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Abstract: Query optimization is the process of selecting the most efficient query-evaluation plan from many strategies so, In this paper  we have 
developed a technique that performs query optimization at compile-time to reduce the burden of optimization at run-time to improve the performance 
of the code execution. using histograms that are computed from the data and these histograms are used to get the estimate of selectivity for query 
joins and predicates in a query at compile-time. With these estimates, a query plan is constructed at compile-time and executed it at run-time. 
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I. INTRODUCTION  

Query processing is the sequence of actions that takes as 
input a query formulated in the user language and delivers as 
result the data asked for. A query is an expression that 
describes information that one wants to search for in a 
database. For example, query optimizers select the most 
efficient access plan for a query based on the estimated costs 
of competing plans. These costs are in turn based on estimates 
of intermediate result sizes. Sophisticated user interfaces also 
use estimates of result sizes as feedback to users before a 
query is actually executed. Such feedback helps to detect 
errors in queries or misconceptions about the database. Query 
result sizes are usually estimated using a variety of statistics 
that are maintained for relations in the database [1]. In this 
paper, we have developed a technique that performs query 
optimization at compile-time to reduce the burden of 
optimization at run-time to improve the performance of the 
code execution. The proposed approach uses histograms that 
are computed from the data and these histograms are used to 
get the estimate of selectivity for query joins and predicates in 
a query at compile-time. With these estimates, a query plan is 
constructed at compile-time and executed it at run-time.     

In Query optimization the optimizer perform poorly often 
because their compile-time cost models use inaccurate 
estimates of various parameters. A novel optimization model 
that assigns the most of the work to compile-time and delays 
carefully selected optimization decisions until run-time has 
been explored in . Query plans are incomparable at compile 
time due to the missing run-time parameter bindings. Those 
plans are partially ordered by cost at compile-time and they 
use the choose-plan operator to compare those partially 
ordered plans at run-time. Compile-time ambiguities are 
resolved at start-up-time in their approach. During a query 
execution, values of parameters may be changed during 
executions. This makes the chosen plan invalid. This issue has 
been addressed in by proposing to optimize queries as much as 
possible at compile-time taking into account all possible 
values that parameters may have at run-time. The techniques 

earlier use actual parameter values at run-time and choose an 
optimal plan with no overhead. 

A. Related Work: 
In Query optimization the optimizer perform poorly often 

because their compile-time cost models use inaccurate 
estimates of various parameters. A novel optimization model 
that assigns the most of the work to compile-time and delays 
carefully selected optimization decisions until run-time has 
been explored in [2]. Query plans are incomparable at compile 
time due to the missing run-time parameter bindings. Those 
plans are partially ordered by cost at compile-time and they 
use the choose-plan operator to compare those partially 
ordered plans at run-time. Compile-time ambiguities are 
resolved at start-up-time in their approach. During a query 
execution, values of parameters may be changed during 
executions. This makes the chosen plan invalid. This issue has 
been addressed in[3] by proposing to optimize queries as 
much as possible at compile-time taking into account all 
possible values that parameters may have at run-time. The 
techniques earlier use actual parameter values at run-time and 
choose an optimal plan with no overhead. 

A compile-time estimator that provides quantified estimate 
of [4]the optimizer compile time for given query has also been 
proposed in they use the number of plans to estimate query 
compilation time and employ two novel ideas: 
a. Reusing an optimizer’s join enumerator to obtain actual 

number of joins, but by passing plan generation to save 
estimation overhead. 

b. Maintaining a small number of “interesting” properties to 
facilitate counting.  

In query optimization approach using a regular query 
optimizer to generate a single plan, annotated with the 
expected cost and size statistics at all stages of the plan has 
been proposed in. During the execution of query, the 
annotated statistics are compared with the actual statistics and 
if there is a significant difference then the query execution is 
suspended and re-optimized using accurate value of 
parameters. Even though Parametric Query Optimization 
exhaustively determines the optimal plan in each point of the 
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parameter space at compile-time, it is not cost effective if the 
query is executed infrequently or if the query is executed with 
only a subset of parameters considered during compile-time. 
This problem has been resolved in [5] by progressively 
exploring the parameter space and building a parametric plan 
during several executions of the same query. 

All these approaches involve making decision after 
compile-time. The way they deal with uncertainty is to wait 
until they have more information. This issue can handle by 
prefer static query optimization at compile-time over dynamic 
query optimization because it reduces the query run-time. 

