
Volume 3, No. 7, Nov-Dec 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 49

ISSN No. 0976-5697

Independence of Redundant Attributes in the Attribute Reduction Algorithm
Nguyen Duc Thuan

Information Systems Departement
Nha Trang University Nha Trang City,

Khanh Hoa Province, Vietnam
ngducthuan@ntu.edu.vn

Abstract: We proposed an attribute reduction algorithm of decision system. It based on a family covering rough set. In this Algorithm, the
independence of redundant attributes is critical to the correctness and complexity of the algorithm. This paper presents removing a redundant
attribute does not affect the property of a nonredundant attribute.

Keywords: redundant attribute, attribute reduction, decision system, covering rough sets, consistent decision system.

I. INTRODUCTION

Attribute reduction of an information system is a key
problem in rough set theory and its application. It has been
proven that finding the minimal reduct of an information
system. In [2], Cheng Degang et al. have defined consistent
and inconsistent covering decision system and their attribute
reduction. They gave an algorithm to compute all the
reducts of decision systems. Their method based on
discernibility matrix. But, in rough set theory, it has been
proved that finding all the reduct of information systems
(decision tables) is NP-complete. Hence, sometime we only
need to find an attribute reduction. Using some results of
Chen Degang et al, we proposed an algorithm which is
finding a minimal attribute reduct information decision
system [1]. Removing a redundant attributes can affect the
property of the remaining properties (e.g. nonredundant
attribute X can become redundant attribute, after a
redundant attribute Z removed because there are the
relationships between the attributes). This paper show the
independence of redundant attributes in attribute reduction
algorithm based on family covering rough sets.

The remainder of this paper is structured as follows. In
section 2 briefly introduces some relevant concepts and
results. Section 3, we present our attribute reduction
algorithm based on family covering rough sets. Section 4
presents two propositions about the independence of
redundant attributes.

II. SOME RELEVANT CONCEPTS AND
RESULTS

In this section, we first recall the concept of a cover and
then review the existing research on covering rough sets of
Cheng Degang et al. [2]

A. Covering rough sets and induced covers:
Definition 2.1 Let U be a universe of discourse, C a

family of subsets of U. C is called a cover of U if no subset
in C is empty and ∪C = U.

Definition 2.2 Let C = {C1, C2..., Cn} be a cover of U.
For every x∈U, let Cx = ∩{Cj: Cj ∈C, x∈Cj}. Cov(C) = {Cx:
x∈U} is then also a cover of U. We call it induced over of
C.

Definition 2.3 Let ∆= {Ci: i=1, m} be a family of covers

of U. For every x∈U, let ∆x= ∩{Cix: Cix∈ Cov (Ci), x∈Cix}
then Cov (∆) = {∆x: x∈U} is also a cover of U. We call it
the induced cover of ∆.

Clearly ∆x is the intersection of all the elements in every
Ci including x, so for every x∈U, ∆x is the minimal set in
Cov(∆) including x. If every cover in ∆ is an attribute, then
∆x= ∩{Cix: Cix∈Cov(Ci), x∈Cix} means the relation among
Cix is a conjunction. Cov(∆) can be viewed as the
intersection of covers in ∆. If every cover in ∆ is a partition,
then Cov(∆) is also a partition and ∆x is the equivalence
class including x. For every x, y ∈ U, if y ∈ ∆x, then ∆x ⊇
∆y, so if y ∈∆x and x ∈∆y, then ∆x=∆y. Every element in
Cov(∆) can not be written as the union of other elements in
Cov(∆). We employ an example to illustrate the practical
meaning of Cx and ∆x.

For every X ⊆ U, the lower and upper approximation of
X with respect to Cov(∆) are defined as follows:

() { : },x xX X∆ = ∪ ∆ ∆ ⊆

 () { : }x xX X∆ = ∪ ∆ ∆ ∩ ≠ ∅
The positive, negative and boundary regions of X

relative to ∆ are computed using the following formulas
respectively:

() (), ((),

() () ()

POS X X NEG U X

BN X X X
∆ ∆

∆

= ∆ − ∆

= ∆ −∆

Clearly in Cov(∆), ∆x is the minimal description of
object x.

