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Abstract: We proposed an attribute reduction algorithm of decision system. It based on a family covering rough set. In this Algorithm, the 
independence of redundant attributes is critical to the correctness and complexity of the algorithm. This paper presents removing a redundant 
attribute does not affect the property of a  nonredundant attribute. 
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I. INTRODUCTION 

Attribute reduction of an information system is a key 
problem in rough set theory and its application. It has been 
proven that finding the minimal reduct of an information 
system. In [2], Cheng Degang et al.  have defined consistent 
and inconsistent covering decision system and their attribute 
reduction. They gave an algorithm to compute all the 
reducts of decision systems. Their method based on 
discernibility matrix. But, in rough set theory, it has been 
proved that finding all the reduct of information systems 
(decision tables) is NP-complete. Hence, sometime we only 
need to find an attribute reduction. Using some results of 
Chen Degang et al, we proposed an algorithm which is 
finding a minimal attribute reduct information decision 
system [1]. Removing a redundant attributes can affect the 
property of the remaining properties (e.g. nonredundant 
attribute X can become redundant attribute, after a 
redundant attribute Z removed because there are the 
relationships between the attributes). This paper show the 
independence of redundant attributes in attribute reduction 
algorithm based on family covering rough sets.  

The remainder of this paper is structured as follows. In 
section 2 briefly introduces some relevant concepts and 
results. Section 3, we present our attribute reduction 
algorithm based on family covering rough sets. Section 4 
presents two propositions about the independence of 
redundant attributes.  

II. SOME RELEVANT CONCEPTS AND 
RESULTS 

In this section, we first recall the concept of a cover and 
then review the existing research on covering rough sets of 
Cheng Degang et al. [2]  

A. Covering rough sets and induced covers: 
Definition 2.1 Let U be a universe of discourse, C a 

family of subsets of U. C is called a cover of U if no subset 
in C is empty and ∪C = U. 

Definition 2.2  Let C = {C1, C2..., Cn} be a cover of U. 
For every x∈U, let Cx = ∩{Cj: Cj ∈C, x∈Cj}. Cov(C) = {Cx: 
x∈U} is then also a cover of U. We call it induced over of 
C. 

 

 
Definition 2.3  Let ∆= {Ci: i=1, m} be a family of covers 

of U. For every x∈U, let ∆x= ∩{Cix: Cix∈ Cov (Ci), x∈Cix} 
then Cov (∆) = {∆x: x∈U} is also a cover of U. We call it 
the induced cover of ∆. 

Clearly ∆x is the intersection of all the elements in every 
Ci including x, so for every x∈U, ∆x is the minimal set in 
Cov(∆) including x. If every cover in ∆ is an attribute, then 
∆x= ∩{Cix: Cix∈Cov(Ci), x∈Cix} means the relation among 
Cix is a conjunction. Cov(∆) can be viewed as the 
intersection of covers in ∆. If every cover in ∆ is a partition, 
then Cov(∆) is also a partition and ∆x  is the equivalence 
class including x. For every x, y ∈ U, if y ∈ ∆x, then ∆x ⊇ 
∆y, so if y ∈∆x and x ∈∆y, then ∆x=∆y. Every element in 
Cov(∆) can not be written as the union of other elements in 
Cov(∆). We employ an example to illustrate the practical 
meaning of Cx and ∆x. 

For every X ⊆ U, the lower and upper approximation of 
X with respect to Cov(∆) are defined as follows: 

( ) { : },x xX X∆ = ∪ ∆ ∆ ⊆   

  ( ) { : }x xX X∆ = ∪ ∆ ∆ ∩ ≠ ∅  
The positive, negative and boundary regions of X 

relative to ∆ are computed using the following formulas 
respectively: 

( ) ( ), ( ( ),

( ) ( ) ( )

POS X X NEG U X

BN X X X
∆ ∆

∆

= ∆ − ∆

= ∆ −∆
 

Clearly in Cov(∆), ∆x is the minimal description of 
object x. 

