
Volume 3, No. 5, Sept-Oct 2012

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 140

ISSN No. 0976-5697

A Survey of Regression Testing Techniques
Ahmed S. Ghiduk*

Department of computer science,
College of Computers and IT,
Taif University, Saudi Arabia

asaghiduk@{yahoo.com, tu.edu.sa}

Moheb R. Girgis
Department of computer science,

Faculty of Science,
Minia University, Egypt
moheb_girgis@eun.eg

Eman H. Abd-Elkawy

Department of Mathematics,
Faculty of Science,

Beni-Suef University, Egypt
eman_hassan2080@yahoo.com

Abstract: Regression testing is the process of validating the modified software to provide confidence that the changed parts of the software
behave as intended and that the unchanged parts of the software have not been adversely affected by the modifications. Researchers have
proposed many techniques for the different regression testing aspects. In this paper, we review the work which has been done so far in the
field of regression testing. In addition, we will organize the surveyed techniques into categories according to the regression testing aspects.

I. INTRODUCTION

Regression testing is the process of validating modified
software to provide confidence that the changed parts of the
software behave as intended and that the unchanged parts
of the software have not been adversely affected by the
modifications. Both during development and after
deployment, software is modified for several reasons,
including bug fixing, functionality enhancement, and
adaptation to changes in the software’s operating
environment. One of the most expensive activities that
occur as the software is modified and enhanced is the
(re)testing of the software after it has changed. This process
is known as regression testing. Because regression testing
is expensive, researchers have proposed techniques to
reduce its cost. One approach reduces the cost of regression
testing by reusing the test suite that was used to test the
original version of the software. Rerunning all test cases in
the test suite, however, may still require excessive time. An
improvement is to reuse the existing test suite, but to apply
a regression test selection technique to select an appropriate
subset of the test suite to be run.

Regression testing has been used during the
development and maintenance of a software product to
assist software-testing activities and guarantee the
attainment of adequate quality through various versions of
the software product [1]. Regression testing permits to test
modified software to provide confidence that no new errors
are introduced into previously tested code [2].

In regression testing, a set of tests is executed whenever
modification is done on a part of software. New output is
compared with the old ones to prevent unwanted changes.
Other parts of software are considered to be unaffected by
the changes made on one part of the software if the new
output matches with the old output.

Regression testing is the re-execution of a particular
subset of tests that has been formerly performed. In

regression testing, the number of regression tests increases
with the progress of integration testing, and executing each
test for every program function whenever changes occur is
both impractical and inefficient. Regression test suites are
often simply test that software engineers have previously
developed, and that have been saved so that they can be
used later to perform regression testing [3].

The rest of the paper is organized as follow: Section 2
surveys the regression test selection techniques. Section 3
discusses the test case prioritization techniques. Section 4
introduces the test suite augmentation techniques. Section 5
reviews change-identification techniques and computing
program differences techniques. Section 6 surveys GA
based regression testing techniques. Section 7 gives the
conclusion.

II. REGRESSION TEST SELECTION
TECHNIQUES

Regression test selection techniques attempt to reduce
the cost of regression testing by selecting and running only
a subset of the test cases in an existing test suite to ensure
that changed parts behave as intended and the changes did
not introduce unexpected faults. While this approach may
lessen the cost of performing regression testing, it is quite
difficult to find a balance between the time required to
select and run test cases and the fault detection ability of the
remaining test cases [4]. Although safe test selection
techniques do exist [5], the amount of work required to
prove that the subset of test cases exposes the same number
of faults as the full test suite is difficult in some instances.

The main objective of selecting test cases that need to be
rerun is to identify regression test cases that exercise
modified parts of the system. This is referred to as safe
regression testing as, it identifies all test cases in the
original test set that can reveal one or more faults in the
modified program [6]. Several safe regression-test-selection

Ahmed S. Ghiduk et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 140-148

© 2010, IJARCS All Rights Reserved 141

techniques have been developed and proved to reduce the
size of regression test suite effectively. One of them is for
Java software [7], which uses a combination of static and
dynamic (using a profiler) analysis to produce a model,
Java Interclass Graph (JIG), which is then used in the safe
regression-test selection (RTS) algorithm to select only
those tests which are modification revealing. Since this
method uses dynamic analysis, which requires the
application to be run in a single Java Virtual Machine
(JVM), this technique cannot be applied in any Web
Service environment.

Regression test selection techniques are either code-
based or model-based. Code-based techniques use the
information obtained from two different versions of the
code to analyze the change impact and select the tests. In
the case of model based techniques, change information is
obtained through two versions of models constructed during
the requirements analysis phase or system design phase.
Code based techniques, [6-10], are very specific to the
programming language used to develop the code. Chianti
[11] and JDiff [9] are comprehensive techniques for
managing changes in Java programs. Chianti selects
regression tests after analyzing the change impact analysis,
whereas JDiff performs only change impact analysis. As
both these tools analyze the changes at statement level and
are specific to Java programming language, hence, they are
neither generic nor efficient. Model-based techniques [12-
15] are based on UML design models used during the
design phase of the system.

Few regression test selection techniques are software
specifications-based [16-19]. These specification based
techniques are generally meant for specific software such as
API testing. Hence, there is a need to develop an approach
for selection of regression test suite based on software
requirements to validate software applications that are
being modified.

