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Abstract:  In this paper, we solve the problem of regulating the output of the Liu-Chen-Liu chaotic system (2007), which is one of the recently 

discovered three-dimensional chaotic attractors. Liu-Chen-Liu chaotic system has many interesting complex dynamical behaviours and it has 

potential applications in secure communication. In this paper, we construct explicit state feedback control laws to regulate the output of the Cai 

chaotic system so as to track constant reference signals. The control laws are derived using the regulator equations of Byrnes and Isidori (1990), 

who have solved the output regulation of nonlinear systems involving neutrally stable exosystem dynamics. We also discuss the simulation 

results in detail. 
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I. INTRODUCTION  

Output regulation of nonlinear control systems is one of the 

very important problems in nonlinear control theory. The 

output regulation problem is the problem of controlling a fixed 

linear or nonlinear plant in order to have its output tracking the 

reference signals produced by some external generator (the 

exosystem). For linear control systems, the output regulation 

problem was solved by Francis and Wonham [1]. For nonlinear 

control systems, the output regulation problem was solved by 

Byrnes and Isidori [2] generalizing the internal model principle 

obtained by Francis and Wonham [1]. Byrnes and Isidori [2] 

made an important assumption in their work which demands 

that the exosystem dynamics generating the reference and 

disturbance signals is a neutrally stable system (Lyapunov 

stable in both forward and backward time). This class of 

exosystem signals includes the important particular cases of 

constant reference signals as well as sinusoidal reference 

signals. Using centre manifold theory for flows [3], Byrnes and 

Isidori derived regulator equations, which completely 

characterize the solution of the output regulation problem of 

nonlinear control systems. 

The output regulation problem for linear and nonlinear 

control systems has been the focus of many studies in recent 

years ([4]-[14]). In [4], Mahmoud and Khalil obtained results 

on the asymptotic regulation of minimum phase nonlinear 

systems using output feedback. In [5], Fridman solved the 

output regulation problem for nonlinear control systems with 

delay using centre manifold theory for flows. In [6]-[7], Chen 

and Huang obtained results on the robust output regulation for 

output feedback systems with nonlinear exosystems. In [8], Liu 

and Huang obtained results on the global robust output 

regulation problem for lower triangular nonlinear systems with 

unknown control direction. In [9], Immonen obtained results on 

the practical output regulation for bounded linear infinite-

dimensional state space systems. In [10], Pavlov, van de Wouw 

and Nijmeijer obtained results on the global nonlinear output 

regulation using convergence-based controller design. In [11], 

Xi and Ding obtained results on the global adaptive output 

regulation of a class of nonlinear systems with nonlinear 

exosystems. In [12]-[14], Serrani, Marconi and Isidori obtained 

results on the semi-global and global output regulation problem 

for minimum-phase nonlinear systems.  

In this paper, we solve the output regulation problem for the 

Liu-Chen-Liu chaotic system (2007) using the Byrnes-Isidori 

regulator equations [2] to derive the state feedback control laws 

for regulating the output of the Cai chaotic system for the case 

of constant reference signals (set-point signals). The Liu-Chen-

Liu chaotic system ([15], 2007) is one of the recent three-

dimensional chaotic attractors studied by the scientists - L. Liu, 

S.Y. Chen and C.X. Liu. Liu-Chen-Liu chaotic attractor has 

many interesting complex dynamical behaviours and it has 

potential applications in secure communication. 

This paper is organized as follows. In Section II, we present 

a review of the solution of the output regulation for nonlinear 

control systems and the Byrnes-Isidori regulator equations. In 

Section III, we detail our solution of the output regulation 

problem for the Liu-Chen-Liu chaotic system. In Section IV, 

we discuss the simulation results. In Section V, we present the 

conclusions of this paper. 

II. REVIEW OF THE OUTPUT REGULATION FOR 

NONLINEAR CONTROL SYSTEMS 

In this section, we consider a multivariable nonlinear 

control system modelled by equations of the form 

            ( ) ( ) ( )x f x g x u p x ω= + +�                  (1a) 

           ( )sω ω=�                                                    (1b) 

            ( ) ( )e h x q ω= −                                       (2) 

Here, the differential equation (1a) describes the plant 

dynamics with state x defined in a neighbourhood X of the 

origin of 
n

R and the input u takes values in 
m

R  subject to the 

effect of a disturbance represented by the vector field ( ) .p x ω  

The differential equation (1b) describes an autonomous system, 

known as the exosystem, defined in a neighbourhood W of the 
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origin of ,k
R which models the class of disturbance and 

reference signals taken into consideration.  

We also assume that all the constituent mappings of the 

system (1)-(2) and the error equation (3), namely, , , ,f g p ,s  

h and q are 
1
� mappings vanishing at the origin.   