B. Attribute reduction of consistent and inconsistent
decision systems:

Definition 2.4 Let ∆ = {Ci: i=1,..m} be a family of
covers of U, D is a decision attribute, U/D is a decision
partition on U. If for ∀x∈U, ∃Dj ∈U/D such that ∆x ⊆ Dj,
then decision system (U,∆,D) is called a consistent covering
decision system, and denoted as Cov(∆)≤ U/D.
Otherwise, (U,∆,D) is called an inconsistent covering
decision system. The positive region of D relative to ∆
is defined as

/

() ()
X U D

POS D X∆
∈

= ∆

Nguyen Duc Thuan ,International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012,49-53

© 2010, IJARCS All Rights Reserved 50

Remark 2.1 Let D={d}, then d(x) is a decision
function d: U → Vd of the universe U into value set Vd.
For every xi, xj ∈U , if ∆xi ⊆ ∆xj, then d(xi) = d([xi]D) =
d(∆xi) = d(∆xj) = d(xj) = d([xj]D). If d(∆xi) ≠ d(∆xj), then ∆xi

∩ ∆xj = ∅, i.e ∆xi ⊄ ∆xj and ∆xj ⊄ ∆xi.
Definition 2.5 Let (U,∆, D= {d}) be a consistent

covering decision system. For Ci ∈∆ , if Cov(∆-{Ci}) ≤
U/D, then Ci is called superfluous relative to D in ∆ ,
otherwise Ci is called indispensable relative to D in ∆. For
every P ⊆ ∆ satisfying Cov(P) ≤U/D , if every element in P
is indispensable, i.e., for every Ci ∈P, Cov(∆-{Ci}) ≤ U/D is
not true, then P is called a reduct of D relative to D, relative
reduct in short. The collection of all the indispensable
elements in D is called the core of ∆ relative to D, denoted
as CoreD(∆). The relative reduct of a consistent covering
decision system is the minimal set of conditional covers
(attributes) to ensure every decision rule still consistent.
For a single cover Ci, we present some equivalence
conditions to judge whether it is indispensable.

Definition 2.6 Suppose U is a finite universe and ∆ =
{Ci: i=1,..m} be a family of covers of U, Ci ∈∆, D is a
decision attribute relative ∆ on U and d: U → Vd is the
decision function Vd defined as d(x) = [x]D. (U,∆,D) is an
inconsistent covering decision system, i.e., POS∆(D)≠U. If
POS∆(D)=POS∆-{Ci}(D), then Ci is superfluous relative to D
in ∆. Otherwise Ci is indispensable relative to D in ∆. For
every P⊆∆, if every element in P is indispensable relative to
D, and POS∆(D)=POSP(D), then P is a reduct of
POS∆(D)=POS∆-{Ci}(D) relative to D, called relative reduct
in short. The collection of all the indispensable elements
relative to D in ∆ is the core of ∆ relative to D, denoted by
CoreD(∆).

C. Some results of Chang et al:
Theorem 2.1 ([2]) Supposing U is a finite universe and

∆ = {Ci: i=1,..m} be a family of covers of U, the following
statements hold:
a. ∆x = ∆y if and only if for every Ci ∈∆ we have Cix =

Ciy.
b. ∆x ⊃ ∆y if and only if for every Ci ∈∆ we have Cix ⊇

Ciy and there is a Ci ∈∆ such that Ci0 x ⊃ Ci0 y .
c. ∆x ⊄ ∆y and ∆y ⊄ ∆x hold if and only if there are Ci, Cj

∈∆ such that Cix ⊂ Ciy and Cjx ⊃ Cjy or there is a Ci0
∈∆ such that Ci0 x ⊄ Ci0 y and Ci0 y ⊄ Ci0 x .

Theorem 2.2 ([2]) Suppose Cov(∆)≤ U/D, Ci ∈∆, Ci is
then indispensable, i.e., Cov(∆-{Ci}) ≤ U/D is not true if and
only if there is at least a pair of xi, xj ∈U satisfying d(Dxi)≠
d(Dxj), of which the original relation with respect to ∆
changes after Ci is deleted from ∆.

