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Abstract: Distributed stream query services must simultaneously process a large number of complex, continuous queries with stringent performance 
requirements while utilizing distributed processing resources. Query addresses the problem of optimizing multiple distributed stream queries that are 
executing simultaneously in distributed data stream systems. Research to develop top-down, bottom-up, and hybrid algorithms for exploiting 
operator-level reuse through hierarchical network partitions. 
 
Keywords:  Query Optimization, hierarchical network, distributed queries. 

I. INTRODUCTION 

All Recently, technological advancements that have driven 
down the price of handhelds, cameras, phones, sensors, and 
other mobile devices, have benefited not only consumers but 
the computational science community. As a result, a new field 
called data-driven computing is emerging, where 
computationally intensive applications often need real-time 
responses to data streams from distributed locations. These 
stream sources can have vastly varying generation rates and 
event sizes. Responsiveness, i.e., the ability of a data driven 
application to respond in a timely manner, is critical.  

Stream query processing has been an active research area 
in recent years [1, 2] yet limited work has been done on query 
optimization for such high performance stream applications. 
Especially, to our knowledge, the core part of stream query 
optimization, i.e., the cost model, has not been systematically 
studied in this context.  

As infinite event sequences, data streams introduce new 
challenges to query plan selection. First, since cardinality is 
not available for streams, the cardinality-based cost model 
loses its usefulness under the stream processing scenario. 
Second, data are not guaranteed to be fully processed. If a 
query processor does not process stream data in time, the data 
will be lost forever once they are removed from a buffer. 
Hence, unlike traditional query processing where all input data 
are processed, stream query processing may yield output based 
on a subset of input data events. Therefore, besides 
computation cost, output completeness, which is represented 
by output rate, is another important aspect for evaluating 
stream query plans. 

In response to these challenges, develop a new cost model 
that factors in both output completeness and computation cost 
for stream query processing.  Observe that these two metrics 
are not dependent variables, although they are relevant. 

 
For the past twenty years, query optimization has been an 

intensively studied area of database system research.  Most 
modern optimizers are cost-based in that they decide between 
execution plans by minimizing the estimated cost of 
evaluating the query. A fundamental technique used in cost 
estimation is cardinality estimation – optimizers take as input 
the cardinalities of tables at the leaves of a query tree, and then 
use selectivities of operators in the tree to estimate the 
cardinality of the input to operators further up in the tree.  To 
convert cardinalities to costs, optimizers use functions that 
estimate the cost per tuple of each operator.  While this 
approach is not perfect, it is very effective in most traditional 
DBMS applications.  However, as we move to the Internet 
domain, this approach, in its current form, may not even 
apply. The reason for this is that if the leaves of the query tree 
correspond to incoming network streams, not only is their 
cardinality often not known, in some cases it may not even be 
well defined (e.g., in the case of infinite streams.)  To allow 
the optimization of queries in the presence of streaming data, a 
new approach is needed.  In this paper propose rate-based 
optimization for such applications. 

The conventional approach to stream query processing 
used in many existing distributed data stream management 
systems [6], [7] consists of three consecutive phases: query 
planning, query deployment, and query adaptation. 
Concretely, the system constructs a query plan (e.g., the 
stream query processing should follow a specified join 
ordering) at compile time and deploys this plan at runtime to 
improve performance. 

Similarly, a predefined join order may involve a transfer or 
a processing of an intermediate result to a node that is 
currently unavailable, thus causing the query to halt even 
though an alternate join order exists and is available. 
Furthermore, given that each query plan is computed at 
compile time independently and once for all, the predefined 
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join order from one query plan may prevent us from reusing 
the results of an already deployed join from another query at 
runtime. This limits the scope of the adaptation which aims at 
exploiting runtime environment properties to further optimize 
the efficiency of distributed stream query deliveries. One of 
the key ideas in our framework is to use hierarchical network 
partitions to scalable exploit various opportunities for 
operator-level reuse in the processing of multiple stream 
queries. 