Thus, for 0,u = the composite system (1) has an 

equilibrium state ( ) ( ), 0,0x ω = with zero error (2).  

A state feedback controller for the composite system (1) 

has the form  

                ( ),u xα ω=                                                 (3) 

where α is a 
1
� mapping defined on X W× such that 

(0,0) 0.α =  Upon substitution of the feedback law (3) in the 

composite system (1), we get the closed-loop system given by 

             
( ) ( ) ( , ) ( ) 

( )

x f x g x x p x

s

α ω ω

ω ω

= + +

=

�

�
               (4) 

The purpose of designing the state feedback controller (3) is 

to achieve both internal stability and output regulation. Internal 

stability means that when the input is disconnected from (4) 

[i.e. when 0],ω = the closed-loop system (4) has an 

exponentially stable equilibrium at 0.x =  Output regulation 

means that for the closed-loop system (4), for all initial states 

( (0), (0))x ω  sufficiently close to the origin, ( ) 0e t →  

asymptotically as .t → ∞  Formally, we can summarize the 

requirements as follows. 

State Feedback Regulator Problem [2]: 

Find, if possible, a state feedback control law 

( , )u xα ω=  such that  

(OR1) [Internal Stability] The equilibrium 0x = of   

                 ( ) ( ) ( ,0)x f x g x xα= +�  

     is locally asymptotically stable. 

(OR2) [Output Regulation] There exists a neighbourhood 

     U of ( , ) (0,0)x ω =  contained in X W× such that for  

      each initial condition ( )(0), (0)x ω in ,U the solution  

      ( ( ), ( ))x t tω  of the closed-loop system (4) satisfies 

                  [ ]lim ( ( )) ( ( )) 0.
t

h x t q tω
→∞

− =              

Byrnes and Isidori [2] solved this problem under the 

following assumptions: 

(H1) The exosystem dynamics ( )sω ω=�  is neutrally 

stable at 0,ω =  i.e. the system is Lyapunov stable in both 

forward and backward time at 0.ω =  

(H2) The pair ( )( ), ( )f x g x has a stabilizable linear 

approximation at 0,x = i.e. if  

             

0x

f
A

x =

∂� �
= � �∂� �

   and   

0x

g
B

x =

∂� �
= � �∂� �

, 

then ( , )A B  is stabilizable, which means that we can find 

a gain matrix K so that A BK+ is Hurwitz.  

Next, we recall the solution of the output regulation 

problem derived by Byrnes and Isidori [2]. 

Theorem 1. [2] Under the hypotheses (H1) and (H2), the state 

feedback regulator problem is solvable if and only if there exist 
1
�  mappings ( )x π ω=  with (0) 0π = and ( )u ϕ ω= with 

(0) 0,ϕ = both defined in a neighbourhood of 
0

W W⊂ of 

0ω = such that the following equations (called the Byrnes-

Isidori regulator equations) are satisfied: 

(1)  ( ) ( ( )) ( ( )) ( ) ( ( ))s f g p
π

ω π ω π ω ϕ ω π ω ω
ω

∂
= + +

∂
 

(2) ( )( ) ( ) 0h qπ ω ω− =  

When the Byrnes-Isidori regulator equations (1) and (2) are 

satisfied, a control law solving the state feedback regulator 

problem is given by 

    [ ]( ) ( )u K xϕ ω π ω= + −                                      (5) 

where K  is any gain matrix such that A BK+ is Hurwitz.  

III. OUTPUT REGULATION OF THE LIU-CHEN-LIU 

CHAOTIC SYSTEM 

The Liu-Chen-Liu chaotic system is a new three-

dimensional chaotic attractor discovered by the scientists – 

L.Liu, S.Y. Chen and C.X. Liu ([15], 2007) and described by   

    

1 2 1

2 1 1 3

3 3 1 2

( )x a x x

x bx x x u

x cx x x

β

α

= −

= + +

= − −

�

�

�

                                         (6) 

where 0, 0, 0, 0, 0a b c α β> > > > > are the parameters 

and u is the control. 

Liu, Chen and Liu studied the chaotic attractor (6) with 

10,  40,  2.5,  1,  16a b c α β= = = = =  and 0.u =  

The chaotic portrait of the unforced Liu-Chen-Liu chaotic 

system has a reversed butterfly-shaped attractor shown in 

Figure 1. 

 
Figure 1. State Orbits of the Liu-Chen-Liu System 

In this paper, we solve the problem of output regulation for 

Liu-Chen-Liu chaotic attractor (6) for the tracking of constant 

reference signals (set-point signals). 
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The constant reference signals are generated by the 

exosystem dynamics  

               0ω =�                                                             (7) 

It is important to observe that the exosystem given by (7) is 

neutrally stable.  

