
Volume 3, No. 7, Nov-Dec 2012

International Journal of Advanced Research in Computer Science

CASE STUDY AND REPORTS

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 240

ISSN No. 0976-5697

Using Pig on Hadoop for Data Analysis in Bioinformatics
Smita Saxena

Bioinformatics Centre
University of Pune Pune, India

smita@bioinfo.net.in

Abstract: Data storage, processing and analysis is a major component of bioinformatics. Apache Hadoop provides a distributed computing
framework for processing large voluminous data. Pig is an Apache open source project that works on the Hadoop platform and let the programmer
write the queries or scripts in its procedural dataflow language known as Pig Latin rather than writing core MapReduce programs in Java directly.
Pig provides a lot of statements similar to SQL clauses and some other advanced features. The Pig platform compiles the statements and scripts and
generates the equivalent map and reduce tasks and sends to Hadoop for execution. It helps to process the biological data available in large sizes,
which can be analyzed in an effective way within a small time. Also in contrast to traditional (R)DBMS, unconstrained data may be used and the
database schema also need not to be constrained or consistent or pre-defined.

Keywords: Bioinformatics, Hadoop, Pig, Pig Latin.

I. INTRODUCTION

Bioinformatics is a computational approach to manage,
store and analyze the large biological data, which includes
protein and nucleotide sequences, macromolecule structures
and other functional experiments results. Apart from just the
genomic and proteomic sequences, there is a vast amount of
biochemical information, metabolic pathways, regulatory
networks, protein-protein interaction data, phylogenetic
information etc [1]. The next generation high throughput
experiments typically known as NGS also generates a lot of
data by parallelizing the sequencing process and produces
thousands of sequences at once at a relatively low cost [2].

To deal with this enormous amount of data, Hadoop®
framework [3] provides a platform for the large-scale data
analysis [4]. Hadoop® project developed and maintained by
Apache Software FoundationTM is a open-source software for
reliable, scalable, distributed computing available at
http://www.hadoop.apache.org/. It includes three subprojects:
a. Hadoop Distributed File SystemTM (HDFS) - the primary
storage system used by Hadoop applications. HDFS creates
multiple replicas of data blocks and distributes them on
compute nodes throughout a cluster to enable reliable,
extremely rapid computations. b. Hadoop MapReduce - a
software framework for distributed processing of large data
sets on compute clusters. c. Hadoop Common - The common
utilities for File System, RPC and serialization libraries that
support the other Hadoop subprojects (some of which have
now become top-level Apache projects) as shown in table I.

Table I. Hadoop Related Other Apache Projects
Project URL & Description
AvroTM

(http://www.avro.com) A data serialization system.

BigtopTM (http://incubator.apache.org/bigtop/) A project for the
development of packaging and tests of the Apache
Hadoop ecosystem.

Cassandra
TM

(http://cassandra.apache.org/)A scalable multi-master
database with no single points of failure.

ChukwaTM (http://incubator.apache.org/chukwa/) A data collection
system for monitoring large distributed systems.

FlumeTM (http://incubator.apache.org/flume/)A distributed, reliable,
and available system for efficiently collecting,
aggregating, and moving large amounts of log data from
many different sources to a centralized data store.

HamaTM (http://hama.apache.org/) A pure BSP (Bulk Synchronous
Parallel) computing framework on top of HDFS for
massive scientific computations such as matrix, graph and
network algorithms.

HbaseTM (http://hbase.apache.org/) A scalable, distributed database
that supports structured data storage for large tables.

HiveTM (http://hive.apache.org/) A data warehouse infrastructure
that provides data summarization and ad hoc querying.

MahoutTM (http://mahout.apache.org/) A Scalable machine learning
and data-mining library.

OozieTM (http://incubator.apache.org/oozie/) A
workflow/coordination system to manage Apache Hadoop
jobs.

PigTM (http://pig.apache.org/) A high-level data-flow language
and execution framework for parallel computation.

SqoopTM (http://sqoop.apache.org/) A tool designed for efficiently
transferring bulk data between Apache Hadoop and
structured datastores such as relational databases.

WhirrTM (http://whirr.apache.org/) A Library for deploying and
running Hadoop in the cloud.

Zookeeper
TM

(http://zookeeper.apache.org/) A high-performance
coordination service for distributed applications.