B. Attribute reduction of consistent and inconsistent 
decision systems: 

Definition 2.4  Let ∆ = {Ci: i=1,..m} be a family of 
covers of U, D is a decision attribute, U/D is a decision 
partition on U. If for ∀x∈U, ∃Dj ∈U/D such that ∆x ⊆ Dj, 
then decision system (U,∆,D) is called a consistent  covering  
decision  system,  and  denoted  as  Cov(∆)≤ U/D.  
Otherwise, (U,∆,D)  is  called an  inconsistent  covering  
decision  system.  The  positive  region  of  D  relative  to  ∆ 
is  defined  as  

/

( ) ( )
X U D

POS D X∆
∈

= ∆  
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Remark 2.1  Let  D={d},  then  d(x)  is a decision 
function d: U → Vd of the universe U into  value  set  Vd.  
For  every xi, xj ∈U ,  if ∆xi  ⊆ ∆xj, then d(xi) = d([xi]D) =  
d(∆xi) = d(∆xj) = d(xj) =  d([xj]D).  If d(∆xi) ≠ d(∆xj),  then ∆xi 

∩ ∆xj = ∅, i.e ∆xi ⊄ ∆xj  and ∆xj ⊄ ∆xi.  
Definition 2.5 Let (U,∆, D= {d}) be  a consistent 

covering decision system. For Ci ∈∆ , if Cov(∆-{Ci}) ≤ 
U/D, then Ci is called superfluous relative to D in ∆ , 
otherwise Ci is called indispensable relative to D in ∆. For 
every P ⊆ ∆ satisfying Cov(P) ≤U/D , if every element in P 
is indispensable, i.e., for every Ci ∈P, Cov(∆-{Ci}) ≤ U/D is 
not true, then P is called a reduct of D relative to D, relative 
reduct in short. The collection of all the indispensable 
elements in D is called the core of ∆ relative to D, denoted 
as CoreD(∆). The relative reduct of a consistent covering 
decision system is the minimal set of conditional covers 
(attributes) to ensure every decision  rule  still  consistent. 
For a single cover Ci, we present some equivalence 
conditions to judge whether it is indispensable. 

Definition 2.6 Suppose U is a finite universe and ∆ = 
{Ci: i=1,..m} be  a  family  of  covers of U,  Ci ∈∆, D is a 
decision attribute relative ∆ on U and d: U → Vd is the 
decision function Vd defined as d(x) = [x]D. (U,∆,D) is an 
inconsistent covering decision system, i.e., POS∆(D)≠U. If 
POS∆(D)=POS∆-{Ci}(D), then Ci is superfluous relative to D 
in ∆. Otherwise Ci is indispensable relative to D in ∆. For 
every P⊆∆, if every element in P is indispensable relative to 
D, and POS∆(D)=POSP(D), then P is a reduct of 
POS∆(D)=POS∆-{Ci}(D) relative to D, called relative reduct 
in short. The collection of all the indispensable elements 
relative to D in ∆ is the core of ∆ relative to D, denoted by 
CoreD(∆).  

C. Some results of Chang et al: 
Theorem 2.1 ([2]) Supposing U is a finite universe and 

∆ = {Ci: i=1,..m} be a family of covers of U, the following 
statements hold:  
a. ∆x = ∆y if and only if for every Ci ∈∆ we have Cix = 

Ciy.  
b. ∆x ⊃ ∆y if and only if for every Ci ∈∆ we have Cix ⊇ 

Ciy and there is a Ci ∈∆ such that Ci0 x ⊃ Ci0 y . 
c. ∆x ⊄ ∆y   and ∆y ⊄ ∆x hold if and only if there are Ci, Cj 

∈∆ such that Cix ⊂ Ciy  and Cjx ⊃ Cjy  or there is a Ci0 
∈∆ such that Ci0 x ⊄ Ci0 y   and Ci0 y ⊄ Ci0 x .  