II. QUERY OPTIMIZATION 

Query processing is the process of translating a query 
expressed in a high-level language such as SQL into low-level 
data manipulation operations. Query Optimization refers to the 
process by which the best execution strategy for a given query 
is found from a set of alternatives. Typically query processing 
involves many steps. The first step is query decomposition in 
which an SQL query is first scanned, parsed and validate. The 
scanner identifies the language tokens – such as SQL 
keywords, attribute names, and relation names – in the text of 
the query, whereas the parser checks the query Syntax to 
determine whether it is formulated according to the syntax 
rules of the query language. The query must also be validated, 
by checking that all attribute and relation names are valid and 
semantically meaningful names in the schema of the particular 
database being queried. An internal representation of the query 
is then created. A query expressed in relational algebra is 
usually called initial algebraic query and can be represented 
as a tree data structure called query tree. It represents the input 
relations of the query as leaf nodes of the tree, and represents 
the relational algebra operations as internal nodes. For a given 
SQL query, there is more than one possible algebraic query.  

Some of these algebraic queries are better than others. The 
quality of an algebraic query is defined in terms of expected 
performance. Therefore, the second step is query optimization 
step that transforms the initial algebraic query using relational 
algebra transformations into other algebraic queries until the 
best one is found[6,7]. A Query Execution Plan (QEP) is then 
founded which represented as a query tree includes 
information about the access method available for each 
relation as well as the algorithms used in computing the 
relational operations in the tree. The next step is to generate 
the code for the selected QEP; this code is then executed in 
either compiled or interpreted mode to produce the query 
result. 

a. Query Parser – Verify validity of the SQL statement. 
Translate query into an internal structure using 
relational calculus. 

b. Query Optimizer – Find the best expression from 
various different algebraic expressions. Criteria used 
is ‘Cheapness’ 

c. Code Generator/Interpreter – Make calls for the 
Query processor as a result of the work done by the 
optimizer. 

d. Query Processor – Execute the calls obtained from 
the code generator. 

 
Figure.1 query optimization process 

III. STATIC OPTIMIZATION 

if optimization is performed once at compiled time. For 
each invocation at runtime [8], The plan is activated and 
executed. If however the state of DBMS changes frequently, it 
is usually optimized the query a new for each invocation. This 
compiled time optimization is called as static in that it cannot 
use the information available at runtime such as current 
statistics. The common solution is to periodically reoptimize 
queries with new statistics, based on the pace at which the 
relevant statistic changes. For instance, describe a schema in 
which query execution plan generated by an optimizer are re-
optimized just before query execution time. 
i. In static optimization more time available to evaluate 

larger number of execution strategies  
ii. The runtime overhead is removed       

a. Static Analysis of queries: Static analysis is a compile             
time framework of static optimization it performs the     
following tasks:  

i. Type checking: each name and each operator is 
checked according to the hierarchy. 

ii. Generating syntax trees of queries which are then 
modified by queries re-writing methods. 

A. Dynamic Optimization: 
Dynamic optimization is a mix of compile time and 

runtime optimization i.e. the plan produced at compile time 
includes plan alternatives and then actual plan to be executed 
is chosen at runtime. If only a part of it is rendered before 
query execution and the rest is made during evaluation (i.e. at 
runtime), then it is referred to as dynamic due to the 
incomparability of cost at compile time alternative plans are 
ordered only partially, and the final choice is delayed until 
state of time, when all runtime bindings can be instantiated. 
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Then cost calculation and comparison become feasible and the 
optimal plan can be chosen and evaluated. 

Most of the approaches available for optimization the 
query involve making decision after compile time i.e. at 
runtime. During optimization performed at runtime a query 
optimizer has access to statistics that are relevant to the 
environment in which a given query is to be evaluated. 
Dynamic optimization can usually take the full advantage of 
statistics, thus such optimization is more effective then static 
but this optimization has one serious flaw, since a part it is 
performed at runtime and user is interactively waiting for the 
query result it must me very efficient itself. This means that 
often a query optimizer cannot consider as much optimization 
technique it should and the advantage of having access to 
current statistics cannot be fully utilized. So we prefer The 
static query optimization at compile time over dynamic query 
optimization because it reduces the query at runtime. 

Static optimization does not have the flaws, but its 
disadvantage is that it usually can use only some estimate of 
environment in which queries to be evaluated. Usually such an 
estimate is updated only periodically i.e. not updated every 
time the state of database changes. However, practice has 
proved that statistically this advantage is not critical specially 
for database with stable states besides, if the estimate of 
statistics start to be irrelevant, a query can be re-compiled for 
new, more up to date estimate. Therefore, current DBMS 
apply mainly static optimization. 