Chen et al. [20] have developed a regression test
selection technique based on the idea of detecting modified
code entities such as functions, variables, types, and
preprocessor macros. Test cases that have traversed
modified code entities form the selected test suite. This
technique has been implemented in a tool called "Test
Tube", which has been developed around existing analysis
tools, namely app (the Annotation Preprocessor for C [21])
and CIA (the C Information Abstractor [22]).

Rothermel and Harrold [23] define a framework for
comparing different regression test selection methods,
based on four characteristics: Inclusiveness (the ability to
choose modification revealing tests), Precision (the ability
to eliminate or exclude tests that will not reveal behavioral
differences), Efficiency (the space and time requirements of
the method) and Generality (the applicability of the method
to different classes of languages, modifications, etc.).

Rothermel and Harrold [5] have developed a regression
test selection technique that is based on the idea of creating
control flow graphs (CFGs) to represent, and compare, P
and P', where P is original program and P' is modified
program. The nodes in the CFG contain actual program
statements. During the execution of P, a list of all the edges
traversed by each test case is maintained. The CFGs are
compared by simultaneously traversing the nodes of each

graph and looking for differences in either (i) the contents
of a node, or (ii) the contents of succeeding nodes. When
differences are detected, the test cases that have traversed
the edges associated with these nodes are selected.

Rothermel and Harrold technique supports both
intraprocedural and interprocedural analysis and is capable
of detecting, with good precision, modification traversing
test cases. Two different prototype tools, DejaVu1 (for
intraprocedural analysis) and DejaVu2 (for interprocedural
analysis) have been developed to analyze C programs. The
authors have used these prototype tools on a large software
system with encouraging results. However, as they point
out, they were not able to instrument, or run their
implementation, on about 15% of the procedures.

Fisher II et al. applied the data flow based regression
test selection approach for test re-use in spreadsheet
programs [24]. Fisher II et al. proposed an approach called
What-You-See-Is-What-You-Test (WYSIWYT) to provide
incremental, responsive and visual feedback about the
testedness of cells in spreadsheets. The WYSIWYT
framework collects and updates data flow information
incrementally as the user of the spreadsheet makes
modifications to cells, using Cell Relation Graph (CRG).
Interestingly, the data flow analysis approach to re-test
spreadsheets is largely free from the difficulties that the
approach has used to test procedural programs, because
spreadsheet programs are purely based on data flow and not
on control flow information. This makes spreadsheet
programs an ideal candidate for a data flow analysis
approach.

Koju et al. [10] have proposed a technique for
regression test selection based on the Microsoft
Intermediate Language (MSIL). Their technique is based on
the one developed by Harrold et al. [7] for Java. They
present control flow graphs to handle .Net-specific features
such as delegate and present a class hierarchy analysis
technique to support the regression test selection.

Malhotra et al. [25] have proposed a technique, which is
an extension of earlier regression test selection and
prioritization techniques. They implemented this technique
and validated it with the help of two case studies. Unlike
other techniques, this technique identifies test cases that
execute the modified lines of source code at least once and
selects those test cases that execute the lines of source code
after deletion of lines from the execution history of the test
cases The results showed that the technique can
significantly reduce the cost and resources for performing
regression testing on modified programs.

Chen et al. [26] have introduced a semi-supervised
clustering method, namely semi-supervised Kmeans
(SSKM) to improve cluster test selection. SSKM uses
limited supervision in the form of pairwise constraints:
Must-link and Cannot-link. These pairwise constraints are
derived from previous test results to improve clustering
results as well as test selection results. The experiment
results illustrate the effectiveness of cluster test selection
methods with SSKM. Two useful observations are made by
analysis. (1) Cluster test selection with SSKM has a better
effectiveness when the failed tests are in a medium
proportion. (2) A strict definition of pairwise constraint can

Ahmed S. Ghiduk et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 140-148

© 2010, IJARCS All Rights Reserved 142

improve the effectiveness of cluster test selection with
SSKM.

III. TEST CASE PRIORITIZATION
TECHNIQUES

Regression test prioritization techniques attempt to
ascertain earlier release of faults in the test execution phase
and execution of higher priority tests earlier than lower
priority tests in the regression testing process by
rearranging the execution of test suite and rearranging
regression test suite, respectively [16]. General test case
prioritization and version specific test case prioritization
are two types of test case prioritization. Without any
knowledge of the modified version of a given program P,
the test cases in a given test suite T that will be useful over
a series of subsequent modified versions of P are generally
prioritized by test case prioritization. The knowledge of the
changes that have been made in P when P is modified to P'
are taken into account in version specific test case
prioritization for prioritizing the test cases in T, [27]. A
broad range of objectives can be addressed by test case
prioritization. When the time required to run all test cases
in the test suite is sufficiently long, the benefits offered by
test case prioritization methods become more significant
[28].

Several researchers have addressed the test case
prioritization problem and presented techniques for
handling it. Test case prioritization techniques reported in
[29, 30] orders test cases such that the test cases with
highest priority, according to some criterion, are executed
first. Test case prioritization can address a wide variety of
objectives [31]. For example, concerning coverage alone,
testers might wish to schedule test cases in order to achieve
code coverage at the fastest rate possible in the initial phase
of regression testing, to reach 100% coverage soonest or to
ensure that the maximum possible coverage is achieved by
some pre–determined cut–off point. In the Microsoft
Developer Network (MSDN) library, the achievement of
adequate coverage without wasting time is a primary
consideration when conducting regression tests [32].
Furthermore, several testing standards require branch
adequate coverage, making the speedy achievement of
coverage an important aspect of the regression testing
process.

