
Volume 3, No. 7, Nov-Dec 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 95

ISSN No. 0976-5697

Implementation of Query Optimization for Reducing Run Time Execution

S.C.Tawalare*
Dept of Information Technology,

Sipna’s College of Engineering & Technology,

Amravati (MS) India

swatitawalare18@rediffmail.com

Prof. S.S.Dhande
Dept of computer science &engg.

Sipna ‘s college of Engineering & Technology,
Amravati(MS) India

dhande_123@rediffmail.com

Abstract: Query optimization is the process of selecting the most efficient query-evaluation plan from many strategies so, In this paper we have
developed a technique that performs query optimization at compile-time to reduce the burden of optimization at run-time to improve the performance
of the code execution. using histograms that are computed from the data and these histograms are used to get the estimate of selectivity for query
joins and predicates in a query at compile-time. With these estimates, a query plan is constructed at compile-time and executed it at run-time.

Keywords: compile time; optimal time; histogram; query optimization;

I. INTRODUCTION

Query processing is the sequence of actions that takes as
input a query formulated in the user language and delivers as
result the data asked for. A query is an expression that
describes information that one wants to search for in a
database. For example, query optimizers select the most
efficient access plan for a query based on the estimated costs
of competing plans. These costs are in turn based on estimates
of intermediate result sizes. Sophisticated user interfaces also
use estimates of result sizes as feedback to users before a
query is actually executed. Such feedback helps to detect
errors in queries or misconceptions about the database. Query
result sizes are usually estimated using a variety of statistics
that are maintained for relations in the database [1]. In this
paper, we have developed a technique that performs query
optimization at compile-time to reduce the burden of
optimization at run-time to improve the performance of the
code execution. The proposed approach uses histograms that
are computed from the data and these histograms are used to
get the estimate of selectivity for query joins and predicates in
a query at compile-time. With these estimates, a query plan is
constructed at compile-time and executed it at run-time.

In Query optimization the optimizer perform poorly often
because their compile-time cost models use inaccurate
estimates of various parameters. A novel optimization model
that assigns the most of the work to compile-time and delays
carefully selected optimization decisions until run-time has
been explored in . Query plans are incomparable at compile
time due to the missing run-time parameter bindings. Those
plans are partially ordered by cost at compile-time and they
use the choose-plan operator to compare those partially
ordered plans at run-time. Compile-time ambiguities are
resolved at start-up-time in their approach. During a query
execution, values of parameters may be changed during
executions. This makes the chosen plan invalid. This issue has
been addressed in by proposing to optimize queries as much as
possible at compile-time taking into account all possible
values that parameters may have at run-time. The techniques

earlier use actual parameter values at run-time and choose an
optimal plan with no overhead.

A. Related Work:
In Query optimization the optimizer perform poorly often

because their compile-time cost models use inaccurate
estimates of various parameters. A novel optimization model
that assigns the most of the work to compile-time and delays
carefully selected optimization decisions until run-time has
been explored in [2]. Query plans are incomparable at compile
time due to the missing run-time parameter bindings. Those
plans are partially ordered by cost at compile-time and they
use the choose-plan operator to compare those partially
ordered plans at run-time. Compile-time ambiguities are
resolved at start-up-time in their approach. During a query
execution, values of parameters may be changed during
executions. This makes the chosen plan invalid. This issue has
been addressed in[3] by proposing to optimize queries as
much as possible at compile-time taking into account all
possible values that parameters may have at run-time. The
techniques earlier use actual parameter values at run-time and
choose an optimal plan with no overhead.

A compile-time estimator that provides quantified estimate
of [4]the optimizer compile time for given query has also been
proposed in they use the number of plans to estimate query
compilation time and employ two novel ideas:
a. Reusing an optimizer’s join enumerator to obtain actual

number of joins, but by passing plan generation to save
estimation overhead.

b. Maintaining a small number of “interesting” properties to
facilitate counting.