This follows simply because the differential equation (8) 

admits only constant solutions, i.e.  

            0( ) (0)tω ω ω≡ =  for all t .∈ R                   (8) 

Thus, the assumption (H1) of Theorem 1 holds trivially. 

Linearizing the dynamics of the Liu-Chen-Liu chaotic 

attractor (6) at the equilibrium 1 2 3( , , ) (0,0,0),x x x = we get 

the following system matrices: 

0

0 0

0 0

a a

A b

c

−� �
� �= � �
� �−� �

  and  

0

1 .

0

B

� �
� �= � �
� �� �

 

Using Kalman’s rank test for controllability [16], it can be 

easily seen that the pair ( , )A B is not controllable. However,  it 

can be also easily seen by PBH rank test for stabilizability [16] 

that the pair ( , )A B is stabilizable. Indeed, we note that  

[ ]
0 0

rank rank 0 1

0 0 0

a a

I A B b

c

λ

λ λ

λ

+ −� �
� �− = −� �
� �+� �

 

has rank 2 for all values of λ except when .cλ = −  Thus, 

cλ = − is an uncontrollable mode for the linear system 

corresponding to the system pair ( , ).A B   

 Since 0,c > it is immediate that the uncontrollable mode 

cλ = − is stable. Thus, we conclude that the pair ( , )A B is 

stabilizable. Hence, the assumption (H2) of Theorem 1 also 

holds.  

We can also show that ( , )A B  is stabilizable by noting that 

the matrix A BK+ has the characteristic equation 

  
2

2 1 2( ) ( ) ( ) 0c a k a k k bλ λ λ� �+ + − − + + =� �        (9) 

where [ ]1 2 3 .K k k k=  

Since 0,c > cλ = − is a stable eigenvalues of 

A BK+ and the other two eigenvalues of A BK+ will be 

positive if and only if 

     2 0a k− >   and  1 2( ) 0.a k k b− + + >  

Since 0,a > the above conditions are equivalent to 

   2k a<    and   1 2 0.k k b+ + <                             (10) 

Since 3k does not play any role in the above eigenvalue 

calculations, we can take 3 0.k =  

Thus, we shall assume that [ ]1 2 0 ,K k k= where 

1k and 2k are chosen so that the inequalities (10) are satisfied, 

i.e. such that A BK+ is Hurwitz. This shows that ( , )A B is 

stabilizable. Thus, the assumption (H2) of Theorem 1 also 

holds. 

Hence, we can apply Theorem 1 to completely solve the 

output regulation problem for the Liu-Chen-Liu chaotic system 

for the tracking of constant reference signals (set-point signals). 

 

Case (A):  Constant Tracking Problem for 1x  

Here, the tracking problem for the Liu-Chen-Liu chaotic 

system is given by 

        

1 2 1

2 1 1 3

3 3 1 2

1

( )

 

x a x x

x bx x x u

x cx x x

e x

β

α

ω

= −

= + +

= − −

= −

�

�

�
                                   (11) 

The regulator equations for the system (11) are given by 

Theorem 1 as 

 

2 1

1 1 3

3 1 2

1

         ( ) ( )                   0

( ) ( ) ( ) ( )   0

          ( ) ( ) ( ) 0

            ( )                         0

b

c

π ω π ω

π ω βπ ω π ω ϕ ω

π ω απ ω π ω

π ω ω

− =

+ + =

− − =

− =

          (12) 

Solving the regulator equations (12), we obtain the solution 

   

2

1 2 3

2

( ) , ( ) , ( )

( )

c

b
c

α
π ω ω π ω ω π ω ω

αβ
ϕ ω ω ω

= = = −

� �
= − −	 


� �

       (13)                   

 Using Theorem 1 and the solution (13) of the regulator 

equations (12), the following result is obtained which gives a 

state feedback control law solving the output regulation 

problem for the system (11). 

Theorem 2. A state feedback control law solving the output 

regulation problem for the system (11) is given by 

                [ ]( ) ( ) ,u K xϕ ω π ω= + −                         (14) 

where ϕ and [ ]1 2 3π π π π= are as given in (13) and the 

gain matrix [ ]1 2 0K k k= is chosen so as to satisfy the 

inequalities (10).   