Srivastava and Thiagarajan [33], studied a prioritization
technique that is based on the changes that have been made
to the program and focused on the objective function of
“impacted block coverage”. Other non–coverage based
techniques in the literature include fault–exposing–
potential (FEP) prioritization [31], history–based test
prioritization [34], and the incorporation of varying test
costs and fault severities into test case prioritization [35,
36].

Saff and Ernst [37-39] considered test case prioritization
for Java in the context of continuous testing, which used
spare CPU resources to continuously run regression tests in
the background as programmer codes. They combined the
concepts of test frequency and test case prioritization, and

reported that continuous prioritized testing can reduce
waste of development time.

Do et al. [40] has discussed that the rate of fault
detection of JUnit test suites could be substantially
improved and differences in terms of earlier studies that
could be associated with the language and testing paradigm
could be revealed by test case prioritization. They have
presented a set of cost-benefits models for test case
prioritization to analyze the practical consequences of these
results and demonstrated that the perceived effectiveness
differences could lead to savings in practice that vary
considerably with the cost factors related to the specific
testing processes.

Test case prioritization has also been done based on the
relevant slices. Jeffry and Gupta in [41] proposed a
prioritization technique based on the coverage requirements
present in the relevant slices of the outputs of test cases.
However, these prioritization techniques are based on
different sources of information, such as history of recent or
frequent errors and test cost, code coverage information,
and have not considered test suite time.

Li et al. [42] studied five search techniques: two meta–
heuristic search techniques (Hill Climbing and Genetic
Algorithms), together with three greedy algorithms (Basic
Greedy, Additional Greedy and 2–Optimal Greedy) and
proved that Genetic Algorithms performed well in test case
prioritization.

Srivastava [3] has presented test case prioritization
algorithm to compute average faults discovered per minute.
Using an Average Percentage of Faults Detected (APFD)
metric result demonstrating the effectiveness of the
algorithm has been presented. Calculating the effectiveness
of prioritized and non-prioritized cases by means of APFD
has been its main objective.

Krishnamoorthi and Mary [43] have proposed a system
level test case prioritization (TCP) model from software
requirement specification to increase user satisfaction with
increased quality software at decreased cost and increase
rate of critical defect detection. The proposed prioritization
technique has been credibly proved to improve rate of
severe fault detection when validated using two diverse
validation techniques and experimented in three stages with
student projects and two sets of industrial projects Jyoti et
al. [27] have proposed a model for version specific
regression testing to achieve 100% code coverage
optimally. Modified lines covered by the test case based
priority value have been used for prioritization of test cases.

Kavitha and Sureshkumar [44] have proposed an
algorithm that performs rate of fault detection and fault
impact based prioritization of test cases. Experimental
results using an Average Percentage of Faults Detected
(APFD) metric have demonstrated that more effective
severe fault identification at earlier stage of the testing
process could be obtained by the proposed algorithm for
prioritized test cases compared to unprioritized ones.

Kavitha and Sureshkumar [45] have proposed an
algorithm to prioritize the regression testing test cases. In
order to prioritize the test cases, some of the factors to be
calculated. These factors are used in the prioritization
algorithm. The factors are (1) customer assigned priority of
requirements, (2) developer-perceived code implementation

Ahmed S. Ghiduk et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 140-148

© 2010, IJARCS All Rights Reserved 143

complexity, (3) changes in requirements, (4) fault impact of
requirements, (5) completeness and (6) traceability (7)
Execution time etc,. Based on these factors, a weight age is
assigned to each test case in the software. According to the
weight age assigned, the test cases are prioritized. The
prioritization is based on sorting the test case according to
its weights. Focusing only on the particular test cases based
on the prioritization will reduce the computation cost and
time. From the implementation results and APFD metric,
the performance of the proposed method is evaluated.

Raiyani and Pandya [46] have presented the various
types of test case prioritization techniques and their
classifications, explaining selective and prioritizing test
cases and search algorithms for test case prioritization. At
the end, they discussed the approaches which may be used
to compare various regression testing techniques and
challenges faced by these approaches.

IV. TEST SUITE AUGMENTATION
TECHNIQUES

Test-suite augmentation (TSA) is an area that is closely
related to the selective-retest techniques just presented, but,
to date, has received less attention than those techniques.
TSA techniques use information about the changes from a
program P to a modified version P' to identify criteria for
retesting the changes. These criteria can then be used to (1)
assess the test suite used to test P', which consists of T' and
any new test cases developed, and (2) guide the selection of
new test cases that are needed to adequately test P' with
respect to the changes. Like selective-retest techniques,
TSA techniques create models of P and P', assess the
differences between them, and use these differences to
compute what we call change-test requirements according
to some criterion. (A test suite that satisfies the computed
change-test requirements is said to be change adequate.)
Many TSA techniques use differences in entities between P
and P' as the criterion. These entities include data-flow [47-
49], control-flow [5, 50], and both data-flow and control-
flow [51-53].

Yoo and Harman [54] presented a study of test data
augmentation. They experiment with the quality of test
cases generated from existing test suites using a heuristic
search algorithm.

Four recent papers [55-58] specifically address test suite
augmentation. Two of these [55, 57] present an approach
that combines dependence analysis and symbolic execution
to identify test requirements that are likely to exercise the
effects of changes, using specific chains of data and control
dependencies to point out changes to be exercised. A
potential advantage of this approach is a fine-grained
identification of coverage needs; however, the papers
present no specific algorithms for generating test cases. A
third paper [56] presents a more general approach to
program differencing using symbolic execution, that can be
used to identify requirements more precisely than [55, 57]
and yields constraints that can be input to a solver to
generate test cases for those requirements. However, this
approach is not integrated with reuse of existing test cases.