Theorem 2.2  ([2]) Suppose Cov(∆)≤ U/D, Ci ∈∆, Ci  is 
then indispensable, i.e., Cov(∆-{Ci}) ≤ U/D is not true if and 
only if there is at least a pair of xi, xj ∈U satisfying d(Dxi)≠ 
d(Dxj), of which the original relation with respect to ∆ 
changes after Ci is deleted from ∆. 

Theorem 2.3 ([2]) Suppose Cov(∆) ≤ U/D,P ⊆ ∆ , then 
Cov(P) ≤ U/D if and only if for xi, xj ∈U   satisfying d(∆xi) ≠ 
d(∆xj), the relation between xi and xj with respect to ∆ is 
equivalent to their relation with respect to P, i.e., ∆xi ⊄ ∆xj  
and ∆xj ⊄ ∆xi ⇔ Pxi⊄ Pxj, Pxj ⊄ Pxi. 

Theorem 2.4 ([2]) Inconsistent covering decision system 
(U,∆,D = {d}) have the following properties:  

a. For ∀xi∈U, if ∆xi ⊂ POS∆(D), then ∆xi ⊆[xi ]D; if 
∆xi ⊄ POS∆(D), then for ∀xk ∈U, ∆xi ⊆[xk]D is not 
true. 

b. For any P⊆∆, POSP(D)= POS∆(D) if and only if 

( ) ( )P X X= ∆  for ∀X∈U/D.  
c. For any P⊆∆, POSP(D)= POS∆(D) if and only if 

∀xi∈U, ∆xi ⊆[xi]D ⇔ Pxi ⊆[xi]D. 

III. ALGORITHM OF ATTRIBUTE REDUCTION 

In this section, we propose a new algorithm of attribute 
reduction. Propositions 3.1 and 3.2 are theoretic foundation 
for our proposing. This algorithm finds an approximately 
minimal reduct. 

A.  Two propositions as a base for new algorithm: 
Proposition 3.1 Let (U,∆,D={d}) be   a  covering   

decision   system. P ⊆ ∆, then we have: 
a. (U,∆,D={d}) is a  consistent covering   decision   

system when it holds: 
[ ]x D

x U x

x
U

∈

∆ ∩
=

∆∑
 

b. Suppose Cov(∆)≤ U/D, Ci ∈∆, Ci  is then 
indispensable, i.e., Cov(∆-{Ci}) ≤ U/D is  true if and 
only if 

( ( ) ( ) ( ) 0xi xj xi xj xi xj
xi U xj U

P P d d
∈ ∈

∆ ∩∆ ∪ ∩ ∆ − ∆ =∑ ∑
 

Where Cov(∆-{Ci})={Px : x∈U}, Cov(∆)= {∆x : x ∈U} 
Proof:  

a) By define of a consistent covering decision system, 
clearly for every x∈U, ∆x ⊆ [x]D is always true, thus 
we have 

[ ]x D xx∆ ∩ = ∆  
i.e 

[ ]x D

x U x

x
U

∈

∆ ∩
=

∆∑  

b) Let Cov(∆-{Ci})={Px : x∈U} = Cov(P), Cov(∆)= {∆x : 
x ∈U, by theorem 2.3, P is a reduct or Ci is 
indispensable, for xi, xj ∈U satisfying d(∆xi) ≠ d(∆xj), 
the relation between xi and xj with respect to ∆ is 
equivalent to their relation with respect to P, i.e., ∆xi ⊄ 
∆xj  and ∆xj ⊄ ∆xi ⇔ Pxi⊄ Pxj, Pxj ⊄ Pxi. Follow remark 
2.1, If d(∆xi) ≠ d(∆xj), then ∆xi ∩ ∆xj = ∅, i.e 

