
Volume 3, No. 5, Sept-Oct 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 158

ISSN No. 0976-5697

Applying ReTesting Analysis Techniques:A Case Study For A Modified Systems
 Dr. G. Mahadevan* Badri H.S
 Dept of Computer Applications Dept of Computer Applications
AMC Engineering College, Bangalore, India Presidency College, Bangalore, India
 g_mahadevan@yahoo.com badriiyengar@yahoo.com

Abstract: Software architectures are becoming very important to the development of quality systems. When developing dependable systems, it is
very important to evaluate and confirm system dependability. Testing is one of the main approach for evaluating system dependability.
Previous work on software architecture –based testing has shown it is possible to apply conformance testing techniques to yield, some confidence on
the implemented system conformance to expected, architecture-level, behaviours.
This work explores how regression testing can be applied systematically at the architecture level in order to reduce the cost of retesting modified
systems , and also assess the regression testability of the evolved system, assessing both slightly modified implementation conforms to the initial
architecture, and whether the implementation continues to conform to an evolved architecture.

Keywords: Software architecture, System Dependability, Regression Testing, Reliability, Architecture –based testing

I. INTRODUCTION

A component-based software system is an assembly of
reuse components, designed to meet the quality attributes
identified during the architecture phase. Components are
specified, designed and implemented with the intention to be
reused, and are assembled in various contexts in order to
produce a multitude of systems.

Component-based software development (CBSD) or
component-based software engineering (CBSE) is
concerned with the assembly of pre-existing software
components into larger pieces of software. Underlying this
process is the notion that software components are written in
such a way that they provide functions common to many
different systems. Borrowing ideas from hardware
components, the goal of CBSD is to allow parts
(components) of a software system to be replaced by never,
functionally equivalent, components.

Component-based software development encompasses
two processes:

a. Assembling software systems from software
components and

b. Developing reusable components.
The activity of developing systems as assemblies of

components may be broadly classed in terms of four
activities;

a. component qualification
b. component adaptation
c. component assembly
d. system evolution and maintenance
The quality of a component-based system strongly

depends on both the quality of the assembled components,
and on the quality of the assembly and its subsumed
architecture. While the quality of a single component can be
analyzed in isolation, the quality of the assembly can be
verified only after components integration. While in the past

verification stage to be properly performed required the
assembly of already developed components, with the advent
of model-driven development, the models themselves may
be analyzed before components are developed or bought. In
particular, a software architecture (SA) specification of a
component-based system plays a major role in validating the
quality of the assembly.

A Software Architecture [1] specification captures
system structure (i.e., the architectural topology), by
identifying architectural components and connectors, and
required system behavior, designed to meet system
requirements, by specifying how components and
connectors are intended to interact. In a component-based
context, SA provides an high-level blueprint on how
components are supposed to be have when integrated in a
certain system. Moreover, SA-based analysis methods
provide several value added benefits, such as system
deadlock detection, performance analysis, component
validation and much more [2]. Additionally, SA-based
testing methods are available to check conformance of the
implementation’s behavior with SA-level specifications of
expected behavior and to guide integration and conformance
testing.

Reaping these architectural benefits, however, does not
come for free. To the contrary, experience indicates that
dealing with software architectures is often expensive
perhaps even too expensive, in some cases, to justify the
benefits obtained. For example, consider the phenomenon of
“architectural drift”. It is not uncommon during evolution
that only the low-level design and implementation are
changed to meet tight deadlines, and the architecture is not
updated to track the changes being made to the
implementation. Once the architecture “drifts” out of
conformance with the implementation, many of the
mentioned benefits are lost: previous analysis results cannot
be extended or reused, and the effort spent on the previous
architecture is wasted. Moreover, even when

Badri H.S, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 158-163

© 2010, IJARCS All Rights Reserved 159

implementation and architecture are kept aligned, SA-based
analysis methods often need to be rerun completely from the
beginning, at considerable cost, whenever the system
architecture or its implementation change.

Software architecture asserts that architecture is not
just a phase or an activity in the software development life
cycle, but a discipline pervading all phases of
development. The architecture can be defined as the set of
principal design decisions about a system; The study
believes that integrating the discipline of architecture into
the development process has the potential to increase the
quality of software produced while reducing both the costs
of development and the time to market.