II. HDFS AND MAPREDUCE PROCESS

HDFS and MapReduce are based on Google’s MapReduce
and File System specification [5]-[7]. Hadoop provides an
implementation of the MapReduce framework written in Java
and released under a free licence [8]. A number of other open-
source Hadoop distribution are also available like
GreenPlumTM HD(http://greenplum.com/ products/greenplum-
hd), CDH- Cloudera© Hadoop distribution
(http://www.cloudera.com/hadoop/), IBM® InfoSphere
BigInsights (http://www-01.ibm.com/software/
data/infosphere/biginsights/) etc.

Smita Saxena , International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012,240-245

© 2010, IJARCS All Rights Reserved 241

Hadoop File System HDFS is highly fault tolerant and
designed to support large files. There are two types of HDFS
nodes in a Hadoop cluster- NameNode which manages file
system namespace and metadata, and DataNodes which store
blocks of data. A block of data is typically 64MB or 128MB in
size and is replicated on many nodes of the cluster; default is to
replicate every block three times. There are two types of
MapReduce nodes- JobTracker and TaskTracker. JobTracker
is only one and manages MapReduce jobs; it receives the jobs
submitted and schedules Map and Reduce tasks on
TaskTracker and monitors them. Each TaskTracker spawns
JVM (Java Virtual Machine) to run map and reduce task.

A MapReduce program consists of a map function and a
reduce function. A MR job is an executing MR program that is
divided into map tasks that run in parallel with each other and
reduce tasks that run in parallel with each other. A “map”
function transforms each piece of data into some number of
key/value pairs. Each of these elements will then be sorted by
their key and reach to the same node, where a “reduce”
function is used to merge the values (of the same key) into a
single result [5].

map (k1,v1) => list(k2,v2) =>
reduce (k2,list(v2)) => list(v2)

The Map and Reduce functions have to be implemented in
accordance with the problem requirement.

III. THE PIG PROJECT

PigTM started as a research project in Yahoo! Research
(http://developer.yahoo.com/hadoop/) to focus more on
analyzing large data sets and spend less time in writing
MapReduce programs. It was designed as an in-between of the
declararative style of SQL and the low-level, procedural style
of MapReduce. In 2007, it was open sourced via Apache
incubator; in September 2008 it graduated to become a
subproject and in 2010 Pig was accepted as a top level Apache
Project. Its language is called Pig Latin [9], its shell is called
Grunt and the shared repository is called PiggyBank. Penny is
a framework for creating custom Pig monitoring and
debugging tools. It comes with a library of about a dozen tools
e.g. crash investigation, record tracing, integrity, and overhead
profiling etc. Piglet is a DSL for writing Pig Latin scripts in
Ruby and provides features like loops and control of flow not
present in Pig [10]. A number of books and online resources
are available for studying Pig [10]-[13].

IV. WORKING IN PIG

A. Installation and Execution:
Till date, a number of releases are there, latest being pig

0.10.0 which works with Hadoop 0.20.X, 1.0.X and 0.23.X.
Pig runs from the machine where the Hadoop jobs are fired and
need not be installed separately. However on nodes that are not
a part of a cluster, it needs to be installed by following the
traditional download, unpack, install and setting the classpath
environment variable steps [14].

$tar –xzvf pig-0.10.0.tar.gz
$cd pig-0.10.0
$export PATH=$PATH:pig-0.10.0/bin/pig

(path setting can also be done in .bash_profile or .bashrc or
/etc/profile files)

$pig –x local program.pig (or)
$pig
grunt>exec program.pig; (program.pig is a batch script)
To run pig on hadoop cluster (hadoop cluster setup [13]),

set PIG_CLASSPATH environment variable to the directory
containing hadoop-site.xml file.

$export PIG_CLASSPATH=/hadoop/conf
$export PATH=$PATH:${PIG_CLASSPATH}/bin
$start.sh hadoop
$pig
grunt>
Grunt is the interactive shell that permits to access HDFS

and execute pig commands. Apart from the exec command, on
the Grunt shell, the run command is also used for running the
pig scripts and kill command like in Unix can be used for
killing the MapReduce job by giving its process id.

The Pig scripts can be written using text editors or IDEs
(Integrated Development Environment) e.g. Eclipse (open
source software) which provide syntax highlighting and other
helpful features. The syntax of a pig script can be checked
without actually executing the script by using the –c, –check or
–dryrun option at the command line.