( ) ( ) 0xi xj xi xjP P∆ ∩∆ ∪ ∩ =  

If xi, xj ∈U satisfying d(∆xi) = d(∆xj) then 
( ) ( ) 0xi xjd d∆ − ∆ =  

In other words, it holds: 
( ( ) ( ) ( ) 0xi xj xi xj xi xj

xi U xj U
P P d d

∈ ∈

∆ ∩∆ ∪ ∩ ∆ − ∆ =∑ ∑  

This completes the proof. 
Proposition 3.2 Let (U,∆,D={d}) be an inconsistent 

covering decision system. P ⊆ ∆, POSP(D) = POS ∆(D) if 
and only if ∀xi∈U, 

[ ] [ ]
0xi i D xi i D

xi U xi xi

x P x
P∈

 ∆ ∩ ∩
− = 

∆  
∑

 
 

Proof:  
By theorem 2.4, from third condition ∀xi∈U, ∆xi ⊆[xi]D 

⇔ Pxi ⊆ [xi]D i.e ∀xi∈U, 

[ ]xi D xix∆ ∩ = ∆ ⇔ [ ]xi xiD
P x P∩ =

 
In other words, we have theorem above. 
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B. Algorithm of attribute reduction in covering 
decision system: 

Input: A covering decision system  
S= (U,∆,D={d}) 
Output: One product RD of ∆. 
Method 
Step 1: Compute  

[ ]x D

x U x

x
CI

∈

∆ ∩
=

∆∑  

Step 2: If CI = |U| {S is a consistent covering decision 
system} then goto Step 3 else goto Step 5. 
Step 3: Compute  

, ( ),x xd x U∆ ∆ ∀ ∈  
Step 4: Begin 
For each Ci ∈∆ do 

   if 
( ( ) ( ) ( ) 0xi xj xi xj xi xj

xi U xj U
P P d d

∈ ∈

∆ ∩∆ ∪ ∩ ∆ − ∆ =∑ ∑  

{Where ∆ - {Ci} = {Px : x∈U}} 
then ∆:= ∆ - {Ci}; 
Endfor; 

goto Step 6. 
End; 

Step 5: Begin  
For each Ci ∈∆ do 

 if  
[ ] [ ]

0xi i D xi i D

xi U xi xi

x P x
P∈

 ∆ ∩ ∩
− = 

∆  
∑  

 then   ∆:= ∆ - {Ci}; 
{Where ∆ - {Ci} = {Px : x∈U}} 
Endfor; 
 End; 
Step 6: RD=∆; the algorithm terminates. 

By using this algorithm, the time complexity to find one 
reduct is polynomial. 

At the first step, the time complexity to compute CI is 
O(|U|). 

At the step 2, the time complexity is O(1). 
At the step 3, the time complexity is O(|U|). 

At the step 4, the time complexity to compute ∑∑() is 
O(|U|2), from i=1..|∆|, thus the time complexity of this step is 
O(|∆||U|2).  

At the step 5, the time complexity is the same as step 4. 
It is O(|∆||U|2). 

At the step 6, the time complexity is O(1). 
Thus the time complexity of this algorithm is O(|∆||U|2) 

(Where we ignore the time complexity for computing ∆xi, 
Pxi, i= 1..|∆|). 

IV. ILLUSTRATIVE EXAMPLES 

A.   Example for a consistent covering decision system: 
Suppose U = {x1, x2, .., x9}, ∆ = {Ci, i=1..4}, and 
C1={{x1, x2, x4, x5, x7, x8},{x2, x3, x5, x6, x8, x9}},  
C2={{x1, x2, x3, x4, x5, x6},{x4, x5, x6, x7, x8, x9}}, 
C3={{x1, x2, x3},{x4, x5, x6, x7, x8, x9},{x8, x9}},  
C4={{x1, x2, x4, x5},{x2, x3, x5, x6},{x7, x8},{x5, x6, x8, 

x9}} 
U/D={{x1, x2, x3}, {x4, x5, x6}, {x7, x8, x9}} 

where, ∆i=∆xi, Pi is Pxi (for short) 
Step 1: 
∆1={x1, x2}, ∆2={x2}, ∆3={x2, x3},  

we have d(∆1) = d(∆2) = d(∆3) = 1,  
because ∆1, ∆2, ∆3 ⊆ {x1, x2, x3},  

∆4={x4, x5}, ∆5={x5}, ∆6={x5, x6},  
we have d(∆4) = d(∆5) = d(∆6) = 2,  
because ∆4, ∆5, ∆6 ⊆ {x4, x5, x6},  