In query optimization approach using a regular query
optimizer to generate a single plan, annotated with the
expected cost and size statistics at all stages of the plan has
been proposed in. During the execution of query, the
annotated statistics are compared with the actual statistics and
if there is a significant difference then the query execution is
suspended and re-optimized using accurate value of
parameters. Even though Parametric Query Optimization
exhaustively determines the optimal plan in each point of the

S.C.Tawalare et al, International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012, 95-100

© 2010, IJARCS All Rights Reserved 96

parameter space at compile-time, it is not cost effective if the
query is executed infrequently or if the query is executed with
only a subset of parameters considered during compile-time.
This problem has been resolved in [5] by progressively
exploring the parameter space and building a parametric plan
during several executions of the same query.

All these approaches involve making decision after
compile-time. The way they deal with uncertainty is to wait
until they have more information. This issue can handle by
prefer static query optimization at compile-time over dynamic
query optimization because it reduces the query run-time.

II. QUERY OPTIMIZATION

Query processing is the process of translating a query
expressed in a high-level language such as SQL into low-level
data manipulation operations. Query Optimization refers to the
process by which the best execution strategy for a given query
is found from a set of alternatives. Typically query processing
involves many steps. The first step is query decomposition in
which an SQL query is first scanned, parsed and validate. The
scanner identifies the language tokens – such as SQL
keywords, attribute names, and relation names – in the text of
the query, whereas the parser checks the query Syntax to
determine whether it is formulated according to the syntax
rules of the query language. The query must also be validated,
by checking that all attribute and relation names are valid and
semantically meaningful names in the schema of the particular
database being queried. An internal representation of the query
is then created. A query expressed in relational algebra is
usually called initial algebraic query and can be represented
as a tree data structure called query tree. It represents the input
relations of the query as leaf nodes of the tree, and represents
the relational algebra operations as internal nodes. For a given
SQL query, there is more than one possible algebraic query.

Some of these algebraic queries are better than others. The
quality of an algebraic query is defined in terms of expected
performance. Therefore, the second step is query optimization
step that transforms the initial algebraic query using relational
algebra transformations into other algebraic queries until the
best one is found[6,7]. A Query Execution Plan (QEP) is then
founded which represented as a query tree includes
information about the access method available for each
relation as well as the algorithms used in computing the
relational operations in the tree. The next step is to generate
the code for the selected QEP; this code is then executed in
either compiled or interpreted mode to produce the query
result.

a. Query Parser – Verify validity of the SQL statement.
Translate query into an internal structure using
relational calculus.

b. Query Optimizer – Find the best expression from
various different algebraic expressions. Criteria used
is ‘Cheapness’

c. Code Generator/Interpreter – Make calls for the
Query processor as a result of the work done by the
optimizer.

d. Query Processor – Execute the calls obtained from
the code generator.

Figure.1 query optimization process

III. STATIC OPTIMIZATION

if optimization is performed once at compiled time. For
each invocation at runtime [8], The plan is activated and
executed. If however the state of DBMS changes frequently, it
is usually optimized the query a new for each invocation. This
compiled time optimization is called as static in that it cannot
use the information available at runtime such as current
statistics. The common solution is to periodically reoptimize
queries with new statistics, based on the pace at which the
relevant statistic changes. For instance, describe a schema in
which query execution plan generated by an optimizer are re-
optimized just before query execution time.
i. In static optimization more time available to evaluate

larger number of execution strategies
ii. The runtime overhead is removed

a. Static Analysis of queries: Static analysis is a compile
time framework of static optimization it performs the
following tasks:

i. Type checking: each name and each operator is
checked according to the hierarchy.

ii. Generating syntax trees of queries which are then
modified by queries re-writing methods.

A. Dynamic Optimization:
Dynamic optimization is a mix of compile time and

runtime optimization i.e. the plan produced at compile time
includes plan alternatives and then actual plan to be executed
is chosen at runtime. If only a part of it is rendered before
query execution and the rest is made during evaluation (i.e. at
runtime), then it is referred to as dynamic due to the
incomparability of cost at compile time alternative plans are
ordered only partially, and the final choice is delayed until
state of time, when all runtime bindings can be instantiated.

S.C.Tawalare et al, International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012, 95-100

© 2010, IJARCS All Rights Reserved 97

Then cost calculation and comparison become feasible and the
optimal plan can be chosen and evaluated.