Theorem 2.3 ([2]) Suppose Cov(∆) ≤ U/D,P ⊆ ∆ , then
Cov(P) ≤ U/D if and only if for xi, xj ∈U satisfying d(∆xi) ≠
d(∆xj), the relation between xi and xj with respect to ∆ is
equivalent to their relation with respect to P, i.e., ∆xi ⊄ ∆xj
and ∆xj ⊄ ∆xi ⇔ Pxi⊄ Pxj, Pxj ⊄ Pxi.

Theorem 2.4 ([2]) Inconsistent covering decision system
(U,∆,D = {d}) have the following properties:

a. For ∀xi∈U, if ∆xi ⊂ POS∆(D), then ∆xi ⊆[xi]D; if
∆xi ⊄ POS∆(D), then for ∀xk ∈U, ∆xi ⊆[xk]D is not
true.

b. For any P⊆∆, POSP(D)= POS∆(D) if and only if

() ()P X X= ∆ for ∀X∈U/D.
c. For any P⊆∆, POSP(D)= POS∆(D) if and only if

∀xi∈U, ∆xi ⊆[xi]D ⇔ Pxi ⊆[xi]D.

III. ALGORITHM OF ATTRIBUTE REDUCTION

In this section, we propose a new algorithm of attribute
reduction. Propositions 3.1 and 3.2 are theoretic foundation
for our proposing. This algorithm finds an approximately
minimal reduct.

A. Two propositions as a base for new algorithm:
Proposition 3.1 Let (U,∆,D={d}) be a covering

decision system. P ⊆ ∆, then we have:
a. (U,∆,D={d}) is a consistent covering decision

system when it holds:
[]x D

x U x

x
U

∈

∆ ∩
=

∆∑

b. Suppose Cov(∆)≤ U/D, Ci ∈∆, Ci is then
indispensable, i.e., Cov(∆-{Ci}) ≤ U/D is true if and
only if

(() () () 0xi xj xi xj xi xj
xi U xj U

P P d d
∈ ∈

∆ ∩∆ ∪ ∩ ∆ − ∆ =∑ ∑

Where Cov(∆-{Ci})={Px : x∈U}, Cov(∆)= {∆x : x ∈U}
Proof:

a) By define of a consistent covering decision system,
clearly for every x∈U, ∆x ⊆ [x]D is always true, thus
we have

[]x D xx∆ ∩ = ∆
i.e

[]x D

x U x

x
U

∈

∆ ∩
=

∆∑

b) Let Cov(∆-{Ci})={Px : x∈U} = Cov(P), Cov(∆)= {∆x :
x ∈U, by theorem 2.3, P is a reduct or Ci is
indispensable, for xi, xj ∈U satisfying d(∆xi) ≠ d(∆xj),
the relation between xi and xj with respect to ∆ is
equivalent to their relation with respect to P, i.e., ∆xi ⊄
∆xj and ∆xj ⊄ ∆xi ⇔ Pxi⊄ Pxj, Pxj ⊄ Pxi. Follow remark
2.1, If d(∆xi) ≠ d(∆xj), then ∆xi ∩ ∆xj = ∅, i.e

() () 0xi xj xi xjP P∆ ∩∆ ∪ ∩ =

If xi, xj ∈U satisfying d(∆xi) = d(∆xj) then
() () 0xi xjd d∆ − ∆ =

In other words, it holds:
(() () () 0xi xj xi xj xi xj

xi U xj U
P P d d

∈ ∈

∆ ∩∆ ∪ ∩ ∆ − ∆ =∑ ∑

This completes the proof.
Proposition 3.2 Let (U,∆,D={d}) be an inconsistent

covering decision system. P ⊆ ∆, POSP(D) = POS ∆(D) if
and only if ∀xi∈U,

[] []
0xi i D xi i D

xi U xi xi

x P x
P∈

 ∆ ∩ ∩
− =

∆
∑

Proof:
By theorem 2.4, from third condition ∀xi∈U, ∆xi ⊆[xi]D

⇔ Pxi ⊆ [xi]D i.e ∀xi∈U,

[]xi D xix∆ ∩ = ∆ ⇔ []xi xiD
P x P∩ =

In other words, we have theorem above.