The test suite augmentation approach presented in [58]
integrates an RTS technique [5] with an adaptation of the

concolic test case generation approach presented in [59].
This approach leverages test resources and data obtained
from prior testing sessions to perform both the
identification of coverage requirements and the generation
of test cases to cover them.

V. CHANGE IDENTIFICATION TECHNIQUES

One of the major difficulties in software maintenance is
to identify changes and their impact automatically, since it
is very difficult to keep track of the changes when a
software system is modified extensively by several persons.
This capability becomes even more crucial when the
modifications are performed by one group of persons and
regression testing is performed by another group of persons.

A. Types of Code Changes:
Types of code changes are explained as follows:

a. Data change: Any datum (i.e., a global variable, a local
variable, or a class data member) can be changed by
updating its definition, declaration, access scope, access
mode and initialization. In addition, adding new data
and/or deleting existing data are also considered as data
changes.

b. Method/function change: A function can be changed in
various ways, which can be classified into three types:
component changes, interface changes, and control
structure changes.

a) Adding, deleting, or changing a predicate,
Component changes include:

b) Adding, deleting a local data variable, and
c) Changing a sequential segment.

a) Adding, deleting, or modifying a branch or a loop
structure, and

Control structure changes include:

b) Adding, or deleting a sequential segment.

The interface of a function consists of its signature,
access scope and mode, its interactions with other functions
(for example, a function call). Any change on the interface
is called an interface change of a function.

Interface changes:

c. Class change: Direct modifications of a class can be
classified into three types: Component changes,
interface changes and relation changes.
Any change on a defined/ redefined member function or

a defined data attribute is known as a component change.
A change is said to be an interface change if it adds, or

deletes a defined/redefined attribute, or changes its access
mode or scope.

A change is said to be a relation change if it adds, or
deletes an inheritance, aggregation or association
relationship between the class and another class.
d. Class library change: These include:

a) Changing the defined members of a class.
b) Adding, or deleting a class and its relationships with

other classes.
c) Adding, or deleting a relationship between two

existing classes.
d) Adding, or deleting an independent class.

Ahmed S. Ghiduk et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 140-148

© 2010, IJARCS All Rights Reserved 144

B. Computing Program Differences Techniques:
Several techniques and tools for comparing source files

textually (e.g., the UNIX diff utility) [60] have been
proposed. However, these techniques have shortcomings.
Textual differencing may report changes that have no effect
on program semantics or syntax, such as the addition of a
method that is never called and modifications in comments
and white spaces, and do not consider changes in program
semantics indirectly caused by textual modifications.

Horwitz's approach [61] computes both syntactic and
semantic differences between two programs using a
partitioning algorithm. Horwitz's technique is based on the
program representation graph (PRG). Because PRGs are
defined only for programs written in a language with scalar
variables, assignment statements, conditional statements,
while loops, and output statements only, the technique is
limited and cannot be used in general. In particular, it
cannot be applied to object-oriented programs.

Laski and Szermer [50] presented an algorithm that
computes program differences by analyzing the control-flow
graphs of the original and modified versions of a program.
Their algorithm localizes program changes into clusters,
which are single-entry, single-exit program fragments.
Clusters are reduced to single nodes in the two graphs and
are then recursively expanded and matched. Their control-
flow graph representation does not model the object-
oriented behaviors properly; thus, their algorithm may not
compute accurate change information for object-oriented
programs. For example, their algorithm cannot detect a
difference at a call site that may invoke a method that has
just been added in the modified version due to method
overriding. Moreover, their algorithm for matching clusters
has limited capability and may compute imprecise results.
Their algorithm uses only the entry statements of two
clusters to determine whether the two clusters are matched.
If only the entry of one cluster in the modified version is
changed, their algorithm may report that none of the
statements in the cluster is matched. Their algorithm also
does not allow matching of clusters at different nested
levels. Thus, it may compute imprecise results.

Semantic diff [62], compares two versions of a program
procedure-by-procedure, computes a set of input-output
dependencies for each procedure and identifies the
differences between two sets computed for the same
procedure in the original and the modified programs.
However, semantic diff is performed only at the procedure
level and may miss changes that, although not affecting
input-output dependencies, have inter-procedural side
effects. Moreover, input-output dependencies are typically
expensive to compute, so the approach is likely to have
scalability issues when applied to medium and large
programs.

Kung et al. [63, 64] introduced a class firewall concept
to support program change and impact analysis based
different class dependence relationships in object-oriented
software. Using the class firewall concept, engineers can
identify changed and affected classes based on class
dependency, and perform class re-testing and re-integration
using a strategy known as test orders. This method is useful

only when a complete picture about class dependence
relationships in object-oriented software is available.

BMAT (binary matching tool) [65] performs matching
on both code and data blocks between two versions of a
program in binary format. BMAT uses a number of
heuristics to find matches for as many blocks as possible.
Being designed for the purpose of program profile
estimation, BMAT does not provide information about
differences between matched entities. Moreover, BMAT
does not compute information about changes related to
object-oriented constructs, such as method overriding or
changes in class hierarchy.