Most of the approaches available for optimization the
query involve making decision after compile time i.e. at
runtime. During optimization performed at runtime a query
optimizer has access to statistics that are relevant to the
environment in which a given query is to be evaluated.
Dynamic optimization can usually take the full advantage of
statistics, thus such optimization is more effective then static
but this optimization has one serious flaw, since a part it is
performed at runtime and user is interactively waiting for the
query result it must me very efficient itself. This means that
often a query optimizer cannot consider as much optimization
technique it should and the advantage of having access to
current statistics cannot be fully utilized. So we prefer The
static query optimization at compile time over dynamic query
optimization because it reduces the query at runtime.

Static optimization does not have the flaws, but its
disadvantage is that it usually can use only some estimate of
environment in which queries to be evaluated. Usually such an
estimate is updated only periodically i.e. not updated every
time the state of database changes. However, practice has
proved that statistically this advantage is not critical specially
for database with stable states besides, if the estimate of
statistics start to be irrelevant, a query can be re-compiled for
new, more up to date estimate. Therefore, current DBMS
apply mainly static optimization.

During static analysis we simulate runtime query
evaluation to gather information that we need to optimize the
queries. The general architecture of query processing is shown
below a parser of queries and program takes a query source is
input makes syntactic analysis and returns a query/program
syntactic tree. A program/query syntactic tree is a data
structure which keeps the abstract syntax in a well structured
form allowing for easy manipulation. Each node of the tree
contains a free space for writing various query optimization
information.

i. In static optimization more time available to evaluate
larger number of execution strategies

ii. The runtime overhead is removed
There are various method available for query optimization;

we proposed a method query optimization at compile-time to
reduce the burden of optimization at run-time to improve the
performance of the code execution. The proposed approach
uses Histograms that are computed from the data and these
histograms are used to get the estimate of selectivity for query
joins and predicates in a query at compile-time.

With these estimates, a query plan is constructed at
compile-time and executed it at run-time, so the proposed
method reduce the run time

Implementation of proposed work of query optimization
takes place through following ways

a) Query Parsing
b) Query Optimizing
c) Query compilation &execution

B. Analysis:
During a query execution, values of parameters may be

changed during executions. This makes the chosen plan

invalid. This issue has been addressed in by proposing to
optimize queries as much as possible at compile-time taking
into account all possible values that parameters may have at
run-time. The proposed techniques earlier use actual
parameter values at run-time and choose an optimal plan with
no overhead. Query optimizers often make poor decisions
because their compile-time cost models use inaccurate
estimates of various parameters. There have been several
efforts in the past to address this issue, which can be
categorized as – strategies that make decisions at the start of
query execution and strategies that make decisions during
query execution. There are some parameters, like memory
availability, whose value cannot be predicted at compile-time,
but are accurately known at the start of execution. Assuming
that the values of these parameters remain constant for the
duration of the execution The way they deal with uncertainty
is to wait until they have more information. Therefore, we
propose to use histograms to estimate selectivities of joins and
predicates in a query at compile-time.

In this method, we prefer static query optimization at
compile-time over dynamic query optimization because it
reduces the query run-time. To achieve this, we intend to have
the query plans generated at compile time. Query plans are a
step by step ordered procedure describing the order in which
the query predicates need to be executed. Thus, at run- time,
the time required for plan construction is omitted. So we need
to have the code working in static mode, i.e., without knowing
the inputs at compile-time, we need to be able to derive some
information about inputs like sizes of relations by estimating
them to generate the query plan. Given a join query, its
selectivity needs to be estimated to design better query plans.
For such estimations and predictions we need to have
information such as sizes of relations, sizes of intermediate
results. We can form the query plan by having the order of
joins and predicates in a query. After we get the query plan at
compile-time, we execute that plan at run-time to reduce the
execution time.
Analyze query using compiler techniques

a. Verify relations and attributes exists.
b. Verify operations are appropriate for object type
c. Transform the query into some internal

representation.

C. Optimization Strategy:
a. In Compile time optimization The query is parsed,

validated, and optimized once.
b. In this implementation We Optimize query Q, store

the plan, and run it whenever Query is executed.