II. LITERATURE SURVEY 

The seminal paper on cost-based query optimization was 
[8]. Other optimization models have been proposed, especially 
in the  areas of parallel query optimization, using cost models 
that are  not cardinality-based but instead deal with resource 
scheduling and allocation. The optimizer could optimize for 
the first result  [9], while the optimization criterion was a 
combination of execution time and resource utilization. 
Modeling streaming behavior through input rates and 
modeling network traffic as Poisson random processes have 
appeared in many contexts, including [11], although to our 
knowledge it has not been applied in the context of query 
optimization.  

A lot of work has been carried out in the areas of non 
blocking symmetric join algorithms [12], which aim at 
producing plans that do not block their execution because of 
slow input streams.  Framework indicates that with variable 
rate sources it is beneficial to employ such algorithms. In the 
same context, methodologies aiming at avoiding blocked parts 
of an execution plan at runtime [13] can benefit from our 
framework of rate optimization by starting with and/or 
switching to plans for which the predicted output rate is 
maximized. 

Fragment 

 
Figure 2.1  Query Fragment Set 

The overload management problem in distributed stream 
processing systems has close relevance to the congestion 
control problem in computer networks [8].  

Congestion in computer networks mainly arises when 
routers run out of buffer space, either because their processors 
cannot keep up with the incoming input data or because the 

outgoing link has a smaller bandwidth capacity than the 
incoming link [10].  

The most closely related areas of work come from the 
adaptive query execution and dynamic re-optimization 
frameworks of [14] and [15]. In these frameworks, the main 
concern is to dynamically monitor an execution plan and 
identify points of sub-optimal performance. Once such points 
are identified, the system can choose to reorganize the plan in 
a way that is expected to yield better performance. 

III. SYSTEM  METHODOLOGY 

Multiple continuous queries may be executing 
simultaneously and hundreds of nodes, distributed across 
multiple geographic locations are available for processing. In 
order to answer these queries, data streams from multiple 
sources need to be joined based on  the attribute, perhaps 
using something like a symmetric hash join. The modern 
enterprise applications [16], scientific collaborations across 
wide-area networks and large-scale distributed sensor systems 
are placing growing demands on distributed streaming systems 
to provide capabilities beyond basic data transport such as 
wide-area data storage and continuous and opportunistic 
processing. 

A. Problem definition: 
Stream joins are performed using standard techniques 

assume that potentially, any  operator can be deployed at any 
node in the system. Given a  query, there could possibly be 
multiple execution plans that  the system could follow to 
produce results. It assume that all such plans produce 
equivalent results. 

The definition addresses the continual query equivalent of 
“select-project-join” queries that involve simple selection, 
projection, and join operations on one or more data streams. 
The focus of research  assume stream joins are performed 
using standard techniques  that potentially, any operator can 
be deployed at any node in the system.  

B. Stream Query Optimization Algorithms and 
Infrastructure: 
Distributed query optimization, dynamic programming 

does not result in any pruning of the search space without loss 
of optimality since the query optimization problem in 
distributed data stream systems does not exhibit the property 
of optimal substructure [4].An optimal execution plan, 
traditional query optimizers typically perform an exhaustive 
search of the solution space using dynamic programming, 
estimating the cost of each plan using precomputed statistics. 

The search space increases exponentially with an increase 
in the query size. Certainly, in a system with thousands of 
nodes, such an exhaustive search even with dynamic 
programming would be infeasible. In the case of distributed 
query optimization, dynamic programming does not result in 
any pruning of the search space without loss of optimality 
since the query optimization problem in distributed data 
stream systems does not exhibit the property of optimal 
substructure. 
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C. Hierarchical Network Clusters: 
It organize physical network nodes into a virtual clustering 

hierarchy, by clustering nodes based on link costs which 
represents the cost of transmitting a unit amount of data across 
the link.  Refer to this clustering parameter as internode  or 
cluster traversal cost. Nodes that are close to each other in the 
sense of this clustering parameter are allocated to the same 
cluster.  Allow no more than maxcs nodes per cluster 

 

 
Figure 3.1. Hierarchical Network Clusters 

At the lowest level, Level 1, the physical nodes are 
organized into clusters of maxcs or fewer nodes. Each node 
within a cluster is aware of the internode traversal cost 
between every pair of nodes in the cluster. A single node from 
each cluster is then selected as the coordinator node for that 
cluster and promoted to the next level, Level 2. There may be 
a set of nodes in a cluster, each of which qualifies to be a 
representative coordinator node as long as they do not modify 
the ordering of euclidean distances between the clusters. 
Nodes in Level 2 are again clustered according to average 
internode traversal cost, with the cluster size again limited by 
maxcs. This process of clustering and coordinator selection 
continues until Level N. 