A. Motivation and goals:
This section describes why Software Architecture Based

Regression Testing [SARTE] can contribute to improve the
overall system dependability.

a. SARTE Motivations:
Regression testing permits to test modified software to

provide confidence that no new errors are introduced into
previously tested code. It may be used during development,
to test families of similar products, or during maintenance,
to test new or modified configurations. Although SA-based
RT may be used for both purposes, the focus is on the
maintenance aspect, being confident that this approach may
be used during development as well.

In this section analysis is i) why a software architecture
may change due to maintenance or evolution, and ii) why
regression testing at the architecture level is a relevant
discussion.

a) Software Architectures change: Software
architectures may change over time, due to the need
to provide a more dependable system, the need to
remove identified deficiencies, or the need to handle
dynamically evolving collections of components at
runtime. Much research has investigated SA
evolution, especially at runtime. In, for example, the
authors [3] [4] [5] [8] analyzed how an architecture
may change at runtime (in terms of component
addition, component removal, component
replacement, and runtime reconfiguration) and how
tool suites may be used to cope with such evolution.
In [3] [6] [7] the authors describe an approach to
specify architectures that permits the representation
and analysis of dynamic architectures. In the authors
analyzed the issues of dynamic changes to a software
configuration, in terms of component creation and
deletion, and connection and disconnection. In the
authors analyzed such Architecture Description
Languages which provide specific features for
modeling dynamic changes.

b) Reason For SA-based Regression Testing: Many
functional and non-functional analysis techniques
have been proposed to operate at the SA-level [2].
However, the drawback is that (given that an
architecture may evolve) current techniques require
that SA-based analysis be completely rerun from

scratch for a modified SA version, thereby increasing
analysis costs and reducing benefits. To mitigate this
drawback, the proposal here is to apply regression
testing at the SA level in order to lower the cost and
greatly improve the cost-benefit properties of SA-
based testing.

SARTE’s intermediate project goals are depicted in
figure 1.1, where the left side embodies the study first goal
and the right side embodies the second goal of the study.

b. SARTE Goals (Software Architecture-based
Regression Testing):

Goal 1: Test Conformance of a Modified
Implementation P0 to the initial SA:

a) Context: Given a component-based software
system, a software architecture specification S,
and an implementation P, the confidence that P
correctly implements S is gained. During
maintenance, first a modified version of the code
(P’) is implemented where some components from
P remain, some components are modified (for
example, by adding/removing internal objects or
interfaces).

b) Goal: Test the conformance of P’ with respect to S,
while reusing previous test information for
selective regression testing, thereby reducing the
test cases that must be retested.

Figure 1.1 Project goals:

a) the component based system implementation evolves
b) the software architecture evolves

Goal 2: Test Conformance of an Evolved Software
Architecture:

a) Context: Given a software system, a software
architecture specification for this system S, and an
implementation P, and have already gained confidence
that P correctly implements S. Suppose evolution
requires a modified version of the architecture (S”) -
where some architecture-level components are kept,
others are modified, and/or new ones are introduced
and consequently a modified component-based
implementation P” may have been also developed.

Badri H.S, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 158-163

© 2010, IJARCS All Rights Reserved 160

b) Goal: Test the conformance of P” with respect to S”,

while reusing previous test information for selective
regression testing, thereby reducing the test cases that
must be retested.

II. THE CARGO ROUTER SYSTEM EXAMPLE

The Cargo Router system is a logistic system which
distributes incoming cargo from a set of delivery ports to a
list of warehouses. The cargo is transported through
different vehicles, selected from a list of available ones and
depending on some parameters (e.g., shipment content,
weight, delivery time).

When a cargo arrives at an incoming port, an item is
added to the port’s item list, with information on cargo
content, product name, weight and time elapsed since
arrival. End- users, looking at warehouses and vehicles
status, route cargo by selecting an item from a delivery port,
an available vehicle, and a destination warehouse.

Figure 1.2 shows two different architectural
specifications of the Cargo Router system. In the remainder
of this case study, it is assumed that the architectural
specification is written in accordance with the C2 style
rules [2].

Figure 1.2a realizes the above mentioned features
through the following components:

Port (P), Vehicle (V), and Warehouse (W) components
are ADTs keeping track of the state of ports, the
transportation vehicles, and the warehouses, respectively.
The Port Artist (PA), Vehicle Artist (VA), and Warehouse
Artist (WA) components are responsible for graphically
depicting the state of their respective ADTs to the end-user.
The Cargo Router (CR) component determines when cargo
arrives at a port and keeps track of available transport
vehicles at each port. The Graphics Binding (GB)
component renders the

 drawing requests using the Java AWT graphics package.
The Next Shipment (NS) component regulates the incoming
of new cargo on a selected port. The Clock (C) sends ticks
to the system.