Nguyen Duc Thuan ,International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012,49-53

© 2010, IJARCS All Rights Reserved 51

B. Algorithm of attribute reduction in covering
decision system:

Input: A covering decision system
S= (U,∆,D={d})
Output: One product RD of ∆.
Method
Step 1: Compute

[]x D

x U x

x
CI

∈

∆ ∩
=

∆∑

Step 2: If CI = |U| {S is a consistent covering decision
system} then goto Step 3 else goto Step 5.
Step 3: Compute

, (),x xd x U∆ ∆ ∀ ∈
Step 4: Begin
For each Ci ∈∆ do

 if
(() () () 0xi xj xi xj xi xj

xi U xj U
P P d d

∈ ∈

∆ ∩∆ ∪ ∩ ∆ − ∆ =∑ ∑

{Where ∆ - {Ci} = {Px : x∈U}}
then ∆:= ∆ - {Ci};
Endfor;

goto Step 6.
End;

Step 5: Begin
For each Ci ∈∆ do

 if
[] []

0xi i D xi i D

xi U xi xi

x P x
P∈

 ∆ ∩ ∩
− =

∆
∑

 then ∆:= ∆ - {Ci};
{Where ∆ - {Ci} = {Px : x∈U}}
Endfor;
 End;
Step 6: RD=∆; the algorithm terminates.

By using this algorithm, the time complexity to find one
reduct is polynomial.

At the first step, the time complexity to compute CI is
O(|U|).

At the step 2, the time complexity is O(1).
At the step 3, the time complexity is O(|U|).

At the step 4, the time complexity to compute ∑∑() is
O(|U|2), from i=1..|∆|, thus the time complexity of this step is
O(|∆||U|2).

At the step 5, the time complexity is the same as step 4.
It is O(|∆||U|2).

At the step 6, the time complexity is O(1).
Thus the time complexity of this algorithm is O(|∆||U|2)

(Where we ignore the time complexity for computing ∆xi,
Pxi, i= 1..|∆|).

IV. ILLUSTRATIVE EXAMPLES

A. Example for a consistent covering decision system:
Suppose U = {x1, x2, .., x9}, ∆ = {Ci, i=1..4}, and
C1={{x1, x2, x4, x5, x7, x8},{x2, x3, x5, x6, x8, x9}},
C2={{x1, x2, x3, x4, x5, x6},{x4, x5, x6, x7, x8, x9}},
C3={{x1, x2, x3},{x4, x5, x6, x7, x8, x9},{x8, x9}},
C4={{x1, x2, x4, x5},{x2, x3, x5, x6},{x7, x8},{x5, x6, x8,

x9}}
U/D={{x1, x2, x3}, {x4, x5, x6}, {x7, x8, x9}}

where, ∆i=∆xi, Pi is Pxi (for short)
Step 1:
∆1={x1, x2}, ∆2={x2}, ∆3={x2, x3},

we have d(∆1) = d(∆2) = d(∆3) = 1,
because ∆1, ∆2, ∆3 ⊆ {x1, x2, x3},

∆4={x4, x5}, ∆5={x5}, ∆6={x5, x6},
we have d(∆4) = d(∆5) = d(∆6) = 2,
because ∆4, ∆5, ∆6 ⊆ {x4, x5, x6},

∆7={x7, x8}, ∆8={x8}, ∆9={x8, x9},
we have d(∆7) = d(∆8) = d(∆9) = 3,
because ∆7, ∆8, ∆9 ⊆ {x7,x8, x9}

 CI = 9 ⇒ S is consistent system.
Step 2:
 P - {C1}:
 P1={x1, x2}, P2={x2}, P3={x2, x3},
 P4={x4,x5}, P5={x5}, P6={x5, x6},
 P7={x7, x8}, P8={x8}, P9={x8, x9}