The request is propagated up the hierarchy and the top-
level coordinator assigns it to the top-level node that is closest 
to the new node. This top-level node passes the request down 
to its child that is closest to the new node. 

The virtual hierarchy is robust enough to adapt as 
necessary. It can handle both node joins and departures at 
runtime. Failure of coordinator nodes can be handled by 
maintaining active backups of the coordinator node within 
each cluster.  

Situations where nodes in the entire system either are all 
widely distributed or are all close to one another in terms of 
network cost, may result in loosely defined clusters, which 
further impact the quality of coordinator nodes selected. Such 
situations are relatively rare. In the worst case, it is possible to 
choose appropriate values for maxcs in order to improve 
accuracy of the planning process. The node distribution in the 

network might possibly result in loosely defined clusters, it 
may be beneficial to compare planning decisions across 
multiple hierarchical structures with different values of maxcs. 

D. Advertisements of Stream: 
The stream advertisements are aggregated by the 

coordinator nodes and propagated up the hierarchy, as a result 
of the advertisement of derived stream sources, nodes are now 
aware of operators that are readily available at multiple 
locations in the network and can be reused with no additional 
cost involved for transporting input data. The advertisements 
are one-time messages exchanged only at the initial time of 
operator instantiation and deployment. The coordinator node 
at each level is aware of all the stream sources available in its 
underlying cluster. Advertisements of derived stream sources 
are key to operator reuse in our algorithms.  

E. Top-Down Algorithm: 
The Top-Down algorithm, the query starts at the top of the 

hierarchy, and is recursively planned by progressively 
partitioning the query and assigning subqueries to 
progressively smaller portions of the network. The Top-Down 
algorithm bounds suboptimality by making deployment 
decisions using bounded approximations of the underlying 
network, specifically, each coordinator’s estimate of the 
distance between its cluster and other clusters. The algorithm 
works as follows, The query Q is submitted as input to the top-
level (say level t) coordinator. The coordinator exhaustively 
constructs the possible query trees for the query, and then for 
each such tree constructs a set of all possible node 
assignments within its current cluster. The cost for each 
assignment is calculated and the assignment with least cost is 
chosen. An assignment of operators to nodes partitions the 
query into a number of views, each allocated to a single node 
at level t. Each node is then responsible for instantiating such 
a view using sources (base or derived) available within its 
underlying cluster.  

F. The Bottom-Up Algorithm: 
Describe the Bottom-Up algorithm which propagates 

queries up the hierarchy, progressively constructing complete 
query execution plans. Unlike the Top-Down approach, the 
Bottom-Up algorithm does not provide a good bound on the 
suboptimality of the solution. However, in return, the Bottom-
Up approach is usually able to further reduce the search space 
compared to the Top-Down algorithm. Thus, in situations 
where quick planning is needed, the Bottom-Up algorithm 
may be appropriate, perhaps to be replaced later with a Top-
Down deployment. Queries are registered at their sink. When 
a new query Q over base stream sources arrives at a sink at 
Level 1, the sink informs its coordinator at Level 2.  

G. The NPC Algorithm: 
Develop a heuristic-based hybrid algorithm that combines 

the strengths of both the Top-Down and Bottom-Up 
algorithms the Net Present Cost (NPC) algorithm. The NPC 
algorithm is a probabilistic algorithm that guides the planning 
process based on cost estimates of choosing a join order 
locally or delaying the decision. That combines the advantages 
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of reduced search space from the Bottom-Up algorithm and 
improved query planning from the Top-Down algorithm.  

Then, the estimated NPC  is computed as follows  

 
In order to compute Ω l, expected future costs of delaying 

the query partitioning decision to the next level. The NPC 
algorithm then performs query partitioning at the current level 
l if Ω≥T l . Unlike the other algorithms, the NPC algorithm 
requires knowledge of the hierarchical structure in terms of 
height, number of nodes in a cluster, and maximum 
intracluster traversal costs at each level. It also requires 
knowledge of join selectivities. Since the NPC algorithm 
attempts to avoid poor join orders, it is expected to perform 
better than the Bottom-Up algorithm. Since it continues to 
make query partitioning decisions based only on efficiency of 
join orders, oblivious to the availability of reuse opportunities, 
it is expected to produce less efficient deployments as 
compared to the Top-Down algorithm. 

