
Volume 4, No. 2, Jan-Feb 2013

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 119

ISSN No. 0976-5697

Implementation of Stream Query Optimization Framework in Distributed Data Mining
S.Priya*

Research Scholar, Department of Computer Science
Gobi Arts& Science College, Gobichettipalayam India

Priyasubramani88@yahoo.com

B.Srinivasan
Associative Professor, Department of Computer Science
Gobi Arts& Science College, Gobichettipalayam India

srinivasan_gasc@yahoo.com

Mr.P.Narendran
Associative Professor, Department of Computer Science
Gobi Arts& Science College, Gobichettipalayam, India

narendranp@gmail.com

Abstract: Distributed stream query services must simultaneously process a large number of complex, continuous queries with stringent performance
requirements while utilizing distributed processing resources. Query addresses the problem of optimizing multiple distributed stream queries that are
executing simultaneously in distributed data stream systems. Research to develop top-down, bottom-up, and hybrid algorithms for exploiting
operator-level reuse through hierarchical network partitions.

Keywords: Query Optimization, hierarchical network, distributed queries.

I. INTRODUCTION

All Recently, technological advancements that have driven
down the price of handhelds, cameras, phones, sensors, and
other mobile devices, have benefited not only consumers but
the computational science community. As a result, a new field
called data-driven computing is emerging, where
computationally intensive applications often need real-time
responses to data streams from distributed locations. These
stream sources can have vastly varying generation rates and
event sizes. Responsiveness, i.e., the ability of a data driven
application to respond in a timely manner, is critical.

Stream query processing has been an active research area
in recent years [1, 2] yet limited work has been done on query
optimization for such high performance stream applications.
Especially, to our knowledge, the core part of stream query
optimization, i.e., the cost model, has not been systematically
studied in this context.

As infinite event sequences, data streams introduce new
challenges to query plan selection. First, since cardinality is
not available for streams, the cardinality-based cost model
loses its usefulness under the stream processing scenario.
Second, data are not guaranteed to be fully processed. If a
query processor does not process stream data in time, the data
will be lost forever once they are removed from a buffer.
Hence, unlike traditional query processing where all input data
are processed, stream query processing may yield output based
on a subset of input data events. Therefore, besides
computation cost, output completeness, which is represented
by output rate, is another important aspect for evaluating
stream query plans.

In response to these challenges, develop a new cost model
that factors in both output completeness and computation cost
for stream query processing. Observe that these two metrics
are not dependent variables, although they are relevant.

For the past twenty years, query optimization has been an

intensively studied area of database system research. Most
modern optimizers are cost-based in that they decide between
execution plans by minimizing the estimated cost of
evaluating the query. A fundamental technique used in cost
estimation is cardinality estimation – optimizers take as input
the cardinalities of tables at the leaves of a query tree, and then
use selectivities of operators in the tree to estimate the
cardinality of the input to operators further up in the tree. To
convert cardinalities to costs, optimizers use functions that
estimate the cost per tuple of each operator. While this
approach is not perfect, it is very effective in most traditional
DBMS applications. However, as we move to the Internet
domain, this approach, in its current form, may not even
apply. The reason for this is that if the leaves of the query tree
correspond to incoming network streams, not only is their
cardinality often not known, in some cases it may not even be
well defined (e.g., in the case of infinite streams.) To allow
the optimization of queries in the presence of streaming data, a
new approach is needed. In this paper propose rate-based
optimization for such applications.

The conventional approach to stream query processing
used in many existing distributed data stream management
systems [6], [7] consists of three consecutive phases: query
planning, query deployment, and query adaptation.
Concretely, the system constructs a query plan (e.g., the
stream query processing should follow a specified join
ordering) at compile time and deploys this plan at runtime to
improve performance.

Similarly, a predefined join order may involve a transfer or
a processing of an intermediate result to a node that is
currently unavailable, thus causing the query to halt even
though an alternate join order exists and is available.
Furthermore, given that each query plan is computed at
compile time independently and once for all, the predefined

S.Priya et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 119-123

© 2010, IJARCS All Rights Reserved 120

join order from one query plan may prevent us from reusing
the results of an already deployed join from another query at
runtime. This limits the scope of the adaptation which aims at
exploiting runtime environment properties to further optimize
the efficiency of distributed stream query deliveries. One of
the key ideas in our framework is to use hierarchical network
partitions to scalable exploit various opportunities for
operator-level reuse in the processing of multiple stream
queries.