During static analysis we simulate runtime query 
evaluation to gather information that we need to optimize the 
queries. The general architecture of query processing is shown 
below a parser of queries and program takes a query source is 
input makes syntactic analysis and returns a query/program 
syntactic tree. A program/query syntactic tree is a data 
structure which keeps the abstract syntax in a well structured 
form allowing for easy manipulation. Each node of the tree 
contains a free space for writing various query optimization 
information.     

i. In static optimization more time available to evaluate 
larger number of execution strategies  

ii. The runtime overhead is removed 
There are various method available for query optimization; 

we proposed a method query optimization at compile-time to 
reduce the burden of optimization at run-time to improve the 
performance of the code execution. The proposed approach 
uses Histograms that are computed from the data and these 
histograms are used to get the estimate of selectivity for query 
joins and predicates in a query at compile-time. 

With these estimates, a query plan is constructed at 
compile-time and executed it at run-time, so the proposed 
method reduce the run time 

Implementation of proposed work of query optimization 
takes place through following ways 

a) Query Parsing 
b) Query Optimizing 
c) Query compilation &execution 

B. Analysis: 
During a query execution, values of parameters may be 

changed during executions. This makes the chosen plan 

invalid. This issue has been addressed in by proposing to 
optimize queries as much as possible at compile-time taking 
into account all possible values that parameters may have at 
run-time. The proposed techniques earlier use actual 
parameter values at run-time and choose an optimal plan with 
no overhead. Query optimizers often make poor decisions 
because their compile-time cost models use inaccurate 
estimates of various parameters.  There have been several 
efforts in the past to address this issue, which can be 
categorized as – strategies that make decisions at the start of 
query execution and strategies that make decisions during 
query execution. There are some parameters, like memory 
availability, whose value cannot be predicted at compile-time, 
but are accurately known at the start of execution. Assuming 
that the values of these parameters remain constant for the 
duration of the execution The way they deal with uncertainty 
is to wait until they have more information. Therefore, we 
propose to use histograms to estimate selectivities of joins and 
predicates in a query at compile-time. 

In this method, we prefer static query optimization at 
compile-time over dynamic query optimization because it 
reduces the query run-time. To achieve this, we intend to have 
the query plans generated at compile time. Query plans are a 
step by step ordered procedure describing the order in which 
the query predicates need to be executed. Thus, at run- time, 
the time required for plan construction is omitted. So we need 
to have the code working in static mode, i.e., without knowing 
the inputs at compile-time, we need to be able to derive some 
information about inputs like sizes of relations by estimating 
them to generate the query plan. Given a join query, its 
selectivity needs to be estimated to design better query plans. 
For such estimations and predictions we need to have 
information such as sizes of relations, sizes of intermediate 
results. We can form the query plan by having the order of 
joins and predicates in a query. After we get the query plan at 
compile-time, we execute that plan at run-time to reduce the 
execution time.   
Analyze query using compiler techniques 

a. Verify relations and attributes exists. 
b. Verify operations are appropriate for object type 
c. Transform the query into some internal 

representation. 

C. Optimization Strategy: 
a. In Compile time optimization The query is parsed, 

validated, and optimized once. 
b. In this implementation We Optimize query Q, store 

the plan, and run it whenever Query is executed. 

IV. ESTIMATING SELECTIVITY USING 
HISTOGRAM 

The selectivity of a predicate in a query is a decisive 
aspect for a query plan generation [9]. The ordering of 
predicates can considerably affect the time needed to process 
a join query. To have the query plan ready at compile-time, 
we need to have the selectivities of all the query predicates. 
To calculate these selectivities, we use histograms. The 
histograms are built using the number of times an object is 
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called. For this, we partition the domain of the predicate into 
intervals called windows. With the help of past queries, the 
selectivity of a predicate is derived with respect to its window. 
This histogram approach would help us in estimating the 
selectivity of a join and hence decide on the order in which 
the joins have to be executed. So, we get the join ordering and 
the predicate ordering in the query expression at compile-time 
itself. Thus, from this available information, we can construct 
a query plan. A detailed of how the histograms are built is 
given in the following section. 

V. BUILDING THE HISTOGRAM 

A histogram is one of the basic quality tools. It is used to 
graphically summarize and display the distribution and 
variation of a process data set. A frequency distribution shows 
how often each different value in a set of data occurs. The 
main purpose of a histogram is to clarify the presentation of 
data. You can present the same information in a table; 
however, the graphic presentation format usually makes it 
easier to see relationships. It is a useful tool for breaking out 
process data into regions or bins for determining frequencies 
of certain events or categories of data. From the data 
distribution, we build the histogram that contains the 
frequency of values assigned to different buckets[9]. 
 