Figure 1.2 The Cargo Router system:

a) SA version 1 (S); b) SA version 2 (S”); c) GUI

Figure 1.2a+b shows an evolution of the initial
architecture (Cargo Router, version 2); it realizes a graphical
interface, through the duplication of the artists and cargo
router components, and the introduction of the Translator
(T) component, which supports translating the contents in
the original windows to a different language. Moreover, this
new architecture contains an automatic Planner feature
(implemented through the Planner (P) and Planner Artist
(PlA) components), which automatically selects the
incoming shipment with the longest wait, fastest available
vehicle and emptiest warehouse.

Figure 1.2c illustrates the graphical user interface. The
top pane identifies the incoming ports, the mid pane lists the
available vehicles, while the bottom pane shows the
destination warehouses. The right most windows informs an
automatic planner is in place.

It is important to note that the research proposed here is
not tied to C2. However, the approach is to instantiated to
this context since C2 supports a rigorous SA-based coding
process and provides tool support for analyzing and
monitoring software architectures.

III. SA-BASED REGRESSION TESTING

Software architectures are becoming centric to the
development of quality software systems, being the first
concrete model of the software system and the base to guide
the implementation of software systems. When architecting
dependable systems, in addition to improving system
dependability by means of construction (fault-tolerant and
redundant mechanisms, for instance), it is also important to
evaluate, and thereby confirm, system dependability. There
are many different approaches for evaluating system
dependability, and testing has been always an important one,
being fault removal one of the means to achieve dependable
systems.

Previous work on software architecture-based testing has
shown it is possible to apply conformance testing techniques
to yield some confidence on the implemented system
conformance to expected, architecture-level, and behaviors.
However the proposed SA-based regression testing inherits

Badri H.S, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 158-163

© 2010, IJARCS All Rights Reserved 161

the two-phased decomposition from traditional regression
testing approaches, therefore comprising the following two
phases:

A. SA-based conformance testing:
In particular, a SA-based conformance testing approach

is applied whose goal is to test the implementation
conformance to a given software architecture.

B. SA-based regression test selection:
This phase is decomposed to meet Goal 1 and Goal 2

identified.
Figure 1.4 summarizes the activities required by SA-

based conformance and regression conformance and
regression testing. A step-by-step (theoretical) description of
the approach as stated is provided, and also described it
through its application to the Cargo Router running example
as stated below.

Method 1 briefly describes how the SA-based testing has
been implemented. Method 2 describes how to retest a
modified implementation of the initial SA (Goal 1) and a
modified SA (Goal 2) respectively.

C. Method 1:

a. SA -Based Testing applied to the Case Study:
Following the five steps depicted in figure 1.3, in step

(0), specified the Cargo Router topology using the C2 style
architecture through the Argus-I tool. The system behavior
has been modeled by Labeled Transition System (LTSs)
(one for each component), specified through Finite State
Process algebra (FSP) and drawn by the LTSA tool. The
Cargo Router v 1 specification consists of 190 lines of FSP
statements and the resulting global LTS is composed by
21,144 states and 133,644 transitions. Following Step(1)
defined a testing criterion to focus on “all those behaviors
generated by routing events” (hereafter called, Routing
Criterion). By focusing on the Routing Criterion, identified
a more selective/abstract LTS (called ALTS), composed by
80 states and 244 transitions. From this ALTS, further
identified 164 architecture-level test cases (ATCs) using
McCabe’s path coverage criterion.

Figure 1.3 Architectural Test Case ATC #42

Figure 1.3 shows one of the ATCs previously identified.

To map SA-level ATCs to code-level test cases the C2
framework which dictates how architectural components are
implemented by java components are used. The mapping
between architectural test cases and code-level test cases is
systematic and tool supported, as analyzed in.

It is important to note that executing the system with
certain inputs may require more information than just the
architecture-level inputs. This is why parameters and
environmental conditions must be used when mapping
ATCs to code-level test cases. The ATC in figure 1.2, for
example, has been mapped to six different code-level test
cases.

In the study the final used is the Argus-I tool monitoring
and debugging capabilities to make a deterministic analysis
of the code and observe the desired sequence. At the end of
analysis, the study identified no architectural errors at the
code level

D. Method 2:

Goal 1: Test Conformance of a Modified Implementation
P’ to the initial SA:

In the previous phase, the SA- based conformers testing
has provided confidence that the implementation P of a
component based system conforms to a given SA. After
modifying the system implementation P into P’ (figure
1.1.a), it is needed to test the conformance of the new
implementation P’to the initial architecture.

