/developerworks/webservices/library/ws-antipatterns/index.html�
http://www.ibm.com/developerworks/webservices/library/ws-antipatterns/index.html�
http://www.ibm.com/developerworks/webservices/library/ws-antipatterns/index.html�

	INTRODUCTION
	Defining Service Oriented Architecture:

	DEFINING SERVICE ORIENTED ARCHITECTURE GOVERNANCE
	Governance:
	IT Governance:
	Enterprise Architecture Governance:
	SOA Governance extends IT Governance:

	COMPARISON BETWEEN IT GOVERNANCE AND SOA GOVERNANCE
	SOA GOVERNANCE ASPECTS
	Service Definition:
	Service deployment life cycle:
	Service versioning:
	Service migration:
	Service registries:
	Service message model:
	Service monitoring:
	Service ownership:
	Service testing:
	Service security:

	DISCUSSION AND CONCLUSIONS
	REFERENCES