Case (B):  Constant Tracking Problem for 2x  

Here, the tracking problem for the Liu-Chen-Liu chaotic 

system is given by 

        

1 2 1

2 1 1 3

3 3 1 2

2

( )

 

x a x x

x bx x x u

x cx x x

e x

β

α

ω

= −

= + +

= − −

= −

�

�

�
                                    (15) 

The regulator equations for the system (15) are given by 

Theorem 1 as 
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2 1

1 1 3

3 1 2

2

         ( ) ( )                   0

( ) ( ) ( ) ( )   0

          ( ) ( ) ( ) 0

            ( )                         0

b

c

π ω π ω

π ω βπ ω π ω ϕ ω

π ω απ ω π ω

π ω ω

− =

+ + =

− − =

− =

          (16) 

 

Solving the regulator equations (16), we obtain the solution 

      

2

1 2 3

2

( ) , ( ) , ( )

( )

c

b
c

α
π ω ω π ω ω π ω ω

αβ
ϕ ω ω ω

= = = −

� �
= − −	 


� �

     (17)                  

 Using Theorem 1 and the solution (17) of the regulator 

equations (16), the following result is obtained which gives a 

state feedback control law solving the output regulation 

problem for the system (15). 

Theorem 2. A state feedback control law solving the output 

regulation problem for the system (15) is given by 

                [ ]( ) ( ) ,u K xϕ ω π ω= + −                          (18) 

where ϕ and [ ]1 2 3π π π π= are as given in (17) and the 

gain matrix [ ]1 2 0K k k= is chosen so as to satisfy the 

inequalities (10).   

Case (C):  Constant Tracking Problem for 3x  

Here, the tracking problem for the Liu-Chen-Liu chaotic 

system is given by 

        

1 2 1

2 1 1 3

3 3 1 2

3

( )

 

x a x x

x bx x x u

x cx x x

e x

β

α

ω

= −

= + +

= − −

= −

�

�

�
                                    (19) 

The regulator equations for the system (15) are given by 

Theorem 1 as 

 

2 1

1 1 3

3 1 2

3

         ( ) ( )                   0

( ) ( ) ( ) ( )   0

          ( ) ( ) ( ) 0

            ( )                         0

b

c

π ω π ω

π ω βπ ω π ω ϕ ω

π ω απ ω π ω

π ω ω

− =

+ + =

− − =

− =

          (20) 

It is easy to show that the regulator equations (20) are not 

solvable. Hence, by Theorem 1, it follows that the output 

regulation problem is not solvable for the system (19). 

IV. NUMERICAL SIMULATIONS 

For simulation, we consider the classical chaotic case 

studied by Liu, Chen and Liu, viz. 

   10,  40,  2.5,  1,  16a b c α β= = = = =  

We also consider the set-point control as 0 2.ω =    

For achieving internal stability of the Liu-Chen-Liu system, 

we must choose a gain matrix K such that A BK+ is Hurwitz. 

As shown in Section III, 2.5cλ = − = − is the 

uncontrollable, stable eigenvalue of the closed-loop system 

matrix .A BK+   We choose the other two stable eigenvalues 

of A BK+ as { }3, 3 .− −  Thus, the desired characteristic 

equation of A BK+ is 

 ( )( )2 6 9 0cλ λ λ+ + + =                                  (21) 

In Section III, we showed that the characteristic equation of 

A BK+ is given by 

( ) ( )2

2 1 2( ) 0c a k a k k bλ λ λ� �+ + − − + + =� �      (22) 

Equating (21) and (22), a simple calculation gives 

     [ ] [ ]1 2 0 44.9 4 0 .K k k= = −  

 For simulations, the fourth order Runge-Kutta method is 

applied to solve the differential equations using MATLAB. 

Case (A):    Constant Tracking Problem for 1x  

Suppose that (0) (5,4,8)x = and 0 2.ω =  

 

Figure 2.  Constant Tracking Problem for 1x  

The simulation graph is depicted in Figure 2 from which we 

see that the state 1( )x t tracks the signal 2ω ≡  in about 4 sec.  

Case (B):   Constant Tracking Problem for 2x  

Suppose that (0) (6, 4,5)x = and 0 2.ω =  

The simulation graph is depicted in Figure 3 from which we 

see that the state 2 ( )x t tracks the signal 2ω ≡  in about 4 sec.  

 

Figure 3. Constant Tracking Problem for 2x  
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Case (C):  Constant Tracking Problem for 3x  

As pointed out in Section III, the output regulation problem 

is not solvable for this case, because the regulator equations do 

not admit any solution. 

V. CONCLUSIONS  

In this paper, we have studied in detail the output 

regulation of the Liu-Chen-Liu chaotic system (2007) and we 

have also presented the complete solution of the output 

regulation problem for Liu-Chen-Liu chaotic system. 

Explicitly, using the Byrnes-Isidori regulator equations (1990), 

we have presented new feedback control laws for regulating 

the output of the Liu-Chen-Liu chaotic system.  
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