(() () () 0xi xj xi xj xi xj

xi U xj U
P P d d

∈ ∈

∆ ∩∆ ∪ ∩ ∆ − ∆ =∑ ∑

∆=∆ - {C1} = {C2, C3, C4}.
Step 3:
 P=∆ - {C2}
 P1={x1, x2}, P2={x2}, P3={x2, x3},
 P4={x4, x5}, P5={x5}, P6={x5, x6},
 P7={x7, x8}, P8={x8}, P9={x8, x9}

(() () () 0xi xj xi xj xi xj
xi U xj U

P P d d
∈ ∈

∆ ∩∆ ∪ ∩ ∆ − ∆ =∑ ∑

∆=∆ - {C2} = {C3, C4}
Step 4:

 P= ∆ - {C3}:
 P1={x1, x2, x4, x5}, P2={x2}, P3={x2, x3, x5, x6},
 P4={x4, x5}, P5={x5}, P6={x5, x6},
 P7={x4, x5, x7, x8}, P8={x5, x8}, P9={x5, x6, x8, x9}

(() () () 0xi xj xi xj xi xj
xi U xj U

P P d d
∈ ∈

∆ ∩∆ ∪ ∩ ∆ − ∆ ≠∑ ∑

(we can see (∆1∩∆4)=∅, but (P1∩P4)≠∅, |d(∆1)-d(∆4)|≠0)
∆= {C3,C4}.

Step 5:
P= ∆ - {C4}
P1={x1, x2, x3}, P2={x1, x2, x3}, P3={x1, x2, x3},
P4={x4, x5, x6, x7, x8, x9}, P5={x4, x5, x6, x7, x8, x9},
P6={x4,x5,x6,x7,x8,x9}
P7={x7, x8, x9}, P8={x7, x8, x9}, P9={x7, x8, x9}

(() () () 0xi xj xi xj xi xj
xi U xj U

P P d d
∈ ∈

∆ ∩∆ ∪ ∩ ∆ − ∆ ≠∑ ∑

(we can see (∆6∩∆7) =∅, but (P6∩P7)≠∅, |d(∆6)-d(∆7)|≠0)
∆= {C3,C4}.

Step 6:
RD= {C3,C4} is a reduct. i.e. attributes with respect to C1, C2
are deleted.

B. Example for a inconsistent covering decision
system:

Suppose U={x1,x2,x3,x4,x5,x6,x7,x8,x9,x10} and {Ci, i=1..4}
C1={{x1,x2,x3,x4,x6,x7,x8,x9,x10},{x3,x4,x6,x7},{x3,x4,x5,x6,

x7}}
C2={{x1,x2,x3,x4,x5,x6,x7},{x6,x7,x8,x9},{x10}}
C3={{x1,x2,x3,x6,x8,x9,x10},{x2,x3,x4,x5,x6,x7,x9}}
C4={{x1,x2,x3,x6},{x2,x3,x4,x5,x6,x7},{x6,x8,x9,x10},{x6,x7,x

9}}

Nguyen Duc Thuan ,International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012,49-53

© 2010, IJARCS All Rights Reserved 52

U/D={{x1,x2,x3,x6}, {x4,x5,x7}, {x8,x9,x10}}
Step 1:
∆1={ x1,x2,x3,x6}; ∆2={ x2,x3,x6}; ∆3={ x3,x6};
∆4={ x3,x4,x6,x7}; ∆5={ x3,x4,x5,x6,x7};∆6={ x6};
∆7={ x6,x7}; ∆8={ x6,x8,x9}; ∆9={ x6,x9}; ∆10={ x10};
CI ≠ 9 ⇒ S is an inconsistent system.