At the end of script execution a summary is also displayed
which shows the details of the job, the start and end time of job
execution, details of Map and Reduce jobs, the input and
output, some counters and an allocation graph for the dataflow
between MapReduce jobs.

B. Pig Latin:
Like other dataflow languages Pig Latin also has its set of

rules and syntaxes [11]-[13]. The identifier includes variable
name, function name, field name, relation name etc. and starts
with any letter followed by any number of letters, digits and
underscores. A mixed type of case sensitivity is offered. The
keywords are not case sensitive but the identifiers and user
defined function names are case sensitive.

a. Data Types:
Pig supports scalar and complex data types. The scalar data

types viz., int, long, float, double, chararrary and bytearray are
the same as in Java programming language. e.g.
seq_id:chararry, seq_length:in , gc_content:float etc.

The complex data types can contain data of any type
including the complex type itself. Following are the complex
data types provided in Pig-
a) Data map – A map from a string literal key to the data

value(s) of any data type in the format [‘key’# <value1,
value2, …>]. The values in map can be of different data
types. Also,the type of values can be changed by casting
operation as in Java. e.g. [‘seq_id’#’AC_001’,
’seq_length’#23000,’percent_gc_content’#34.45]

b) Tuple – A fixed length ordered collection of data
elements similar to a row in SQL. The fields can be
referred by their order but need not have a schema or type
associated with it. e.g. (‘AC_001’, 23000, 34.45) is a
tuple constant with 3 fields.

Smita Saxena , International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012,240-245

© 2010, IJARCS All Rights Reserved 242

c) Bag – An unordered collection of tuples that need not
have a schema. All the tuples are used for describing the
bag schema. It has no memory limitations except the local
disk. If the bag still grows larger it is said to spill on other
disks. e.g. {(‘AC_001’, 23000, 34.45) (‘AC_002’, 13040,
23.33) (‘AC_003’,6700,27.56)} is a bag with 3 tuples
with 3 fields each.

b. Input and Output:
Each command of Pig Latin language produces an output

typically known as a relation. Since Pig Latin is a dataflow
language, it requires input to process and provides output. The
output from each processing step can be fed to subsequent
steps. If their names are same, they get overwritten. The Load
command brings the input from the HDFS, the Store command
sends the data to be stored on HDFS and the Dump command
is used to view the relation on screen.

By default PigStorage is used and the data is considered to
be tab-separated. Another type of storage e.g. Hbase Storage
and comma-separated files can also be read by declaring
specifically. e.g.

A=load ‘seq_file’ from HbaseStorage();
B=load ‘annotations’ from PigStorage(‘,’);
C=load ‘pdb_summary’ from PigStorage(id, title, date ,

resolution, structure_mweight);
Dump C;
Store A into /virus/genome/prot_info;
The Pig Latin statements are not executed actually until an

output in the form of dump or store is requested.

c. Relational Operators:
Relational operators are applied on the input data and the

output is obtained accordingly. Along with the SQL like
clauses, some advanced operators are also provided in Pig
Latin as discussed below:

a) FOREACH:
It is like the projection operator in relational algebra and the

‘select’ clause in SQL with field names specified but provides
more functionality. It can be used to select fields, fields with
arithmetic or string operators applied, producing new bags,
user defined functions (UDF) etc.

A = load ‘protein’ as (prot_id, gene_id, name, start, stop);
B = foreach A generate prot_id, stop – start;
B2 = foreach A generate prot_id, $4 - $3;
C = foreach A generate ..name; -- prot_id, gene_id, name
H = foreach E generate serial, flatten(mybag) as mybag;
Flatten operator is used with foreach to remove the nesting

of data in tuples and bags. Nested foreach statements are used
to get the result like ‘select distinct(field)’ clause.

b) FILTER:
It works like the ‘where’ clause in SQL to select the records

based on a criteria. A field is specified with some comparison
operator. All the records with the matching criteria are selected.
While all the operators are applicable on scalar data, only
equality operators(== and !=) are applicable to tuples and maps
having the same schema, equality operators are not applicable
on bags.

A = load ‘pdb’ as (pdbid, title, experiment, resolution);

B = filter A by experiment matches ‘X-RAY.*’;
C = filter B by resolution <= 1; --high resolution x-ray

crystal structures.

c) GROUP:
It is used to collect together the records having the same

key value like SQL ‘group by’ clause but an aggregate function
in the same statement is not required, rather the same key
valued records are collected together in a bag.