II. LITERATURE SURVEY

The seminal paper on cost-based query optimization was
[8]. Other optimization models have been proposed, especially
in the areas of parallel query optimization, using cost models
that are not cardinality-based but instead deal with resource
scheduling and allocation. The optimizer could optimize for
the first result [9], while the optimization criterion was a
combination of execution time and resource utilization.
Modeling streaming behavior through input rates and
modeling network traffic as Poisson random processes have
appeared in many contexts, including [11], although to our
knowledge it has not been applied in the context of query
optimization.

A lot of work has been carried out in the areas of non
blocking symmetric join algorithms [12], which aim at
producing plans that do not block their execution because of
slow input streams. Framework indicates that with variable
rate sources it is beneficial to employ such algorithms. In the
same context, methodologies aiming at avoiding blocked parts
of an execution plan at runtime [13] can benefit from our
framework of rate optimization by starting with and/or
switching to plans for which the predicted output rate is
maximized.

Fragment

Figure 2.1 Query Fragment Set

The overload management problem in distributed stream
processing systems has close relevance to the congestion
control problem in computer networks [8].

Congestion in computer networks mainly arises when
routers run out of buffer space, either because their processors
cannot keep up with the incoming input data or because the

outgoing link has a smaller bandwidth capacity than the
incoming link [10].

The most closely related areas of work come from the
adaptive query execution and dynamic re-optimization
frameworks of [14] and [15]. In these frameworks, the main
concern is to dynamically monitor an execution plan and
identify points of sub-optimal performance. Once such points
are identified, the system can choose to reorganize the plan in
a way that is expected to yield better performance.

III. SYSTEM METHODOLOGY

Multiple continuous queries may be executing
simultaneously and hundreds of nodes, distributed across
multiple geographic locations are available for processing. In
order to answer these queries, data streams from multiple
sources need to be joined based on the attribute, perhaps
using something like a symmetric hash join. The modern
enterprise applications [16], scientific collaborations across
wide-area networks and large-scale distributed sensor systems
are placing growing demands on distributed streaming systems
to provide capabilities beyond basic data transport such as
wide-area data storage and continuous and opportunistic
processing.

A. Problem definition:
Stream joins are performed using standard techniques

assume that potentially, any operator can be deployed at any
node in the system. Given a query, there could possibly be
multiple execution plans that the system could follow to
produce results. It assume that all such plans produce
equivalent results.

The definition addresses the continual query equivalent of
“select-project-join” queries that involve simple selection,
projection, and join operations on one or more data streams.
The focus of research assume stream joins are performed
using standard techniques that potentially, any operator can
be deployed at any node in the system.

B. Stream Query Optimization Algorithms and
Infrastructure:
Distributed query optimization, dynamic programming

does not result in any pruning of the search space without loss
of optimality since the query optimization problem in
distributed data stream systems does not exhibit the property
of optimal substructure [4].An optimal execution plan,
traditional query optimizers typically perform an exhaustive
search of the solution space using dynamic programming,
estimating the cost of each plan using precomputed statistics.

The search space increases exponentially with an increase
in the query size. Certainly, in a system with thousands of
nodes, such an exhaustive search even with dynamic
programming would be infeasible. In the case of distributed
query optimization, dynamic programming does not result in
any pruning of the search space without loss of optimality
since the query optimization problem in distributed data
stream systems does not exhibit the property of optimal
substructure.