 
Figure.2 Frequency distribution of alphabet 

Frequency distribution for numerical data is straight 
forward but frequency distribution for alphabetical data is not. 
Now considering the alphabetical data such as first names, last 
names, Organization names etc., question arises as to how we 
can split these into buckets. The idea we propose here is to 
group the alphabetical data with respect to the letter they start 
with and alphabets of similar frequency of occurrences 
grouped into a single bucket. To do this grouping, we make 
use of statistics from Figure2. that are computed by analysts 
showing the probable number of occurrences of each alphabet 
as a starting alphabet of textual data. This grouping avoids the 
existence of a very high frequency alphabet with a very low 
frequency alphabet in a bucket. 

VI. THE SPLIT & MERGE ALGORITHM 

 
Figure .3 The Split & Merge Algorithm 

The split and merge algorithm helps reduce the cost of 
building and maintaining histograms for large tables. The 
algorithm is as follows: When a bucket count reaches the 
threshold, T, we split the bucket into two halves instead of 
recomputing the entire histogram from the data .To maintain 
the number of buckets (β) which is fixed, we merge two 
adjacent buckets whose total count is least and does not 
exceed threshold T, if such a pair of buckets can be found. 
Only when a merge is not possible, we recomputed the 
histogram from data [9]. 

The operation of merging two adjacent buckets merely 
involves adding the counts of the two buckets and disposing 
of the boundary between them. To split a bucket, an 
approximate median value in the bucket is selected to serve as 
the bucket boundary between the two new buckets using the 
backing samples new tuple are added, we increment the 
counts of appropriate buckets. When a count exceeds the 
threshold T, the entire histogram is recomputed or, using split 
merge, we split and merge the buckets. The algorithm for 
splitting the buckets starts with iterating through a list of 
buckets, a splitting the buckets which exceed the threshold 
and finally returning the new set of buckets .After splitting is 
done, we try to merge any two buckets that add up to the least 
value and whose count is less than a certain threshold. Then 
we merge those two buckets. If we fail to find any pair of 
buckets to merge then we recomputed the histogram from 
data. Finally, we return the set of buckets at the end of the 
algorithm. Thus, the problem of incrementally maintaining the 
histograms has been resolved. Having estimated the 
selectivity of a join and predicates, we get the join and 
predicate ordering at compile-time. 
 



S.C.Tawalare  et al, International Journal of Advanced Research in Computer Science, 3 (7), Nov.-Dec. 2012, 95-100 

© 2010, IJARCS All Rights Reserved                                                                                                                                                 99 

VII. EXPERIMENTAL  SETUP  AND  RESULTS 

a. The experimental trials show that our method performs 
better in terms of run time comparisons than the existing 
query optimization as showing the difference between 
standard result and optimized optimal result, in terms of 
compile time and runtime we have obtained the query 
plan at compile-time and then we executed the query 
plan at run-time.  

b. Our approach reduces run-time execution less than the 
existing  code’s run-time due to our approach of 
optimizing the query and handling data updates using 
histogram. 

c. The work of  query optimization is performed in compile 
time by generating compiler or parser which generate 
flexible plan for input query, so that the least  amount 
work is left to be done in runtime thus at runtime, the 
time required  for plan construction is omitted and reduce 
a runtime of query. 

The comparative analysis of query optimization for 
relational queries that it will get, Optimal time (i.e. optimized 
time) which is less than the standard time (i.e. without 
optimization strategy). 

The optimization performed at is compile time so, the 
action entirely performed before query is executed, hence 
query optimization process itself does not burden the 
performance. Rewriting requires performing special phase 
called static analysis. During the static analysis we simulate 
runtime query evaluation to gather all information that we 
need to optimize queries.    
 

 
Figure. 5 compile ,optimal and standard time 

Table 1: execution time of query 
Compile time 0.14 
Optimal time 0.05 
Standard time 1.76 

 
Screenshot shows main GUI  consist of  Query Input in 

which if we insert a query and then  click submit button it will 
get  
Execution time of query. 
 

  
Screenshot 1: simple Query execution 

 
Screenshot 2: complex query execution 

  
Screenshot 3:  histogram 
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Screenshot 3 shows the data of the database whenever the 
changes occur in database it will show in the form of 
histogram  
 

 
Screenshot 4: comparison of compile, Optimal, Standard time 

VIII. CONCLUSION 

This work is motivated by the fact that the query 
optimization strategies from database domain can be used in 
improving the run time executions in programming languages. 
We have implemented a technique for query optimization at 
compile-time by reducing the burden of optimization at run-
time, to improve the performance of the code execution, to 
optimize queries at compile-time taking into all possible 
values that parameters may have at run-time. To achieve this, 
we intend to have the query plans generated at compile time. 
Estimate of selectivity for query joins and predicates in a 
query at compile-time. Using histograms that are computed 
from the data and these histograms are used to get the 
frequency of alphabet of the database. Furthermore, our query 

evaluation performs well for different types of queries as we 
have shown in our experimental results. 
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