
Volume 4, No. 1, January 2013 (Special Issue)

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 25
CONFERENCE PAPER

National Level Conference on
 “Trends in Advanced Computing and Information Technology (TACIT - 2012)”

on 2nd September 2012
Organized by

St. Vincent Pallotti College of Engineering and Technology, Nagpur, India

Improving the Performance of CPU Scheduling in Interactive Systems
Mahesh Ubale* and Mujeeb Rahaman

Department of Computer Engineering/Information Technology
St. Vincent Pallotti College of Engineering & Technology Nagpur, India

mahesuhbale@gmail.com*, mujeebrahman1984@gmail.com

Abstract: This paper gives a new algorithm for round robin CPU scheduling of processes (jobs) having different arrival times. The performance
parameters such as response time, average waiting time, average turnaround time, number of context switches are compared between original
round robin scheduling algorithm (as discussed in standard textbooks on operating system) and our approach. We have made a time quantum
fixed for a given round based on the average burst time of the number of processes present at the beginning of that round. By making time
quantum dynamic we have proved that the performance gets improved as compared to the original round robin algorithm.

Keywords: CPU scheduling, Context Switching, Time Quantum, average waiting time, burst time, average turnaround time

I. INTRODUCTION

When a computer is multi programmed, it frequently has
multiple processes competing for the CPU at the same time.
This situation occurs whenever two or more processes are
simultaneously in the ready state. If only one CPU is
available, a choice has to be made which process to run
next. The part f the operating system that makes the choice
is called the scheduler and the algorithm it uses is called the
scheduling algorithm. [2]

In a single-processor system, only one process can run at
a time; any others must wait until the CPU is free and can be
rescheduled. The objective of multiprogramming is to have
some process running at all times, to maximize CPU
utilization. The idea is relatively simple. A process is
executed until it must wait, typically for the completion of
some I/O request. [1]

In a simple computer system, the CPU then just sits idle.
All this waiting time is wasted; no useful work is
accomplished. With multiprogramming, we try to use this
time productively. Several processes are kept in memory at
one time. When one process has to wait, the operating
system takes the CPU away from that process and gives the
CPU to another process. This pattern continues. Every time
one process has to wait, another process can take over use of
the CPU. [1]

Scheduling of this kind is a fundamental operating-
system function. Almost all computer resources are
scheduled before use. The CPU is, of course, one of the
primary computer resources. Thus, its scheduling is central
to operating-system design. [1]

II. SCHEDULING CRITERIA

Many criteria have been suggested for comparing CPU
scheduling algorithms. Which characteristics are used for
comparison can make a substantial difference in which
algorithm is judged to be best. The criteria include the
following:

A. CPU utilization:
We want to keep the CPU as busy as possible.

Conceptually, CPU utilization can range from 0 to 100

percent. In a real system, it should range from 40 percent
(for a lightly loaded system) to 90 percent (for a heavily
used system).

B. Throughput:
If the CPU is busy executing processes, then work is

being done. One measure of work is the number of
processes that are completed per time unit, called
throughput.

C. Turnaround time:
The interval from the time of submission of a process to

the time of completion is the turnaround time. Turnaround
time is the sum of the periods spent waiting to get into
memory, waiting in the ready queue, executing on the CPU,
and doing I/O.

D. Waiting time:
Waiting time is the sum of the periods spent waiting in

the ready queue.

E. Response time:
In an interactive system, turnaround time may not be the

best criterion. Often, a process can produce some output
fairly early and can continue computing new results while
previous results are being output to the user. Thus, another
measure is the time from the submission of a request until
the first response is produced. This measure, called
response time, is the time it takes to start responding, not the
time it takes to output the response. The turnaround time is
generally limited by the speed of the output device. [1]

It is desirable to maximize CPU utilization and
throughput and to minimize turnaround time, waiting time,
and response time. In most cases, we optimize the average
measure. However, under some circumstances, it is
desirable to optimize the minimum or maximum values
rather than the average. For example, to guarantee that all
users get good service, we may want to minimize the
maximum response time. [1]