Following the four steps depicted in the figure 1.4 b,
taken into consideration to different implementations of the
Cargo Router system: P1’ which modifies the use of the
“random function” in class Vehicle java to select (at startup)
vehicles available for shipments, and P2’ includes a new
feature that supports visualizing “Shipments in Progress” –
that is, vehicles, warehouses and shipments in use at a given
time. Some faults have been also injected into P2’.

In order to regression test such implementations, the
applications here is based on the concepts reported in the
JDiff algorithm by hands. By building a graph
representation of P, P1’ and P2’ (step A) and comparing two
pairs of implementations: (P, P1’) and (P, P2’) (Step B),
able to discover four lines changed between (P, P1’), all
local to a single method. The study further discovered 25
changes in moving from P to P2’, changes that involved two
different components and four different methods.

Further then manually instrumented those P’s methods
subject to change in P1’ and P2’. The instrumentation
simply prints a message to mark the changed method/lines
as traversed (Step C). Finally ran P over a subset of the code
test cases T previously selected. When P is run over T, the
study discovered that the changed method in P1’ is never
traversed. This means that all such test cases do not have to
be rerun on P1’.

Badri H.S, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 158-163

© 2010, IJARCS All Rights Reserved 162

a) b) c)

Figure 1.4 Activity Diagram of SA-based Regression Testing approach

Even if not necessary, some of them are re-runned,
without identifying any conformance errors. Further the
study also discovered that eight of the 18 code-level test
cases runned did not cover any changed method in P2’ and
thus retested only ten of the 18 test cases. When retesting
such test cases, all of the injected faults are also identified.
To conclude the experiment, further retested the eight
discarded test case. None of them revealed any architectural
error.

E. Goal 2: Test Conformance of an Evolved
Software Architecture:

In this section, the SA- based conformance testing
approach has demonstrated that P confirms its SA. After
evolving the architecture S into S” (figure 1.1b), the study
is, to check the component-based implementation’s
conformance to the new architecture.

The approach taken here is based on the idea of
comparing the two architectural specifications (both
structural and behavioral) to identify changed/ unchanged
portions of the SA.

Following figure 1.4 c, described here the different steps
in Goal 2:

The Cargo Router version2specification consists of 305
lines of FSP statements and the resulting global Transition
System (LTS”) is composed by 360,445 states and 869,567
transitions. By focusing on the Routing testing criterion .The
study produced an ALTS composed by 8,448 states and
55,200 transitions.

Steps a-b: S” specification and Testing Criterion:

In this state the study considers that a software
architecture changes when a new component/connector is
added, removed, replaced or the architecture is reconfigured.
In present context, both C2 structural and FSP behavioral

Step c: Comparing S with S”:

specifications are used to compare architectures. When
moving from S to S” in figure 1.4, the following differences
are indicated.
a. Architecture Reconfiguration: Another instance of the

artists components (PA2, VA2, WA2) and of the cargo
router (CR2) have been added to produce the graphical
user interface (GUI).

b. Added components: The Translator component has
been added to translate contents. The Planner and
Planner Artist components have been added to allow
the automatic routing feature.

Added connectors: connectors Bus2, Bus2B, Bus3A,
Bus 3C have been added.

Modified components: In order to move from S to S”,
many existent components have been changed. In order to
identify behavioral differences, the study compared the
component TCs. The modified components are listed below:
a) Port Artist: Ports selected by the planner components

need to be highlighted in the Port Artist’s GUI.
b) Vehicle: This component is queried by the Planner

component to get information on available vehicles
and it informs both vehicle artists components about
any changes.

c) Vehicle Artist: Vehicles selected by the planner
components need to be highlighted in the Vehicle
Artist’s GUI.

d) Warehouse: This component is queried by the Planner
component to get information on warehouses capacity
and it informs both vehicle artists components about
any change.

e) Warehouse Artist: Warehouses selected by the planner
components need to be highlighted in the Ware house
Artist’s GUI.

Modified connections: The connection between Bus2A
and Bus1 has been replaced by the connections between
Bus2A-Bus2 and Bus2-Bus1.