Maletic and Collard’s approach [66] is a text-based
program differencing technique. Their technique
transforms C/C++ source files into a format called srcML
that makes program structures more explicit than raw
source code and leverages diff to compare the srcML
representations for the original and modified versions of the
source code. (srcML is an XML-based format that
represents the source code annotated with syntactic
information.) The results of the comparison are then post-
processed to create a new XML document, also in srcML
format, with the additional XML tags that indicate the
common, inserted, and deleted XML elements. Their
approach utilizes available XML tools to ease the process of
extracting change-related information. However, the
technique is limited by the fact that it still relies on line-
based differencing information obtained from diff.

Apiwattanapong et al. [67] presented a technique for
comparing object-oriented programs that identifies both
differences and correspondences between two versions of a
program. The algorithm is based on a method-level
representation that models the object-oriented features of
the language. Given two programs, their algorithm
identifies matching classes and methods, builds a
representation for each pair of matching methods, and
compares the representation to identify similarities and
differences. Empirical results show the efficiency and
effectiveness of the technique on a real program.

There is a tool that was written by Iqbal [68] called
ClassDiff that takes as an input two versions of the class
file, analyzes them to identify changed methods and fields
and then outputs those entities to an XML file for that
specific class file. Changes can be of the following types
[68]:
i. Changes in a super class that the class inherits from;

ii. Changes in interfaces that the class implements;
iii. Changes in an access flag of the class;
iv. Changes in methods;
v. Changes in fields.

VI. USING GAs IN REGRESSION TESTING

In the test case prioritization using GAs, the
prioritization criterion is based on fitness function of
population and genetic operators [69].

Li et al. [42] have proved experimentally that genetic
algorithms (GAs) perform well for test case prioritization.
The benefits of code coverage based prioritization
techniques are measured using a weighted average of the
percentage of faults detected (APFD), average percentage

Ahmed S. Ghiduk et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 140-148

© 2010, IJARCS All Rights Reserved 145

block coverage (APBC), average percentage decision
coverage (APDC) and average percentage statement
coverage (APSC).

Krishnamoorthi and Mary [70] have proposed a GA
based test case prioritization method. A superior rate of
fault detection when compared to rates of randomly
prioritized test suites has been obtained when the new suite
that consists of subsequences of the original test suite
prioritized by the proposed technique is executed within a
time-constrained execution environment. Test cases have
been prioritized utilizing structurally based criterion by the
experiment and the GA has been analyzed with regard to
effectiveness and time overhead. The effectiveness of the
new test case orderings have been calculated using an
Average Percentage of Faults Detected (APFD) metric.

Xu et al. [71] discussed the use of GA in test suite
augmentation, identified several factors that impact the
effectiveness of this approach, and presented the results of
an empirical study exploring the effects of one of these
factors: the manner in which existing and newly generated
test cases are utilized by the GA. this results reveal several
ways in which this factor can influence augmentation
results, and reveal open problems that researchers must
address if they wish to create augmentation techniques that
make use of genetic algorithms.

Sujata et al. [72] have proposed an approach useful in
black box environment. This approach is based on
requirements based test case prioritization using GA. The
main idea of this approach is to find the most severe faults
early in the testing process and hence to improve the quality
of the system according to customer point of view.

Kaur and Goyal [73] have proposed a GA to prioritize
the regression test cases on the basis of complete code
coverage. The results representing the effectiveness of the
proposed algorithm are presented with the help of an
Average Percentage of Code Covered (APCC) metric.

VII. CONCLUSION

Regression testing is the process of validating the
modified software to provide confidence that the changed
parts of the software behave as intended and that the
unchanged parts of the software have not been adversely
affected by the modifications. Researchers have proposed
many techniques for the different regression testing aspects.
In this paper, we reviewed the work which has been done so
far in the field of regression testing. In addition, we
organized the surveyed techniques into categories according
to the regression testing aspects.

VIII. REFERENCES

[1] Park, H., Ryu, H., and Baik, J., "Historical Value-Based
Approach for Cost-cognizant Test Case Prioritization to
Improve the Effectiveness of Regression Testing”, The
Second International Conference on Secure System
Integration and Reliability Improvement, pp. 39-46,
Yokohama, July 14-17, 2008.

[2] Muccini, H., Dias, M., and Richardson, D. J., "Software
Architecture-based Regression Testing”, Journal of

Systems and Software, Vol. 79, No. 10, pp. 1379-1396,
October 2006.

[3] Srivastava, P. R. "Test Case Prioritization”, Journal of
Theoretical and Applied Information Technology, pp. 178-
181, 2008.

[4] Graves, T. L., Harrold, M. J., Kim, J., Porter, A., and
Rothermel, G., "An empirical study of regression test
selection techniques", ACM Transactions on Software
Engineering and Methodology, Vol.10, No.2, pp. 184-208,
2001.

[5] Rothermel, G., and Harrold, M. J., "A safe, efficient
regression test selection technique, "ACM Transactions on
Software Engineering Methodology, Vol.6, No.2, pp. 173-
210,April 1997.

[6] Orso, A., Shi, N., and Harrold, M.J., "Scaling regression
testing to large software systems", Proceeding of the 12th
ACMSIGSOFT International Symposium on Foundation of
Software Engineering, pp 241-251, Newport Beach, CA,
USA, 2004.

[7] Harrold, M.J., Jones, J.A., Li, T., Liang, D., Orso, A.,
Pennings, M., Sinha, S., and Spoon, S.A., "Regression test
selection for java software", in: Proceedings of ACM
Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’01), Vol. 36, No.
11, pp. 312-326, 2001.