∆7={x7, x8}, ∆8={x8}, ∆9={x8, x9},   
we have d(∆7) = d(∆8) = d(∆9) = 3,  
because ∆7, ∆8, ∆9 ⊆ {x7,x8, x9} 

 CI = 9 ⇒ S is consistent system. 
Step 2: 
 P - {C1}: 
 P1={x1, x2}, P2={x2}, P3={x2, x3}, 
 P4={x4,x5}, P5={x5}, P6={x5, x6}, 
 P7={x7, x8}, P8={x8}, P9={x8, x9} 

 
( ( ) ( ) ( ) 0xi xj xi xj xi xj

xi U xj U
P P d d

∈ ∈

∆ ∩∆ ∪ ∩ ∆ − ∆ =∑ ∑  

∆=∆ - {C1} = {C2, C3, C4}. 
Step 3: 
 P=∆ - {C2} 
 P1={x1, x2}, P2={x2}, P3={x2, x3}, 
 P4={x4, x5}, P5={x5}, P6={x5, x6}, 
 P7={x7, x8}, P8={x8}, P9={x8, x9} 

( ( ) ( ) ( ) 0xi xj xi xj xi xj
xi U xj U

P P d d
∈ ∈

∆ ∩∆ ∪ ∩ ∆ − ∆ =∑ ∑  

∆=∆ - {C2} = {C3, C4} 
Step 4:  

 P= ∆ - {C3}: 
 P1={x1, x2, x4, x5}, P2={x2}, P3={x2, x3, x5, x6}, 
 P4={x4, x5}, P5={x5}, P6={x5, x6}, 
 P7={x4, x5, x7, x8}, P8={x5, x8}, P9={x5, x6, x8, x9} 
 

( ( ) ( ) ( ) 0xi xj xi xj xi xj
xi U xj U

P P d d
∈ ∈

∆ ∩∆ ∪ ∩ ∆ − ∆ ≠∑ ∑  

(we can see (∆1∩∆4)=∅, but (P1∩P4)≠∅, |d(∆1)-d(∆4)|≠0) 
∆= {C3,C4}. 

Step 5:  
P= ∆ - {C4} 
P1={x1, x2, x3}, P2={x1, x2, x3}, P3={x1, x2, x3}, 
P4={x4, x5, x6, x7, x8, x9}, P5={x4, x5, x6, x7, x8, x9}, 
P6={x4,x5,x6,x7,x8,x9} 
P7={x7, x8, x9}, P8={x7, x8, x9}, P9={x7, x8, x9} 

( ( ) ( ) ( ) 0xi xj xi xj xi xj
xi U xj U

P P d d
∈ ∈

∆ ∩∆ ∪ ∩ ∆ − ∆ ≠∑ ∑  

(we can see (∆6∩∆7) =∅, but (P6∩P7)≠∅, |d(∆6)-d(∆7)|≠0) 
∆= {C3,C4}. 

Step 6:  
RD= {C3,C4} is a reduct. i.e. attributes with respect to C1, C2 
are deleted. 