S.Priya et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 119-123

© 2010, IJARCS All Rights Reserved 121

C. Hierarchical Network Clusters:
It organize physical network nodes into a virtual clustering

hierarchy, by clustering nodes based on link costs which
represents the cost of transmitting a unit amount of data across
the link. Refer to this clustering parameter as internode or
cluster traversal cost. Nodes that are close to each other in the
sense of this clustering parameter are allocated to the same
cluster. Allow no more than maxcs nodes per cluster

Figure 3.1. Hierarchical Network Clusters

At the lowest level, Level 1, the physical nodes are
organized into clusters of maxcs or fewer nodes. Each node
within a cluster is aware of the internode traversal cost
between every pair of nodes in the cluster. A single node from
each cluster is then selected as the coordinator node for that
cluster and promoted to the next level, Level 2. There may be
a set of nodes in a cluster, each of which qualifies to be a
representative coordinator node as long as they do not modify
the ordering of euclidean distances between the clusters.
Nodes in Level 2 are again clustered according to average
internode traversal cost, with the cluster size again limited by
maxcs. This process of clustering and coordinator selection
continues until Level N.

The request is propagated up the hierarchy and the top-
level coordinator assigns it to the top-level node that is closest
to the new node. This top-level node passes the request down
to its child that is closest to the new node.

The virtual hierarchy is robust enough to adapt as
necessary. It can handle both node joins and departures at
runtime. Failure of coordinator nodes can be handled by
maintaining active backups of the coordinator node within
each cluster.

Situations where nodes in the entire system either are all
widely distributed or are all close to one another in terms of
network cost, may result in loosely defined clusters, which
further impact the quality of coordinator nodes selected. Such
situations are relatively rare. In the worst case, it is possible to
choose appropriate values for maxcs in order to improve
accuracy of the planning process. The node distribution in the

network might possibly result in loosely defined clusters, it
may be beneficial to compare planning decisions across
multiple hierarchical structures with different values of maxcs.

D. Advertisements of Stream:
The stream advertisements are aggregated by the

coordinator nodes and propagated up the hierarchy, as a result
of the advertisement of derived stream sources, nodes are now
aware of operators that are readily available at multiple
locations in the network and can be reused with no additional
cost involved for transporting input data. The advertisements
are one-time messages exchanged only at the initial time of
operator instantiation and deployment. The coordinator node
at each level is aware of all the stream sources available in its
underlying cluster. Advertisements of derived stream sources
are key to operator reuse in our algorithms.

E. Top-Down Algorithm:
The Top-Down algorithm, the query starts at the top of the

hierarchy, and is recursively planned by progressively
partitioning the query and assigning subqueries to
progressively smaller portions of the network. The Top-Down
algorithm bounds suboptimality by making deployment
decisions using bounded approximations of the underlying
network, specifically, each coordinator’s estimate of the
distance between its cluster and other clusters. The algorithm
works as follows, The query Q is submitted as input to the top-
level (say level t) coordinator. The coordinator exhaustively
constructs the possible query trees for the query, and then for
each such tree constructs a set of all possible node
assignments within its current cluster. The cost for each
assignment is calculated and the assignment with least cost is
chosen. An assignment of operators to nodes partitions the
query into a number of views, each allocated to a single node
at level t. Each node is then responsible for instantiating such
a view using sources (base or derived) available within its
underlying cluster.

F. The Bottom-Up Algorithm:
Describe the Bottom-Up algorithm which propagates

queries up the hierarchy, progressively constructing complete
query execution plans. Unlike the Top-Down approach, the
Bottom-Up algorithm does not provide a good bound on the
suboptimality of the solution. However, in return, the Bottom-
Up approach is usually able to further reduce the search space
compared to the Top-Down algorithm. Thus, in situations
where quick planning is needed, the Bottom-Up algorithm
may be appropriate, perhaps to be replaced later with a Top-
Down deployment. Queries are registered at their sink. When
a new query Q over base stream sources arrives at a sink at
Level 1, the sink informs its coordinator at Level 2.

G. The NPC Algorithm:
Develop a heuristic-based hybrid algorithm that combines

the strengths of both the Top-Down and Bottom-Up
algorithms the Net Present Cost (NPC) algorithm. The NPC
algorithm is a probabilistic algorithm that guides the planning
process based on cost estimates of choosing a join order
locally or delaying the decision. That combines the advantages

S.Priya et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 119-123

© 2010, IJARCS All Rights Reserved 122

of reduced search space from the Bottom-Up algorithm and
improved query planning from the Top-Down algorithm.