[8] Pasala, A., Yannick, L.H., Fady, A., Appala R. G., and
Ravi P. G., “Selection of regression test suite to validate
software applications upon deployment of upgrades”, 19th
Australian Software Engineering conference, pp 130-138,
Aswec, March 26-28, 2008.

[9] Apiwattanapong, T., Orso, A., and Harrold, M.J., “JDiff:
A Differencing Technique and Tool for Object-Oriented
Programs”, Journal of Automated Software Engineering,
Vol.14, No.1, pp. 3-36, March 2007.

[10] Koju, T., Takada, S., and Doi, N. "Regression test
selection based on intermediate code for virtual
machines", Proceeding of International Conference on
Software Maintenance (ICSM 03), pp. 420-429,
Amsterdam, the Netherlands, September 22-26, 2003.

[11] Xiaoxia, R., Barbara, G. R., Maximilian, S., and Frank,
T., “Chianti: A prototype change impact analysis tool for
Java”, Proceedings of 27th international conference on
Software engineering (ICSE), St. Louis,USA , pp. 664-
665, May 15-21, 2005.

[12] Ravi P. G., Anjaneyulu Pasala, Kailash KP and Benny
Leong, "Specification-based approach to select regression
test suite to validate change software", 15th Asia-Pacific
Software Engineering conference, pp. 153-160, Beijing,
December 3-5, 2008.

[13] Briand, L.C., Labiche, Y., and He, S., "Automating
regression test selection based on UML designs" Original
Research Article Information and Software Technology,
Vol 51, No 1, pp 16-30, January 2009.

[14] Orest, P., Hunay, U., and Andrews, A., "Regression
Testing UML Designs", Proceedings of 22nd IEEE
International Conference on Software Maintenance
(ICSM), Philadelphia, Pennsylvania, , pp. 254-264
,September 24-27, 2006.

Ahmed S. Ghiduk et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 140-148

© 2010, IJARCS All Rights Reserved 146

[15] Ali, A., Nadeem, A., Iqbal, M.Z., and Usman, M.,
"Regression testing based on UML design models", 13th
IEEE International Symposium on Pacific Rim
Dependable Computing, pp 85-88, 2007.

[16] Paul, R., Yu, L., Tsai, W-T., and Ba, X., "Scenario-Based
Functional Regression Testing", COMPSAC '01
Proceedings of the 25th International Computer Software
and Applications Conference on Invigorating Software
Development, pp. 496,Washington, DC, 2001.

[17] Chakrabarti, S. K., and Srikanth, Y. N., “Specification
based regression testing using explicit state space
enumeration”, International conference on software
engineering advances, Tahiti, October 29 to November 3,
2006.

[18] Chen, Y., Robert L. P., and Sims, D. P., “Specification-
based Regression Test Selection with Risk Analysis”,
CASCON'02 Proceedings of the 2002 conference of the
Centre for Advanced Studies on Collaborative research,
pp. 175-182, IBM Canada, September 2002.

[19] Chen, Y., Robert L. P., and Ural, H., “Model-Based
regression test suite generation using dependency
analysis”, 3rd International workshop on advances in
model-based testing, pp 54-62, London, July 9-12, 2007.

[20] Chen, Y. F., Rosenblum, D. S., and Vo, K. P., " TestTube:
A system for selective regression testing". In ICSE '94:
Proceedings of the 16th international conference on
Software engineering, pp. 211-222, Sorrento, Italy, May
16-21, 1994.

[21] Rosenblum, D.S. "Towards a Method of Programming
With Assertions", Proceedings. 14th International.
Conference on Software Engineering, proceeding.New
York: Association for computing Machinery, pp. 92-104,
May 1992.

[22] Chen, Y-F., Nishimoto, M., and Ramamoorthy, C.V., "The
C Information Abstraction System", IEEE Transactions on
Software Engineering, Vol.16, No.3, pp. 325-334, March
1990.

[23] Rothermel, G., and Harrold, M. J., "Analyzing
regression test selection Techniques". IEEE Transactions
on Software Engineering, Vol. 22, No. 8, pp. 529–551,
August 1996.

[24] Fisher II M, Jin, D., Rothermel, G., and Burnett, M., "Test
reuse in the spreadsheet paradigm." ISSRE '02
Proceedings of the 13th International Symposium on
Software Reliability Engineering. pp. 257-268, Annapolis,
MD, USA, November 12-15, 2002

[25] Malhotra, R., Kaur, A., and Singh, Y., "A Regression Test
Selection and Prioritization Technique". Journal of
Information Processing Systems, Vol.6, No.2, Pp. 235-252
June 2010.

[26] Songyu Chen, S., Chen1, Z., Zhao, Z., Xu, B., and Feng,
Y., "Using Semi-Supervised Clustering to Improve
Regression Test Selection Techniques". ICST '11
Proceedings of the 2011 Fourth IEEE International
Conference on Software Testing, Verification and
Validation pp. 1-10, Berline, Germany, March 21-25,
2011.

[27] Jyoti, A., Sharma, Y. K., Bagla, A., and Pandey, D.,
"Recent Priority Algorithm In Regression Testing”,
International Journal of Information Technology and
Knowledge Management, Vol.2, No.2, pp. 391-394, July-
December 2010.

[28] Roongruangsuwan, S., Daengdej, J., "Test case
prioritization techniques", Journal of Theoretical and
Applied Information Technology, Vol. 18, No. 2, pp 45-
60, 2010.