IV. ESTIMATING SELECTIVITY USING
HISTOGRAM

The selectivity of a predicate in a query is a decisive
aspect for a query plan generation [9]. The ordering of
predicates can considerably affect the time needed to process
a join query. To have the query plan ready at compile-time,
we need to have the selectivities of all the query predicates.
To calculate these selectivities, we use histograms. The
histograms are built using the number of times an object is

S.C.Tawalare et al, International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012, 95-100

© 2010, IJARCS All Rights Reserved 98

called. For this, we partition the domain of the predicate into
intervals called windows. With the help of past queries, the
selectivity of a predicate is derived with respect to its window.
This histogram approach would help us in estimating the
selectivity of a join and hence decide on the order in which
the joins have to be executed. So, we get the join ordering and
the predicate ordering in the query expression at compile-time
itself. Thus, from this available information, we can construct
a query plan. A detailed of how the histograms are built is
given in the following section.

V. BUILDING THE HISTOGRAM

A histogram is one of the basic quality tools. It is used to
graphically summarize and display the distribution and
variation of a process data set. A frequency distribution shows
how often each different value in a set of data occurs. The
main purpose of a histogram is to clarify the presentation of
data. You can present the same information in a table;
however, the graphic presentation format usually makes it
easier to see relationships. It is a useful tool for breaking out
process data into regions or bins for determining frequencies
of certain events or categories of data. From the data
distribution, we build the histogram that contains the
frequency of values assigned to different buckets[9].

Figure.2 Frequency distribution of alphabet

Frequency distribution for numerical data is straight
forward but frequency distribution for alphabetical data is not.
Now considering the alphabetical data such as first names, last
names, Organization names etc., question arises as to how we
can split these into buckets. The idea we propose here is to
group the alphabetical data with respect to the letter they start
with and alphabets of similar frequency of occurrences
grouped into a single bucket. To do this grouping, we make
use of statistics from Figure2. that are computed by analysts
showing the probable number of occurrences of each alphabet
as a starting alphabet of textual data. This grouping avoids the
existence of a very high frequency alphabet with a very low
frequency alphabet in a bucket.

VI. THE SPLIT & MERGE ALGORITHM

Figure .3 The Split & Merge Algorithm

The split and merge algorithm helps reduce the cost of
building and maintaining histograms for large tables. The
algorithm is as follows: When a bucket count reaches the
threshold, T, we split the bucket into two halves instead of
recomputing the entire histogram from the data .To maintain
the number of buckets (β) which is fixed, we merge two
adjacent buckets whose total count is least and does not
exceed threshold T, if such a pair of buckets can be found.
Only when a merge is not possible, we recomputed the
histogram from data [9].

The operation of merging two adjacent buckets merely
involves adding the counts of the two buckets and disposing
of the boundary between them. To split a bucket, an
approximate median value in the bucket is selected to serve as
the bucket boundary between the two new buckets using the
backing samples new tuple are added, we increment the
counts of appropriate buckets. When a count exceeds the
threshold T, the entire histogram is recomputed or, using split
merge, we split and merge the buckets. The algorithm for
splitting the buckets starts with iterating through a list of
buckets, a splitting the buckets which exceed the threshold
and finally returning the new set of buckets .After splitting is
done, we try to merge any two buckets that add up to the least
value and whose count is less than a certain threshold. Then
we merge those two buckets. If we fail to find any pair of
buckets to merge then we recomputed the histogram from
data. Finally, we return the set of buckets at the end of the
algorithm. Thus, the problem of incrementally maintaining the
histograms has been resolved. Having estimated the
selectivity of a join and predicates, we get the join and
predicate ordering at compile-time.

S.C.Tawalare et al, International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012, 95-100

© 2010, IJARCS All Rights Reserved 99

VII. EXPERIMENTAL SETUP AND RESULTS

a. The experimental trials show that our method performs
better in terms of run time comparisons than the existing
query optimization as showing the difference between
standard result and optimized optimal result, in terms of
compile time and runtime we have obtained the query
plan at compile-time and then we executed the query
plan at run-time.

b. Our approach reduces run-time execution less than the
existing code’s run-time due to our approach of
optimizing the query and handling data updates using
histogram.

c. The work of query optimization is performed in compile
time by generating compiler or parser which generate
flexible plan for input query, so that the least amount
work is left to be done in runtime thus at runtime, the
time required for plan construction is omitted and reduce
a runtime of query.