Then, the estimated NPC is computed as follows

In order to compute Ω l, expected future costs of delaying

the query partitioning decision to the next level. The NPC
algorithm then performs query partitioning at the current level
l if Ω≥T l . Unlike the other algorithms, the NPC algorithm
requires knowledge of the hierarchical structure in terms of
height, number of nodes in a cluster, and maximum
intracluster traversal costs at each level. It also requires
knowledge of join selectivities. Since the NPC algorithm
attempts to avoid poor join orders, it is expected to perform
better than the Bottom-Up algorithm. Since it continues to
make query partitioning decisions based only on efficiency of
join orders, oblivious to the availability of reuse opportunities,
it is expected to produce less efficient deployments as
compared to the Top-Down algorithm.

IV. EXPERIMENTAL RESULTS

Experiments focus on the effect of the maxcs clustering
parameter on the trade-off between suboptimality and search
space, the effectiveness of our algorithms as compared to
existing approaches, and the efficiency of our algorithms
compared to an optimal solution computed through an
exhaustive search. Our experiments show that our algorithms
result in acceptable suboptimality, the Top- Down algorithm is
suboptimal by only 10 percent and the Bottom-Up algorithm
by 34 percent while exploring less than 1 percent of the total
search space. At the same time, our algorithms clearly
outperform existing approaches. For example, the Bottom-Up
algorithm reduces cost by nearly 25 percent when compared to
the In-network [5] algorithm while exploring only a small
fraction of the search space. Also, the NPC algorithm allows
us to further fine tune the trade-off between search space and
suboptimality and help us achieve plans that were close to the
Top-Down algorithm in optimality and Bottom-Up algorithm
in search space.

Stream query adopt the “network usage” metric [9] to
compute costs of query deployments. Recall that, the network
usage of a query q represents the total amount of data that is
in-transfor a query at any given instant. As described in later ,
network is organized, into a virtual clustering hierarchy based
on link costs which represent the cost of transmitting a
unamount of data across the link. Used the hierarchical [8]
clustering in order to create the clustering hierarchy.

A. Search space in Cluster Size:
An exhaustive search of all possible query plans and all

possible placement of operators may not be feasible as
network size increases. For example, an exhaustive search on
a 128-node network for the deployment of a single query over
five stream queries required enumeration of approximately
4:83* 1010 plans that took nearly 3 hs to complete. In this
section, It demonstrate how the maxcs parameter can be used
to tune the trade-off between the suboptimality of the heuristic

and minimizing the search space. The experiments were
conducted using the synthetic workload described in later.

B. Network Size in Scalablity:
This experiment, study the scalability of the algorithms

with respect to the number of deployments considered as
network size increases. It generated a workload of 100 queries
using 10 streams with each query performing joins over n
streams. Research measured the average number of
deployments considered over n different transit-stub
topologies of different sizes generated using sinks were placed
at random nodes in the network.

Figure shows the deployments considered for a single
query with Bottom-Up and Top-Down algorithms with maxcs
32 and exhaustive search. The figure also shows how the
average case compares with the worst case analytical bounds.
Again, the value of maxcs was set to 32 to produce the largest
feasible search space.

Query processing that increase in Exhaustive is offset by
the decrease in such that the worst case bounds are nearly
identical across the different networks. Note that the y-axis
has a log scale.

Figure 4.1. Network scalability

V. CONCLUSION

In Hierarchical network partitions that integrates query
planning and distributed stream query optimization
framework. The framework consists of two key components, a
hierarchical clustering of network nodes that allows network
approximations and stream advertisements that enable
operator reuse. The network partitions algorithms are Top-
Down, Bottom- Up, and Hybrid use the search space
reduction. Which exploit different ways of using hierarchical
network partitions for operator-level reuse and search space
reduction. Show that although Top-Down and Bottom-Up
algorithms can both choose efficient deployments while
exploring only a small fraction of the search space, the Top
Down algorithm is more effective in limiting the
suboptimality of the solutions, while the Bottom-Up approach
is more effective in reducing the search space and the time-to-
deployment.