A = load ‘pdb’ as (pdbid, title, experiment, resolution);
B = group A by experiment;
Store B into ‘pdb-exp’;
C = foreach B generate group, COUNT(experiment);
Dump C;
A Cogroup operator is also provided that works like the

group operator but combines the records having similar keys
from more than one input. The output is a record with a key
and one bag for each input containing the grouped values from
the input.

d) ORDER:
It is used to sort the records in ascending or descending

order either numerically or lexically depending upon the data
type of the selected field in the same way like ‘order by’ clause
in SQL. Sorting is not possible for tuples, maps and bags.

A = load ‘pdb’ as (pdbid, title, release_date);
B = order A by release_date desc; -- latest releases first

e) JOIN:
It joins records from two tables based on the same field.

Outer join (left or right) is also possible.
A = load ‘pdb’ as (pdbid, title, release_date);
B = load ‘reference’ as (pdbid, author, journal, title,

volume, year, pubmed_id);
J = join A by pdbid, B by pdbid;

f) UNION:
It is a powerful feature of Pig that allows tables to union or

concatenate even if they have different schemas. Null value is
inserted into blank or unspecified fields. If both inputs have the
same schema, the union also has the same schema. If the inputs
are different then the schema of union is said to be unknown.
Adding ‘onschema’ clause makes sure that all inputs have
matching or sharable schema otherwise union is not done.

A = load ‘pdf_ref’ as (pdbid, author, journal, title, volume,
year, pubmed_id);

B = load ‘pdb_not_pub’ as (pdbid, author);
C = union A, B;

g) CROSS:
The cross operator combines every record from one input

with every record from another table just like the cross operator
used in Set theory. This operation is used when Theta join is
required, or the filter criterion is other than equi-join. The cross
operation produces a lot of data; for inputs with x and y
number of records, the output has x*y records, hence should be
used when really needed.

C = cross A, B;

Smita Saxena , International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012,240-245

© 2010, IJARCS All Rights Reserved 243

h) SPLIT:
The split operator splits the input table into a number of

tables based on some condition. The records may be placed in
more than two tables.

A = load ‘pdb’ as (pdbid, title, experiment, resolution);
Split A into H if resolution <=1, M if (experiment matches

‘SOLUTION NMR’);
The Pig interpreter verifies the input files and references,

but the command execution takes place later when the output is
required. It is known as lazy execution. It permits in-memory
pipelining and query optimization. This feature is different
from SQL. The table II shows some commonly used SQL
statements for major database operations and its equivalent Pig
Latin.

d. Advanced features:
Apart from these commonly used operators, Pig also

provides a lot of advanced operators like- distinct: returns
unique rows; limit: returns the specified number of rows;
sample: returns the specified percentage of rows; stream: sends
data to external script, etc.

A number of diagnostic operators are also available like-
describe: shows the schema; explain: shows in the form of a
text graph, how the script is compiled into a Map Reduce job;
illustrate, which extracts a good sample of data using
intelligent selection containing important keys and shows how
the script runs; parallel: causes the job to run on the specified
number of reducers etc.

Table II. Major database operations in SQL and Pig Latin

OPERATION SQL PIGLATIN
Import CSV file into table LOAD DATA INFILE ‘data.csv’ INTO TABLE

table FIELDS TERMINATED BY ‘,’;
A= LOAD ‘data.csv’ USING PigStorage(‘,’) AS (field list);

(data remains in file, after query operations results have to be saved again)

Copy table as another table CREATE TABLE table2 AS SELECT * FROM
table1;

A= LOAD ‘table1’ as (fieldlist);
STORE A into ‘table2’ USING PigStorage(‘,’); /-- stored as new file

Create/drop/alter view Same as for table Operations for view not supported.
Drop table DROP TABLE table; File has to be deleted using HDFS commands.