B. Example for a inconsistent covering decision 
system: 

Suppose U={x1,x2,x3,x4,x5,x6,x7,x8,x9,x10} and {Ci, i=1..4} 
C1={{x1,x2,x3,x4,x6,x7,x8,x9,x10},{x3,x4,x6,x7},{x3,x4,x5,x6,

x7}} 
C2={{x1,x2,x3,x4,x5,x6,x7},{x6,x7,x8,x9},{x10}} 
C3={{x1,x2,x3,x6,x8,x9,x10},{x2,x3,x4,x5,x6,x7,x9}} 
C4={{x1,x2,x3,x6},{x2,x3,x4,x5,x6,x7},{x6,x8,x9,x10},{x6,x7,x

9}} 
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U/D={{x1,x2,x3,x6}, {x4,x5,x7}, {x8,x9,x10}} 
Step 1:   
∆1={ x1,x2,x3,x6}; ∆2={ x2,x3,x6}; ∆3={ x3,x6};  
∆4={ x3,x4,x6,x7}; ∆5={ x3,x4,x5,x6,x7};∆6={ x6};  
∆7={ x6,x7}; ∆8={ x6,x8,x9}; ∆9={ x6,x9}; ∆10={ x10}; 
CI ≠ 9 ⇒ S is an inconsistent system. 

Step 2: P – {C1}: 
P1={x1,x2,x3,x6}; P2=P3={x2,x3,x6}; 
P4=P5={ x2,x3,x4,x5,x6,x7}; 
P6={ x6}; P7={ x6,x7}; P8={ x6,x8,x9};  
P9= { x6,x9}; P10={ x10}; 

[ ] [ ]
0xi i D xi i D

xi U xi xi

x P x
P∈

 ∆ ∩ ∩
− = 

∆  
∑  

∆=∆ - {C1}={C2,C3,C4}. C1 is dispensable. 
Step 3: P – {C2} 

P1={x1,x2,x3,x6}; P2=P3={x2,x3,x6};  
P4=P5={ x2,x3,x4,x5,x6,x7};  P6={x6}; 
P7={x2,x3,x4,x5,x6,x7}; P8={x6,x8,x9, x10};  
P9= { x6,x9}; P10={ x6,x8,x9, x10} 

0
][][

≠










 ∩
−

∆

∩∆
∑
∈Uxi xi

Dixi

xi

Dixi

P
xPx

 

C2  is in dispensable. ∆={C2,C3,C4}. 
Step 4: P – {C3} 
P1={ x1,x2,x3,x6}; P2=P3={ x2,x3,x6};  
P4=P5={x2,x3,x4,x5,x6,x7};  P6={ x6};  
P7={x6,x7}; P8=P9= {x6,x8,x9 }; P10={ x10} 

[ ] [ ]
0xi i D xi i D

xi U xi xi

x P x
P∈

 ∆ ∩ ∩
− = 

∆  
∑  

∆=∆ - {C3}={C2,C4}. C3 is dispensable 
Step 5:  P – {C4} 
 P1= P2=P3= P4=P5={ x1, x2,x3,x4,x5,x6,x7} 
 P6= P7={ x6,x7}; P8=P9= { x6, x7,x8,x9 }; P10={ x10} 

0
][][

≠










 ∩
−

∆
∩∆∑

∈Uxi xi

Dixi

xi

Dixi

P
xPx

 

C4  is in dispensable. ∆={C2,C4}. 
Step 6:  
RD= {C2,C4} is a reduct. i.e. attributes with respect to C1, 

C3 are deleted. 
Table I.  Comparision with results of Chen Degang et al  

Algorithm of Chen Degang et al New Algorithm 
Example 1 
Red(∆) = {{C3, C4}, {C2, C3}} RD= {C3,C4} 
Example 2 
Red(∆) = {{C2, C4}, {C2, C3}} RD= {C2,C4} 
 
Note: Where Red(∆) = Collection all reducts of ∆; RD is 

a reduct of ∆ 

V. INDEPENDENCE OF REDUNDANT  
ATTRIBUTES 

In this section, we show the independence of redundant 
attributes in the algorithms above.  This property is 
presented through problem:  

Is there a conversion of a nonredundant covering into a 
redundant covering when a redundant covering removed? 