The comparative analysis of query optimization for
relational queries that it will get, Optimal time (i.e. optimized
time) which is less than the standard time (i.e. without
optimization strategy).

The optimization performed at is compile time so, the
action entirely performed before query is executed, hence
query optimization process itself does not burden the
performance. Rewriting requires performing special phase
called static analysis. During the static analysis we simulate
runtime query evaluation to gather all information that we
need to optimize queries.

Figure. 5 compile ,optimal and standard time

Table 1: execution time of query
Compile time 0.14
Optimal time 0.05
Standard time 1.76

Screenshot shows main GUI consist of Query Input in

which if we insert a query and then click submit button it will
get
Execution time of query.

Screenshot 1: simple Query execution

Screenshot 2: complex query execution

Screenshot 3: histogram

S.C.Tawalare et al, International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012, 95-100

© 2010, IJARCS All Rights Reserved 100

Screenshot 3 shows the data of the database whenever the
changes occur in database it will show in the form of
histogram

Screenshot 4: comparison of compile, Optimal, Standard time

VIII. CONCLUSION

This work is motivated by the fact that the query
optimization strategies from database domain can be used in
improving the run time executions in programming languages.
We have implemented a technique for query optimization at
compile-time by reducing the burden of optimization at run-
time, to improve the performance of the code execution, to
optimize queries at compile-time taking into all possible
values that parameters may have at run-time. To achieve this,
we intend to have the query plans generated at compile time.
Estimate of selectivity for query joins and predicates in a
query at compile-time. Using histograms that are computed
from the data and these histograms are used to get the
frequency of alphabet of the database. Furthermore, our query

evaluation performs well for different types of queries as we
have shown in our experimental results.

IX. REFERENCES

[1]. Ioannidis, Yannis E. “Query Optimization”, ACM Press,
New York, USA. 1996.

[2]. Ramakrishnan, R. and Gehrke, J. (2000). Database
Management Systems Third Edition. McGraw Hill.

[3]. Ihab F. Ilyas, Jun Rao, Guy Lohman, Dengfeng Gao, Eileen
Lin, “Estimating Compilation Time of a Query Optimizer,”
Proceedings of the 2003 ACM SIGMOD international
conference on Management of data, pp. 373 – 384, 2003.

[4]. Y.E. Ioannidis, R. Ng, K. Shim, T.K. Selis, “Parametric
Query Optimization”, In Proceedings of the Eighteenth
International Conference on Very Large Databases (VLDB),
pp. 103-114, 1992.

[5]. Pedro Bizarro, Nicolas Bruno, David J. DeWitt, “
Progressive Parametric Query Optimization,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21,
pp. 582-594, 2009.

[6]. “Object Oriented Database System-Servey-Caixue Lin,April
2003 reference SIGMOD record 19,IEEE
computer,33,No.8:16-19,2000

[7]. “Query Optimization in distributed databases” by Dilşat
ABDULLAH reference Ibaraki, T. and T. Kameda. (1984).
“On the Optimal Nesting Order for Computing N-Relational
Joins.” ACM Transactions on Data Bases 9, 482–541

[8]. J.Plodzien, “Optimization of Object query Language”,
Ph.D.Thesis, Institute Of Computer Science, Polish Academy
Of Science,2000.

[9]. “Query Optimization in Programming Codes by
ReducingRun-TimeExecution”, Venkata Krishna,Suhas
Nerella,Swetha Surapaneni,Sanjay Kumar Madria and
Thomas Weigert Department of Computer Science, Missouri
University of Science and Technology, Rolla, MO Exploring
0730-3157/10©2010IEEEDOI 10.1109/COMPSAC.2010.4

	INTRODUCTION
	QUERY OPTIMIZATION
	Building the Histogram
	Figure .3 The Split & Merge Algorithm
	EXPERIMENTAL SETUP AND RESULTS
	CONCLUSION