$hadoop fs -rm table.txt

View schema of relation DESCRIBE table; DESCRIBE table;

View entire table SELECT * FROM table; A = LOAD ‘table’ AS (field list);
B = FOREACH A GENERATE *;

DUMP B;
View columns by name SELECT col1, col2 FROM table; B = FOREACH A GENERATE col1, col2;

DUMP B;
Sort in descending order SELECT * FROM table ORDER BY col1 DESC; B = ORDER A BY col1 DESC;

DUMP B;
Joining two tables on same

column values
SELECT * FROM table1, table2 WHERE

table1.col=table2.col;
B = LOAD ‘table2’ AS (field list);

C = JOIN A ON col, B ON col;
DUMP C;

Cross product of two tables SELECT * FROM table1, table2; C = CROSS A, B;
DUMP C;

Count of rows in a table SELECT COUNT(*) FROM table; B = GROUP A all;
C = FOREACH B GENERATE COUNT(A);

DUMP A;
Count of distinct values in a

column of table
SELECT col, COUNT(DISTINCT(col)) FROM

table;
B = FOREACH A GENERATE col;

B = DISTINCT B;
C = GROUP B BY col;

D = FOREACH C GENERATE group as col, COUNT(B);
DUMP D;

View records based on
condition

SELECT * FROM table WHERE col operator
value ;

B = FILTER A BY fieldname operator value;
DUMP B;

V. RESULTS AND DISCUSSION

The RCSB Protein Data Bank that archives information
about the experimentally determined structures of proteins,
nucleic acids and assemblies; which is available online at
http://www.rcsb.org/pdb/home/home.do. A report of the
structures available (as on July 24, 2012) is prepared that
contains the PDB id, structure title, experimental method and
resolution for 83266 structures and named 'pdb.txt'. A similar
report is prepared for 4959 structures derived from viral
organisms and named 'virus_pdb.txt'. Pig Latin commands
are used to group the structures together based on the
experimental method and the results are reported.

Figure 1. Graph between number of structures and time taken to process

them completely.

Smita Saxena , International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012,240-245

© 2010, IJARCS All Rights Reserved 244

 The script is run on a single cluster RHEL5 machine
with two Intel® quad core Xeon processors and IBM®
BigInsights framework installed.

The result for virus structure set was obtained in 27
seconds and result for entire pdb set was obtained in 30
seconds as reported from the BigInsights Administrator
console. Hadoop is said to be more efficient with large sized
files. Fig. 1 shows a plot between different number of
structures taken and time taken to process the entire set of
queries.

Following are the commands issued and the output
obtained while processing both the text files containing
structure information. “hadoop fs -put” command is a hadoop
file system command that loads the file into HDFS and the
“pig” command launches the grunt shell.

$ hadoop fs -put /download/virus_pdb.txt virus_pdb.txt
$ pig
grunt> A = load 'pdb.txt' as (id:chararray,

exp:chararray, date:chararray, res:float);
grunt> B = group A by exp;
grunt> C = foreach B generate group, COUNT(A);
grunt> dump C;
INFO [Thread-20]

 org.apache.hadoop.mapreduce.lib.input.FileInputFormat -
Total input paths to process : 1

INFO [main] org. apache. hadoop. mapreduce. lib. input.
File Input Format - Total input paths to process : 1

(SOLUTION NMR,9467)
(SOLID-STATE NMR,52)
(EPR, SOLUTION NMR,1)
(FIBER DIFFRACTION,37)
(X-RAY DIFFRACTION,73093)
(POWDER DIFFRACTION,18)
(ELECTRON MICROSCOPY,441)
(NEUTRON DIFFRACTION,38)
(SOLUTION SCATTERING,32)
(FLUORESCENCE TRANSFER,1)
(INFRARED SPECTROSCOPY,4)
(EPR, X-RAY DIFFRACTION,5)
(ELECTRON CRYSTALLOGRAPHY,33)
(SOLID-STATE NMR, SOLUTION NMR,3)
(SOLUTION NMR, X-RAY DIFFRACTION,1)
(THEORETICAL MODEL, SOLUTION NMR,7)
(SOLUTION NMR, NEUTRON DIFFRACTION,1)
(SOLUTION NMR, SOLUTION SCATTERING,3)
(SOLUTION SCATTERING, SOLUTION NMR,8)
(SOLID-STATE NMR, X-RAY DIFFRACTION,1)
(NEUTRON DIFFRACTION, X-RAY

DIFFRACTION,8)
(X-RAY DIFFRACTION, NEUTRON

DIFFRACTION,10)
(SOLUTION SCATTERING, ELECTRON

MICROSCOPY,2)
A similar script is used to determine the number of

structures having different resolutions using the split
command.

grunt>split A into P if resolution <=1, Q if (resolution>1
and resolution <=2), R if (resolution>2 and

resolution<=3), S if resolution>3;

The number of records in all the relations as obtained
above are counted as:

grunt>X = group P all;
grunt>Y = foreach X generate COUNT(P);
grunt>dump P;
The count of X-ray crystal structures grouped according

to the resolution range is provided on the PDB homepage.
For the above used data set (pdb.txt), the count given on the
site (as on July 24,2012) and a similar result obtained by Pig
Latin scripts is given in table III.