Step 2: P – {C1}:
P1={x1,x2,x3,x6}; P2=P3={x2,x3,x6};
P4=P5={ x2,x3,x4,x5,x6,x7};
P6={ x6}; P7={ x6,x7}; P8={ x6,x8,x9};
P9= { x6,x9}; P10={ x10};

[] []
0xi i D xi i D

xi U xi xi

x P x
P∈

 ∆ ∩ ∩
− =

∆
∑

∆=∆ - {C1}={C2,C3,C4}. C1 is dispensable.
Step 3: P – {C2}

P1={x1,x2,x3,x6}; P2=P3={x2,x3,x6};
P4=P5={ x2,x3,x4,x5,x6,x7}; P6={x6};
P7={x2,x3,x4,x5,x6,x7}; P8={x6,x8,x9, x10};
P9= { x6,x9}; P10={ x6,x8,x9, x10}

0
][][

≠

 ∩
−

∆

∩∆
∑
∈Uxi xi

Dixi

xi

Dixi

P
xPx

C2 is in dispensable. ∆={C2,C3,C4}.
Step 4: P – {C3}
P1={ x1,x2,x3,x6}; P2=P3={ x2,x3,x6};
P4=P5={x2,x3,x4,x5,x6,x7}; P6={ x6};
P7={x6,x7}; P8=P9= {x6,x8,x9 }; P10={ x10}

[] []
0xi i D xi i D

xi U xi xi

x P x
P∈

 ∆ ∩ ∩
− =

∆
∑

∆=∆ - {C3}={C2,C4}. C3 is dispensable
Step 5: P – {C4}
 P1= P2=P3= P4=P5={ x1, x2,x3,x4,x5,x6,x7}
 P6= P7={ x6,x7}; P8=P9= { x6, x7,x8,x9 }; P10={ x10}

0
][][

≠

 ∩
−

∆
∩∆∑

∈Uxi xi

Dixi

xi

Dixi

P
xPx

C4 is in dispensable. ∆={C2,C4}.
Step 6:
RD= {C2,C4} is a reduct. i.e. attributes with respect to C1,

C3 are deleted.
Table I. Comparision with results of Chen Degang et al

Algorithm of Chen Degang et al New Algorithm
Example 1
Red(∆) = {{C3, C4}, {C2, C3}} RD= {C3,C4}
Example 2
Red(∆) = {{C2, C4}, {C2, C3}} RD= {C2,C4}

Note: Where Red(∆) = Collection all reducts of ∆; RD is

a reduct of ∆

V. INDEPENDENCE OF REDUNDANT
ATTRIBUTES

In this section, we show the independence of redundant
attributes in the algorithms above. This property is
presented through problem:

Is there a conversion of a nonredundant covering into a
redundant covering when a redundant covering removed?

We have two propositions:
Proposition 4.1 Let T= (U,∆,D={d}) be a consistent

covering decision system has

a. is a family covering ∆={C1, C2, .., Cn}
b. Cov(∆)≤U/D

Consider 2 family covering P1, P2 statisfy:
 P2 ⊆P1⊆ ∆, Cov(Pi)≤U/D, i=1,2.

Then ∀Ck∈P2⊆P1, if Ck is nonredundant in P1 then Ck
is nonredundant in P2 (*)
Proof:

We need to prove that if Ck is redundant in P2 then Ck is
redundant in P1.

Let P11 = P1-{Ck}, P22 = P2-{Ck}.
Suppose Ck is nonredundant in P1 , then Cov(P1-

{Ck})≤U/D is not true.
 Cov(P1-{Ck})≤U/D is not true ⇔ ∃xi0,xj0∈U such that
 d(P1xi0) ≠d(P1xj0), P1xi0∩P1xj0=∅ but P11xi0∩P11xj0≠∅

If Ck is redundant in P2 ⇔ Cov(P2-{Ck})≤U/D. ⇔
∀xi,xj ∈U, d(P2xi) ≠ d(P2xj), we get P2xi∩P2xj=∅ and

P22xi∩P22xj=∅
 Since P2 ⊆P1⊆ ∆, Cov(Pi)≤U/D, i=1,2, so
 ∀xi,xj ∈U, d(P1xi) ≠ d(P1xj) implies that

P1xi∩P1xj=∅ and P2xi∩P2xj=∅
Clearly, P2 ⊆P1 implies that ∀xi ∈U, ∀Ck∈P2⊆P1 : P11xi