Since here the study investigation is the regression test
selection problem (i.e., how to select ATC”, a subset of
ATC relevant for testing S”), the focus on how components
in S changed when moving to S”. The study utilizes a sort of
“diff” algorithm which compares the behavioral models of
both architectures and returns different between the two
LTSs.

Step d: Select ATCs(Architecture- Level Test Case) from S
that need to be retested in S”:

Assuming S is the architecture under test, ATC is an
architectural test suite for S regarding a testing criterion TC,
S” a modified version of S, and ATC”is the new test suite
for S”. ATC is included in ATC” if it traverses a path in the
S ALTS which has been modified in the S” ALTS.

Here, the study report some interesting results by
considering a few of the ATCs identified.

ATC #12 covers two different components (GB and CR)
by exchanging three different messages (pressStart, Route,
nothing Selected). Since both components were not
modified in S”, and since the path was not affected by other
components’ changes, the study guarantees that ATC #12 in

Badri H.S, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 158-163

© 2010, IJARCS All Rights Reserved 163

the ALTS traverses only unchanged nodes in ATS”. Thus,
ATC #12 does not need to be reconsidered in S”.

ATC #26 covers six different components (GB, CR, VA,
WA, PA, and V). Components VA, WA, PA and V have
been modified when moving from S to S”, and thus should
expect ATC #26 needs to be retested. However, when
applying the architectural diff (ALTS and ALTS”), the
study discovers ATC #26 traverses a non modified path.
This happens since, even if some traversed components have
been changed, the application of the Routing testing
criterion to S” abstracts away differences between S and S”.
Thus, ATC #26 does not need to be retested.

ATC #42 covers seven components (GB, CR, W, VA,
WA, PA, V), the last five of which were modified when
moving to S”. Although this case seems quite similar to
ATC #26, when simulated in ALTS, ATC #42 covers nodes
which have been modified in ALTS”. Thus, ATC #42 needs
to be retested on S”.

To check the differences between ATS and ALTS”, the
study used the LTSA “Animator” feature which allows
paths simulation in an ALTS graph.

Steps e-f: Mapping ATCs” into code-level test cases TCs”,
and TCs”

Five of the ATCs to be retested have been mapped into
code-level test cases TCs”. The study reports just one of
them, that is ATC #42 (Figure 1.3). Six TCs have been
produced out of ATC #42. When retesting ATC #42 in the
Cargo Router system, in fact, the study identified the
following (genuine) code-level failure. When the process of
routing an incoming cargo of n tons to a selected warehouse
is concluded, the warehouse artist shows twice the quantity
expected (i.e., it contains 2*n tons of the routed
merchandize).

When comparing SA-based and traditional regression
testing results, the present study helped to draw two
important considerations:

 execution:

i. The technique considered in the study shows
something quite different from the safe regression test
selection techniques in the literature. Although
regression test selection technique shows that some test
cases would need them to be retested, it happens that
the differences between the two versions could make it
infeasible to use the initial set of test cases to properly
test code version two. The study approach, instead,
while recognizing the need for retesting some ATCs,
provides guidance for testing changed aspects by
mapping ATCs into code-level test cases that properly
version two.

ii. When an ATC is discarded (e.g., ATC#12 and ATC
#26), the retest of all TCs related to ATC are avoided,
thus reducing retesting effort.

IV. RESULTS AND DISCUSSION

A C2 style architectural specification has been used to
model the topology of Cargo Router examples. This style

has been chosen since it supports the C2 framework, which
helps to make rigorous the mapping between SA test cases
and code test case and simplifies test case execution. The
results comparison help to conclude that the approach of
SARTE can be applied to small-medium systems only.
Further when moving from SA version 1 to version 2, the
86% of architectural test cases were not needed to be
retested.

V. CONCLUSIONS

This research work has proposed an approach to handle
the retesting of a software system during evolution of both
its architecture and implementation, while reducing the
testing effort. The case where the code evolved relative to
unaffected software architecture and the case where the
architecture evolved were applied to the case study Cargo
Router Systems and results were collected. From a
preliminary analysis, it can be concluded that bigger
architectures concerning real systems may require a bigger
computational time to apply the observational function, and
a bigger number of architectural test cases can be produced
according to the testing criterion.

VI. ACKNOWLEDGMENTS

I am indebted to Dr. G. Mahadevan (M.E., Ph.D) for his
valuable insights and guidance.

VII. REFERENCES

[1]. T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G.
Rothermel. An Empirical Study of Regression Test
Selection Techniques. In Proc. of the 20th Int. Conf. on
Software Engineering (ICSE’98).