Table III. Count of X-ray crystal structures by resolution.

As reported on PDB site Output of Pig script
 Less than 1.5 Å : 5343 <= 1Å : 495

 >=1.5 Å and < 2.0 Å : 24364 >1 Å and <=2Å : 34561
 >= 2.0 Å and < 2.5 Å : 24910 >2 Å and <=3Å : 34224
 >= 2.5 Å and < 3.0 Å : 13196 >3 Å : 4103
 3.0 Å and more : 5304

VI. CONCLUSION

The new high level language Pig and its query language
Pig Latin can be successfully used for large data set analyses.
Using the relational algebra and SQL approach, complex
queries can be designed in a very efficient manner, as it is
broken into a number of simple steps. At each step the output
can be seen using dump command and refinements can be
done. Also there is no need to maintain large database tables
in DBMS as it can directly process from the files in HDFS.
Large sequence processing tasks, similarity matching, and
alignments are the types of jobs, which will be efficiently
handled by Pig. After an initial test run on a small data set,
big runs can be applied to large files (in GBs/TBs) on large
clusters. Although there are some overheads for compiling
commands into MapReduce jobs and lazy execution features
seem to slow down small queries; still it provides the
flexibility and advantages of using Hadoop as underlying
platform like fault tolerance, efficiently handling large sized
files, load balancing etc.

VII. ACKNOWLEDGMENT

This work was supported in part by the University of
Pune and the Centre of Excellence grant to Bioinformatics
Centre by Ministry of Communications and IT (MCIT), and
Department of Biotechnology (DBT), Government of India.

VIII. REFERENCES

[1] http://en.wikipedia.org/wiki/Bioinformatics

[2] http://en.wikipedia.org/wiki/Next-generation_sequencin g
[3] http://en.wikipedia.org/wiki/Apache_Hadoop

[4] Ronald C Taylor, “An overview of the
Hadoop/MapReduce/Hbase framework and its current
applications in bioinformatics,” BMC Bioinformatics,
11(Suppl 12):S1, 2010.

[5] J. Dean and S. Ghemawat, “MapReduce: Simplified data
processing on large clusters”, in Proc. 6th OSDI, Dec.
2004, pp. 137-149.

Smita Saxena , International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012,240-245

© 2010, IJARCS All Rights Reserved 245

[6] S. Ghemawat, H. Gobioff, S. T. Leung, “The Google file
system”, in Proc. 19th ACM Symposium on Operating
Systems Principles, 2003, Lake George, NY, ACM Press,
pp. 29-43.

[7] J. Dean and S. Ghemawat, “MapReduce: A Flexible Data
Processing Tool”, Communications of the ACM 2010,
53(1), pp. 72-77.

[8] Google blesses Hadoop with MapReduce patent license.
[http://www.theregister.co.uk/2010/04/27/google_licenses_
mapreduce_patent_to_hadoop/].

[9] C. Olston, B. Reed, U. Srivastava, R. Kumar and A.
Tomkins, “Pig Latin: A Not-So-Foreign Language for data
Processing”, In Proc. SIGMOD’08, 2008, Vancouver,
Canada.

[10] https://cwiki.apache.org/confluence/display/PIG/PigTools
[11] Alan Gates, Programming Pig, O’Reilly Media, 2011.

[12] Tom White, Hadoop: The definitive Guide, O’Reilly
Media, Third edition May 2012.

[13] http://pig.apache.org/docs/r0.10.0/index.html

[14] http://hadoop.apache.org/common/docs/r0.20.2/quickstart.h
tml

	INTRODUCTION
	HDFS AND MAPREDUCE PROCESS
	THE PIG PROJECT
	WORKING IN PIG
	Installation and Execution:
	Pig Latin:
	Data Types:
	Input and Output:
	Relational Operators:
	FOREACH:
	FILTER:
	GROUP:
	ORDER:
	JOIN:
	UNION:
	CROSS:
	SPLIT:

	Advanced features:

	RESULTS AND DISCUSSION
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