S.Priya et al, International Journal of Advanced Research in Computer Science, 4 (2), Jan –Feb, 2013, 119-123

© 2010, IJARCS All Rights Reserved 123

Stream advertisement and hierarchical clusters enable to
use the operator reuse. The hybrid algorithm NPC find
efficient execution plans while examining a very small search
space, allowing us to further tune the trade-off between search
space and algorithm suboptimality. Show through both
experimental and analytical results that our algorithms are
efficient and scalable at costs comparable to optimal while
exploring much fewer plans.

VI. REFERENCES

[1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M.
Cherniack, J.-H. Hwang, W. Lindner, A. S. Maskey, A.
Rasin, E. Ryvk ina, N. Tatbul, Y. Xing, and S. Zdonik. The
Design of the Borealis Stream Processing Engine. In CIDR
Conference, 2005.

[2] A. Arasu, B. Babcock, and et al. Stream: The stanford data
stream management system. In Data Stream Management,
2004.

[3] R. Avnur and J. M. Hellerstein. Eddies: Continuously
Adaptive Query Processing, Proceedings of the 2000 ACM
SIGMOD Conference.

[4] D. Bertsekas and R. Gallager. Data Networks, Prentice Hall,
2nd edition, 1991.

[5] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. Niagaracq: A
scalable continuous query system for internet databases. In
SIGMOD Conference, pages 379–390, 2000.

[6] Z. G. Ives, D. Florescu, M. Friedman, A. Levy and D. S.
Weld. An Adaptive Query Execution System for Data
Integration, Proceedings of the 1999 ACM SIGMOD
Conference.

[7] V. Oleson, K. Schwan, G. Eisenhauer, B. Plale, C. Pu, and D.
Amin, “Operational Information Systems—An Example from

the Airline Industry,” Proc. First Workshop Industrial
Experiences with Systems Software.

[8] G. Schumacher. GEI’s Experience with Britton-Lee’s IDM,
IWDM, 1983, pp. 233-241.

[9] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.
Lorie and T. G. Price. Access Path Selection in a Relational
Database Management System, Proceedings of the 1979
ACM SIGMOD Conference.

[10] M.A. Shah, J.M. Hellerstein, S. Chandrasekaran, and M.J.
Franklin, “Flux: An Adaptive Partitioning Operator for
Continuous Query Systems,” Proc. 19th Int’l Conf. Data Eng.
(ICDE), 2003.

[11] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J.
Sidell, C. Staelin and Andrew Yu. Mariposa: A Wide-Area
Distributed Database System, VLDB Journal, 1996, (5) 1:48-
63.

[12] Stratis D. Viglas and Jeffrey F. Naughton, “Rate-Based
Query Optimization for Streaming Information Sources”,
ACM SIGMOD'2002.

[13] T. Urhan and M. J. Franklin. Xjoin: A Reactively-Scheduled
Pipelined Join Operator, IEEE Data Engineering Bulletin,
June 2000, (23) 2:27-33.

[14] Y. Yao and J. Gehrke, “The Cougar Approach to In-Network
Query Processing in Sensor Networks,” SIGMOD Record,
2002.

[15] Yongluan Zhou, Karl Aberer, and Kian-Lee Tan, “Toward
Massive Query Optimization in Large-Scale Distributed
Stream Systems”, Middleware 2008, LNCS 5346, pp. 326–
345, 2008.

[16] D.J. Abadi et al., “The Design of the Borealis Stream
Processing Engine,” Proc. Second Biennial Conf. Innovative
Data Systems Research (CIDR), 2005.

	INTRODUCTION
	LITERATURE SURVEY
	SYSTEM METHODOLOGY
	Problem definition:
	Stream Query Optimization Algorithms and Infrastructure:
	Hierarchical Network Clusters:
	Advertisements of Stream:
	Top-Down Algorithm:
	The Bottom-Up Algorithm:
	The NPC Algorithm:

	EXPERIMENTAL RESULTS
	Search space in Cluster Size:
	Network Size in Scalablity:

	CONCLUSION
	REFERENCES