IV. EXPERIMENTAL RESULTS 

Experiments focus on  the effect of the maxcs clustering  
parameter on the trade-off between suboptimality and search 
space, the effectiveness of our algorithms as compared to 
existing approaches, and the efficiency of our algorithms 
compared to an optimal solution computed  through an 
exhaustive search. Our experiments show that our algorithms 
result in acceptable suboptimality, the Top- Down algorithm is 
suboptimal by only 10 percent and the Bottom-Up algorithm 
by 34 percent while exploring less than 1 percent of the total 
search space. At the same time, our algorithms clearly 
outperform existing approaches. For example, the Bottom-Up 
algorithm reduces cost by nearly 25 percent when compared to 
the In-network [5] algorithm while exploring only a small 
fraction of the search space. Also, the NPC algorithm allows 
us to further fine tune the trade-off between search space and 
suboptimality and help us achieve plans that were close to the 
Top-Down algorithm in optimality and Bottom-Up algorithm 
in search space. 

Stream query adopt the “network usage” metric [9] to 
compute costs of query deployments. Recall that, the network 
usage  of a query  q represents the total amount of data that is 
in-transfor a query at any given instant. As described in later ,  
network is organized, into a virtual clustering hierarchy based 
on link costs which  represent the cost of transmitting a 
unamount of data  across the link. Used the hierarchical [8] 
clustering in  order to create the clustering hierarchy.   

A. Search space in Cluster Size: 
An exhaustive search of all possible query plans and all 

possible placement of operators may not be feasible as  
network size increases. For example, an exhaustive search on 
a 128-node network for the deployment of a single query  over 
five stream queries required enumeration of approximately 
4:83* 1010 plans that took nearly 3 hs to complete. In this 
section, It demonstrate how the maxcs  parameter can be   used 
to tune the trade-off between the suboptimality of the heuristic 

and minimizing the search space. The experiments were 
conducted using the synthetic  workload described in later. 

B. Network Size in Scalablity: 
This experiment, study the scalability of the algorithms 

with respect to the number of deployments considered as 
network size increases. It generated a workload of 100 queries 
using 10 streams with each query performing joins over n 
streams. Research measured the average number of 
deployments considered over n different transit-stub 
topologies of different sizes generated using sinks were placed 
at random nodes in the network. 

Figure shows the deployments considered for a single 
query with Bottom-Up and Top-Down algorithms with maxcs 
32 and exhaustive search. The figure also shows how the 
average case compares with the worst case analytical bounds.   
Again, the value of maxcs was set to 32 to produce the largest 
feasible search space.  

Query processing that increase in Exhaustive is offset by 
the decrease in such that the worst case bounds are nearly 
identical across the different networks. Note that the y-axis 
has a log scale. 

 
Figure  4.1.  Network scalability 

V. CONCLUSION 

In Hierarchical network partitions that integrates query 
planning and distributed stream query optimization 
framework. The framework consists of two key components, a 
hierarchical clustering of network nodes that allows network 
approximations and stream advertisements that enable 
operator reuse. The network partitions algorithms are Top-
Down, Bottom- Up, and Hybrid use the search space 
reduction. Which exploit different ways of using hierarchical 
network partitions for operator-level reuse and search space 
reduction. Show that although Top-Down and Bottom-Up 
algorithms can both choose efficient deployments while 
exploring only a small fraction of the search space, the Top 
Down algorithm is more effective in limiting the 
suboptimality of the solutions, while the Bottom-Up approach 
is more effective in reducing the search space and the time-to-
deployment.  
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Stream advertisement and hierarchical clusters enable to 
use the operator reuse. The hybrid algorithm NPC find 
efficient execution plans while examining a very small search 
space, allowing us to further tune the trade-off between search 
space and algorithm suboptimality.  Show through both 
experimental and analytical results that our algorithms are 
efficient and scalable at costs comparable to optimal while 
exploring much fewer plans. 
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