Investigators have suggested that, for interactive systems
(such as timesharing systems), it is more important to
minimize the variance in the response time than to
minimize the average response time. A system with
reasonable and predictable response time may be

Mahesh Ubale et al, International Journal of Advanced Research in Computer Science, 4 (1), January 2013, 25-28

© 2010, IJARCS All Rights Reserved 26
CONFERENCE PAPER

National Level Conference on
 “Trends in Advanced Computing and Information Technology (TACIT - 2012)”

on 2nd September 2012
Organized by

St. Vincent Pallotti College of Engineering and Technology, Nagpur, India

considered more desirable than a system that is faster on the
average but is highly variable. However, little work has
been done on CPU-scheduling algorithms that minimize
variance. [1]

III. SCHEDULING IN INTERACTIVE SYSTEM

A. Algorithm Goals:
In order to design a scheduling algorithm, it is necessary

to have some idea of what a good algorithm should do.
Some goals depend on the environment (batch, interactive,
or real time), but there are also some that are desirable in all
cases. Under all circumstances, fairness is important.
Comparable processes should get comparable service.
Another general goal is keeping all parts of the system busy
when possible. [2]

For interactive systems, especially timesharing systems
and servers different goals apply. The most important is one
to minimize response time i.e. the time between issuing a
command and getting the result. On a personal computer
where a background process is running (e.g. reading and
storing e-mail from the network), a user request to start a
program or open a file should take precedence over the
background work. Having all interactive requests go first
will be perceived as good service. [2]

A somewhat related issue is what might be called
proportionality. Users have an inherent (but often incorrect)
idea of how long things should take. When a request that is
perceived as complex takes a long time, users accept that,
when a request that is perceived as simple takes a long time,
users get irritated. For example, if clicking on an icon that
calls up an Internet provider using an analog modem takes
45 seconds to establish a connection, the user will probably
accept that as a fact o life. On the other hand, if clicking on
an icon that breaks the connection takes 45 seconds, the user
will probably be swearing a blue streak by the 30-second
mark and frothing at the mouth by 45 seconds. This
behaviour is due to the common user perception that placing
a phone call and getting a connection is supposed to take a
lot longer than just hanging up. In some cases (such as this
one), the scheduler cannot do anything about the response
time, but in other cases it can, especially when the delay is
due to a poor choice of process order. [2]

B. Round Robin Algorithm (Original):
The round-robin (RR) scheduling algorithm is designed

especially for timesharing systems. It is similar to FCFS
scheduling, but preemption is added to switch between
processes. A small unit of time, called a time quantum or
time slice, is defined. A time quantum is generally from 10
to 100 milliseconds. The ready queue is treated as a circular
queue. The CPU scheduler goes around the ready queue,
allocating the CPU to each process for a time interval of up
to 1 time quantum. [1]

To implement RR scheduling, we keep the ready queue
as a FIFO queue of processes. New processes are added to
the tail of the ready queue. The CPU scheduler picks the
first process from the ready queue, sets a timer to interrupt
after 1 time quantum, and dispatches the process. [1]

One of two things will then happen. The process may
have a CPU burst of less than 1 time quantum. In this case,
the process itself will release the CPU voluntarily. The
scheduler will then proceed to the next process in the ready

queue. Otherwise, if the CPU burst of the currently running
process is longer than 1 time quantum, the timer will go off
and will cause an interrupt to the operating system. A
context switch will be executed, and the process will be put
at the tail of the ready queue. The CPU scheduler will then
select the next process in the ready queue. [1]

The conclusion can be formulated as follows: setting the
quantum too short causes too many process context switches
and lowers CPU efficiency, but setting it too long may cause
poor response to short interactive requests. A quantum
around 20-50 msec is often a reasonable compromise. [2]

C. Proposed Round Robin Algorithm:
Given a set of processes ready to run on CPU, their

arrival time in ready queue and burst time, original round
robin algorithm fixes a time quantum for all processes in the
system. Our approach, on the other hand, dynamically
computes the time quantum for a given set of processes
present in the ready queue at a given time (called as round),
which equals the average of the burst times of all the
processes. These processes will use this time quantum only
once for execution on CPU.