[29] Rothermel, G., Untch, R., Chu, C., and Harrold, M. J.,
“Test case prioritization: An empirical study”, In
Proceedings ICSM 1999, pp. 179–188. Oxford, England,
UK, August 30 to September 3, 1999.

[30] Wong, W. E., Horgan, J. R., London, S., and Agrawal,
H., “A study of effective regression testing in practice”,
ISSRE '97 Proceedings of the Eighth International
Symposium on Software Reliability Engineering, pp.
264–274, Albuquerque, NM, YSA, Nov 2-5, 1997.

[31] Rothermel, G., Roland H. U., Chu, ch., and Harrold, M.
J., "Prioritizing Test Cases For Regression Testing", IEEE
Transactions on Software Engineering, Vol.27, No.10,pp.
929-948, October 2001.

[32] http://msdn.microsoft.com/library/default.asp?url=/library/
enus/vsent7/html/vxconregressiontesting.asp. Last
accessed 26/1/2011.

[33] Srivastava, A., and Thiagarajan, J., ”Effectively
prioritizing tests in development environment”, In ISSTA
’02, Proceedings of the 2002 ACM SIGSOFT International
Symposium on Software testing and analysis, New York,
NY, USA, ACM Press, pp. 97–106, 2002.

[34] Kim, J-M., and Porter, A., “A history-based test
prioritization technique for regression testing in resource
constrained environments”, In ICSE ’02: Proceedings of
the 24th International Conference on Software
Engineering, New York, NY, USA, ACM Press, pp. 119–
129, 2002.

[35] Elbaum, S., Malishevsky, A., and Rothermel, G.,
“Incorporating varying test costs and fault severities into
test case prioritization”, In ICSE ’01, Proceedings of the
23rd International Conference on Software Engineering,
Washington, DC, USA, IEEE Computer Society, pp. 329–
338, 2001.

[36] Elbaum, S., Malishevsky, A.G., and Rothermel, G., “Test
Case Prioritization: A Family of Empirical Studies,” IEEE
Trans. Software Eng., Vol. 28, No. 2, pp. 159-182, Feb.
2002.

[37] Saff, D., and Ernst, M. D., “Reducing wasted development
time via continuous testing”, ISSRE '03 Proceedings of the
14th International Symposium on Software Reliability
Engineering, pp. 281–292, Denver, Colorado November
17-20, 2003.

[38] Saff, D., and Ernst, M. D., “An experimental evaluation
of continuous testing during development”, ISSRE '04
Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis, Vol. 29,
No.4, pp. 76–85, July 2004.

Ahmed S. Ghiduk et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 140-148

© 2010, IJARCS All Rights Reserved 147

[39] Saff, D., and Ernst, M. D., “Continuous testing in
Eclipse”, In Proceedings of the 2nd Eclipse Technology
Exchange Workshop, Barcelona, Spain, March 30, 2004.

[40] Do, H., Rotherme, G., and Kinneer, A., "Prioritizing JUnit
Test Cases: An Empirical Assessment and Cost-Benefits
Analysis”, Journal Empirical Software Engineering”,
Vol.11, No.1, pp. 33-70, March 2006.

[41] Jeffrey, D., and Gupta, N., “Test Case Prioritization Using
Relevant Slices”, ISSTA, Portland, July, 2006.

[42] Li, Z., Harman, M., Hierons, and Robert M., "Search
algorithms for regression test case prioritization", IEEE
Transactions on Software Engineering, vol.33, No.4, pp.
225–237, 2007.

[43] Krishnamoorthi, R., and Mary, S.A., "Factor oriented
requirement coverage based system test case prioritization
of new and regression test cases", Information and
Software Technology, Vol.51, No.4, pp. 799–808, April
2009.

[44] Kavitha, R., and Sureshkumar, N., "Test Case
Prioritization for Regression Testing based on Severity of
Fault”, International Journal on Computer Science and
Engineering, Vol.2, No.5, pp. 1462-1466, 2010.

[45] Kavitha, R., and Sureshkumar, N., "Factors Oriented Test
Case Prioritization Technique in Regression Testing".
European Journal of Scientific Research Vol. 55, No.2,
pp.261-274, 2011.

[46] Raiyani, A. G., Pandya, S. S., "Proritization technique
for minimizing number of test cases" International Journal
of Software Engineering Research & Practices, Vol. 1, N0.
1, Jan, 2011.

[47] Linnenkugel, U., and Mullerburg, M., "Test data selection
criteria for (software) integration testing". ISCI '90
Proceedings of the first international conference on
systems integration on Systems integration '90, pp. 709–
717, Apr. 1990.

[48] Ostrand, T. J., and Weyuker, E. J., "Using dataflow
analysis for regression testing". In: Sixth Annual Pacific
Northwest Software Quality Conference, pp. 233–247,
Portland, September, 1988.

[49] Taha, A. B., Thebaut, S. M., and Liu, S. S., "An approach
to software fault localization and revalidation based on
incremental data flow analysis". In Proceedings of the 13th
Annual International Computer Software and Applications
Conference, pp. 527–534, Orlando, FL, USA, Sept 20-22,
1989.

[50] Laski, J. and Szermer, W., “Identification of program
modifications and its applications in software
maintenance,” in Proceedings of the IEEE Conference on
Software Maintenance, (Orlando, FL, USA), pp. 282–290,
November 1992.

[51] Bates, S., and Horwitz, S., "Incremental program testing
using program dependence graphs." In Proceedings of
Symposium on the Prin. Of Program Language, pp. 384–
396, Jan, 1993.