We have two propositions: 
Proposition 4.1 Let T= (U,∆,D={d}) be a consistent 

covering decision system  has 

a. is a family covering ∆={C1, C2, .., Cn} 
b. Cov(∆)≤U/D 

Consider 2 family covering P1, P2  statisfy:  
            P2 ⊆P1⊆ ∆, Cov(Pi)≤U/D, i=1,2.  

Then ∀Ck∈P2⊆P1, if  Ck  is nonredundant in P1 then  Ck 
is nonredundant in P2 (*) 
Proof:  

We need to prove that if Ck is redundant in P2 then Ck is 
redundant in P1. 

Let P11 = P1-{Ck},  P22 = P2-{Ck}. 
Suppose Ck is nonredundant in P1 , then  Cov(P1-

{Ck})≤U/D is not true. 
  Cov(P1-{Ck})≤U/D is not true ⇔ ∃xi0,xj0∈U such that 
  d(P1xi0) ≠d(P1xj0),  P1xi0∩P1xj0=∅  but P11xi0∩P11xj0≠∅        

If  Ck is redundant in P2 ⇔ Cov(P2-{Ck})≤U/D. ⇔  
∀xi,xj ∈U, d(P2xi) ≠ d(P2xj), we get P2xi∩P2xj=∅ and 

P22xi∩P22xj=∅          
   Since P2 ⊆P1⊆ ∆, Cov(Pi)≤U/D, i=1,2, so 
   ∀xi,xj ∈U, d(P1xi) ≠ d(P1xj)  implies  that   

P1xi∩P1xj=∅  and  P2xi∩P2xj=∅         
Clearly, P2 ⊆P1 implies that ∀xi ∈U, ∀Ck∈P2⊆P1 : P11xi 

⊆ P22xi  ,       
Combining (1)(2)(3)(4) gives  a contradiction: ∅≠ 

P11xi0∩P11xj0 ⊆P22xi0∩P22xj0=∅. 
In other words, we have (*). The proof  is complete. 
Proposition 4.2 Let T= (U,∆,D={d}) be an inconsistent 

covering decision system  has 
a.  ∆ is a family covering ∆={C1, C2, .., Cn} 
b.  POS∆(D)≠U 

Consider 2 family covering P1, P2 ⊆ ∆ statisfy: 
a) P2

 ⊆ P1 
b) 1 2( ) ( )P PPOS D POS D U= ≠  

Then ∀Ck∈P2⊆P1, if Ck is nonredundant in P1 then Ck is 
nonredundant in P2 (*) 
Proof:  

In the same way as in Proposition 4.1, we need to prove 
that if Ck redundant in P2 then Ck redundant in P1.  

Let  P11=P1-{Ck}, P22=P2-{Ck}. If Ck is redundant in P2 
then  

)()( 222 DPOSDPOS PP =

DixDixi xPxPUx
ii

][][: 222 ⊆⇔⊆∈∀⇔    
Suppose  Ck  is nonredundant in  P1 , we have :  

11 1( ) ( )P PPOS D POS D≠
   

Dx xPUx ][: 0
11

0 0
⊄∈∃⇔  và 

0

1
0[ ]x DP x⊆   

Since UDPOSDPOS PP ≠= )()( 21 , it follows that  

DxDx xPxP ][][ 0
2

0
1

00
⊆⇔⊆           

By (α)(β)(γ), we get 

DxDxDxDx xPxPxPxPUx ][,][,][,][: 0
11

0
22

0
2

0
1

0
0000
⊄⊆⊆⊆∈∃

     
Since P22⊆P11, it follows that 22

0
11

xxo PP ⊆  which 
contradicts with 

DxDx xPxP ][,][ 0
22

0
11

00
⊆⊄  

In other words, we have (*).  The proof  is complete. 
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VI. CONCLUSION 

Independence of redundant attributes in the Attribute 
reduction algorithm based on a family covering rough sets 
allows we process only one time to remove  redundant 
attributes.  This determines the performance of  the 
algorithm above. 
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