Suppose n processes were present in the ready queue at
time t1 and TQ1 is the first round time quantum computed by
averaging the burst times of these n processes. Let, m be the
number of processes (m<n) having burst time less than TQ1
so they terminated normally after consuming time quantum
and r be the number of processes entered in to ready queue
till all n processes uses time quantum once. So, (n-m)
number of processes will reappear in ready queue for their
remaining burst time.

At the end of first round i.e. when nth process is about to
leave CPU after consuming TQ1, we have r+(n-m)
processes waiting in ready queue. So, TQ2 will be the
average of remaining burst times of these waiting processes.

IV. CASE STUDIES AND RESULT

We have used three examples to compare the results of
original and our proposed algorithm. First table includes
data given for the three examples and the remaining three
table shows the result comparison.

Table I: Examples For Comparison Of Original And Proposed Approach

 Example 1 Example 2 Example 3
 Pid AT BT Pid AT BT Pid AT BT
 P1 0 6 P1 0 8 P1 0 10
 P2 0 8 P2 1 4 P2 5 12
 P3 0 7 P3 2 9 P3 8 20
 P4 0 3 P4 3 5 P4 10 15
 P5 15 30

Table: 2 Result fot Example 1

Approach Performance Parameters for Example 1
Average
Waiting Time

Number of
Context
Switches

Average Turn
Around Time

Round
Robin
(Orignal)
TQ=3

16.667 5 24.667

Round
Robin (as
per our
approach)

12.5 2 18.5

Mahesh Ubale et al, International Journal of Advanced Research in Computer Science, 4 (1), January 2013, 25-28

© 2010, IJARCS All Rights Reserved 27
CONFERENCE PAPER

National Level Conference on
 “Trends in Advanced Computing and Information Technology (TACIT - 2012)”

on 2nd September 2012
Organized by

St. Vincent Pallotti College of Engineering and Technology, Nagpur, India

Table: 3 Results for Example 2

Approach Performance Parameters for Example 2
Average
Waiting Time

Number of
Context
Switches

Average Turn
Around Time

Round
Robin
(Orignal)
TQ=4

11.75 4 18.25

Round
Robin (as
per our
approach)

9.25 1 15.75

Table: 4 Results for Example 3

Approach Performance Parameters for Example 3
Average
Waiting Time

Number of
Context
Switches

Average Turn
Around Time

Round
Robin
(Orignal)
TQ=5

35.6 11 53

Round
Robin (as
per our
approach)

24.2 2 41

V. COCLUSIONS

The comparative results of three case study examples
shown here proves that using a dynamic time quantum
improves the performance of original round robin algorithm
to a great extent. The computation of time quantum
consumes some amount of time and that is a pure overhead
for the system. We have fixed a time quantum for a given
set of processes than computing it for every new process to
be loaded to CPU for execution (as used in the approach
proposed by Abbas Noon, Ali Kalakech, Seifedine Kadry
[3]).

Another issue is with burst time. As actual burst time of
every new process entering in ready queue will not be
known in advance in real systems, we can use a predictive
method to compute it.

VI. REFERENCES

[1] Abraham Silberschatz, Peter Baer Galvin and Greg Gagne,
Operating System Concepts, 7th ed., John Wiley & Sons
(Asia) Pte. Ltd., Singapore.

[2] Andrew S. Tanenbaum, Modern Operating Systems, 2nd ed.,
Prentice-Hall of India Private Limited New Delhi 110 001.

Mahesh Ubale et al, International Journal of Advanced Research in Computer Science, 4 (1), January 2013, 25-28

© 2010, IJARCS All Rights Reserved 28
CONFERENCE PAPER

National Level Conference on
 “Trends in Advanced Computing and Information Technology (TACIT - 2012)”

on 2nd September 2012
Organized by

St. Vincent Pallotti College of Engineering and Technology, Nagpur, India

[3] Abbas Noon, Ali Kalakech, Seifedine Kadry A New Round
Robin Based Scheduling Algorithm for Operating Systems:
Dynamic Quantum Using the Mean, IJCSI, International

Journal of Computer Science Issues Vol. 8, Issue 3, No. 1,
May 2011.