⊆ P22xi ,
Combining (1)(2)(3)(4) gives a contradiction: ∅≠

P11xi0∩P11xj0 ⊆P22xi0∩P22xj0=∅.
In other words, we have (*). The proof is complete.
Proposition 4.2 Let T= (U,∆,D={d}) be an inconsistent

covering decision system has
a. ∆ is a family covering ∆={C1, C2, .., Cn}
b. POS∆(D)≠U

Consider 2 family covering P1, P2 ⊆ ∆ statisfy:
a) P2

 ⊆ P1
b) 1 2() ()P PPOS D POS D U= ≠

Then ∀Ck∈P2⊆P1, if Ck is nonredundant in P1 then Ck is
nonredundant in P2 (*)
Proof:

In the same way as in Proposition 4.1, we need to prove
that if Ck redundant in P2 then Ck redundant in P1.

Let P11=P1-{Ck}, P22=P2-{Ck}. If Ck is redundant in P2
then

)()(222 DPOSDPOS PP =

DixDixi xPxPUx
ii

][][: 222 ⊆⇔⊆∈∀⇔
Suppose Ck is nonredundant in P1 , we have :

11 1() ()P PPOS D POS D≠

Dx xPUx][: 0
11

0 0
⊄∈∃⇔ và

0

1
0[]x DP x⊆

Since UDPOSDPOS PP ≠=)()(21 , it follows that

DxDx xPxP][][0
2

0
1

00
⊆⇔⊆

By (α)(β)(γ), we get

DxDxDxDx xPxPxPxPUx][,][,][,][: 0
11

0
22

0
2

0
1

0
0000
⊄⊆⊆⊆∈∃

Since P22⊆P11, it follows that 22

0
11

xxo PP ⊆ which
contradicts with

DxDx xPxP][,][0
22

0
11

00
⊆⊄

In other words, we have (*). The proof is complete.

Nguyen Duc Thuan ,International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012,49-53

© 2010, IJARCS All Rights Reserved 53

VI. CONCLUSION

Independence of redundant attributes in the Attribute
reduction algorithm based on a family covering rough sets
allows we process only one time to remove redundant
attributes. This determines the performance of the
algorithm above.

VII. REFERENCES

[1] Nguyen Duc Thuan, “A family of covering rough sets
based algorithm for reduction attributes”, International
journal of Computer Theory and Engineering, vol.2, No.2,
pp.181–184, April 2010.

[2] Chen Degang, Wang Changzhong, Hu Quinghua, “A new
approach to attribute reduction of consistent and

inconsistent covering rough sets”, Information Sciences,
177 (2007) 3500-3518

[3] Guo-Yin Wang, Jun Zhao, Jiu-Jiang An, Yu Wu,
“Theoretical study on attribute reduction of rough set
theory: Comparision of algebra and information views”,
Proceedings of the Third IEEE International Conference on
Cognitive Informatics (ICCI’04), 2004

[4] Ruizhi Wang, Duoqian Miao, Guirong Hu, “Descernibility
Matrix Based Algorithm for Reduction of Attributes”, IAT
Workshops 2006: 477- 480

[5] Yiyu Yao, Yan Zhao, Jue Wang, “On Reduct Construction
Algorithms, Rough sets and Knowledge Technology”,
First International Conference, RSKT2006, Proceedings,
LNAI 4062, pp 207-304, 2006

	INTRODUCTION
	SOME RELEVANT CONCEPTS AND RESULTS
	Covering rough sets and induced covers:
	Attribute reduction of consistent and inconsistent decision systems:
	Some results of Chang et al:

	ALGORITHM OF ATTRIBUTE REDUCTION
	A. Two propositions as a base for new algorithm:
	Algorithm of attribute reduction in covering decision system:

	ILLUSTRATIVE EXAMPLES
	A. Example for a consistent covering decision system:
	Example for a inconsistent covering decision system:

	INDEPENDENCE OF REDUNDANT ATTRIBUTES
	CONCLUSION
	REFERENCES