[2]. I.Crnkovic and M. larsson, editors. Building Reliable
Component-based Software Systems. Artech House, July
2002

[3]. M. J. Harrold. Architecture-Based Regression Testing of
Evolving Systems. In Proc. Int.Workshop on the Role of
Software Architecture in Testing and Analysis –
ROSATEA 98.

[4]. Formal methods for Software Architectures. Tutorial book
on Software and Formal Methods. In SFM-03:SA Lectures,
Eds. M Bernardo and P. Inverardi, LNCS 2804, 2003

[5]. J. Bosch. Design and Use of Software Architectures:
Adopting and Evolving a Product-Line Approach. ACM
Press/Addison-Wesley Publishing Co., 2000.

[6]. M. Dias and M. Vieira. Software Architecture Analysis
based on Statechart Semantics.

[7]. FC2Tools.http://www-sop.inria.fr/meije/verification/quick-
guide.html

[8]. The C2 Architectural Style. On-line at:
http://www.ics.uci.edu/pub/arch/c2.html

	INTRODUCTION
	Goal 1: Test Conformance of a Modified Implementation P0 to the initial SA:
	Figure 1.1 Project goals:
	the component based system implementation evolves
	the software architecture evolves

	THE CARGO ROUTER SYSTEM EXAMPLE
	The Cargo Router system is a logistic system which distributes incoming cargo from a set of delivery ports to a list of warehouses. The cargo is transported through different vehicles, selected from a list of available ones and depending on some param...
	When a cargo arrives at an incoming port, an item is added to the port’s item list, with information on cargo content, product name, weight and time elapsed since arrival. End- users, looking at warehouses and vehicles status, route cargo by selecting...
	Figure 1.2 shows two different architectural specifications of the Cargo Router system. In the remainder of this case study, it is assumed that the architectural specification is written in accordance with the C2 style rules [2].
	Figure 1.2a realizes the above mentioned features through the following components:
	Port (P), Vehicle (V), and Warehouse (W) components are ADTs keeping track of the state of ports, the transportation vehicles, and the warehouses, respectively. The Port Artist (PA), Vehicle Artist (VA), and Warehouse Artist (WA) components are respon...
	drawing requests using the Java AWT graphics package. The Next Shipment (NS) component regulates the incoming of new cargo on a selected port. The Clock (C) sends ticks to the system.
	Figure 1.2 The Cargo Router system:
	a) SA version 1 (S); b) SA version 2 (S”); c) GUI
	Software architectures are becoming centric to the development of quality software systems, being the first concrete model of the software system and the base to guide the implementation of software systems. When architecting dependable systems, in ad...
	Previous work on software architecture-based testing has shown it is possible to apply conformance testing techniques to yield some confidence on the implemented system conformance to expected, architecture-level, and behaviors. However the proposed ...
	Figure 1.3 Architectural Test Case ATC #42
	Figure 1.4 Activity Diagram of SA-based Regression Testing approach
	USteps a-b: S” specification and Testing Criterion:
	UStep c: Comparing S with S”:
	In this state the study considers that a software architecture changes when a new component/connector is added, removed, replaced or the architecture is reconfigured. In present context, both C2 structural and FSP behavioral specifications are used to...
	Architecture Reconfiguration: Another instance of the artists components (PA2, VA2, WA2) and of the cargo router (CR2) have been added to produce the graphical user interface (GUI).
	Added components: The Translator component has been added to translate contents. The Planner and Planner Artist components have been added to allow the automatic routing feature.
	Added connectors: connectors Bus2, Bus2B, Bus3A, Bus 3C have been added.
	Modified components: In order to move from S to S”, many existent components have been changed. In order to identify behavioral differences, the study compared the component TCs. The modified components are listed below:
	USteps e-f: Mapping ATCsU”U into code-level test cases TCsU”U, and TCsU”U execution:
	RESULTS AND DISCUSSION
	A C2 style architectural specification has been used to model the topology of Cargo Router examples. This style has been chosen since it supports the C2 framework, which helps to make rigorous the mapping between SA test cases and code test case and s...
	CONCLUSIONS
	This research work has proposed an approach to handle the retesting of a software system during evolution of both its architecture and implementation, while reducing the testing effort. The case where the code evolved relative to unaffected software a...
	ACKNOWLEDGMENTS
	I am indebted to Dr. G. Mahadevan (M.E., Ph.D) for his valuable insights and guidance.
	REFERENCES