[52] Gupta, R., Harrold, M., and Soffa, M., "Program slicing-
based regression testing techniques". J. Software Testing

Verification Reliability, Vol. 6, No. 2, pp. 83–111, June
1996.

[53] Rothermel, G., and Harrold, M. J., "Selecting tests and
identifying test coverage requirements for modified
software". ISSTA '94 Proceedings of the 1994 ACM
SIGSOFT international symposium on Software testing
and analysis, PP 169–184, Seattle, WA, Aug, 1994.

[54] Yoo, S., and Harman, M., Test data augmentation:
Generating new test data from existing test data.
Technical Report TR-08-04, Dept. of Computer Science,
King’s College London, July 2008.

[55] Apiwattanapong, T., Santelices, R., Chittimalli, P. K.,
Orso, A., and Harrold, M. J., "Matrix: Maintenance-
oriented testing requirements identifier and examiner."
TAIC-PART '06 proceeding of the Testing: Academic and
Industrial Conference-Practice and Research Techniques,
pp. 137–146, Windsor, Aug 29-31, 2006.

[56] Person, S., Dwyer, M. B., Elbaum, S., and P˘as˘areanu,
C. S., "Differential symbolic execution". Proceedings of
the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, No.1, pp. 226–237,
Atlanta, Georgia, USA, Nov 9-15, 2008.

[57] Santelices, R., Chittimalli, P. K., Apiwattanapong, T.,
Orso, A., and Harrold, M. J., "Test-suite augmentation for
evolving software". In Proceedings of the 23rd
IEEE/ACM International Conference on Automated
Software Engineering, PP. 218-227, L'Aquila Sept 15-19,
2008.

[58] Xu, Z., and Rothermel, G., "Directed test suite
augmentation". In Asia-Pacific. Software Engineering
Conference, pp. 406-413, Penang, Dec 1-3, 2009.

[59] Sen, K., Marinov, D., and Agha, G., "CUTE: A concolic
unit testing engine for C". ESEC/FSE-13 Proceedings of
the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium
on Foundations of software engineering, Vol. 30, No. 5,
pp. 263–272, September. 2005.

[60] Myers, E. W., “An O(ND) difference algorithm an its
variations,” Algorithmica, Vol.1, No.2, pp. 251–266,
1986.

[61] Horwitz, S., “Identifying the semantic and textual
differences between two versions of a program,” in
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation,
(White Plains, NY, USA), Vol. 25, No. 6, pp. 234–246,
June 1990.

[62] Jackson, D. and Ladd, D. A., "Semantic diff: A tool for
summarizing the effects of modifications". In Proceedings
of the International Conference on Software Maintenance,
pp. 243.252, Victoria, B.C., September 1994

[63] Kung, D., Gao, J., Hsia, P., Chen, C., and Toyoshima, Y.,
“Change impact identification in object-oriented software
maintenance,” In Proceedings of IEEE International
Conference on Software Maintenance, IEEE Computer
Society Press, pp. 202-211, Victoria, BC, Canada,
September 19-23, 1994.

[64] Kung, D., Gao, J., Hsia, P., and Wen, F., Toyoshima, Y.,
and Chen, C., “On regression testing of object-oriented

http://esecfse05.unl.pt/�

Ahmed S. Ghiduk et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 140-148

© 2010, IJARCS All Rights Reserved 148

programs,” Journal of Systems and Software, Vol.32,
No.1, pp. 21-40, Jan. 1996.

[65] Wang, Z., Pierce, K., and McFarling, S., “BMAT – a
binary matching tool for stale profile propagation,” Journal
of Instruction-Level Parallelism, Vol. 2, May 2000.

[66] Maletic, J. I. and Collard, M. L., “Supporting source code
difference analysis,” in Proceedings of the 20th IEEE
International Conference on Software Maintenance,
(Chicago, IL, USA), pp. 210–219, September 2004.

[67] Apiwattanapong, T., Orso, A., and Harrold, M. J., "A
Differencing Algorithm for Object-Oriented Programs,"
19th International Conference on Automated Software
Engineering (ASE'04), pp. 2-13, Linz, Austria, Sept 20-24,
2004.

[68] Iqbal, A., Identifying modifications and generating
dependency graphs for impact analysis in a legacy
environment. Master's thesis, McMaster University, 2011.

[69] Carzaniga, A., Rosenblum, D. S., and Wolf, A. L.,
“Design and evaluation of a wide-area event notification

service,” ACM Transactions on Computing Systems,
Vol.19, pp. 332–383, August 2001.

[70] Krishnamoorthi1, R., and Mary, S.A., "Regression Test
Suite Prioritization using Genetic Algorithms”,
International Journal of Hybrid Information Technology,
Vol.2, No.3, PP. 35-51 July, 2009.

[71] Xu, Z., Cohen, M. B., and Rothermel, G.,"Using a Genetic
Algorithm for Test Suite Augmentation" Genetic and
evolutionarty computation conference, (GECCO),
Portland, Oregon, USA, July 7-11, 2010.

[72] Sujata., Kumar, M., Kumar, V., “Requirements based
Test Case Prioritization using Genetic Algorithm”,
International Journal of Computer Science and
Technology, Vol.1,No.2,pp. 189- 191, December 2010.

[73] Kaur, A., and Goyal, S., "a Genetic Algorithm for
Regression test case Prioritization Using Code Coverage"
International Journal on Computer Science and
Engineering (IJCSE), Vol. 3, No. 5, May 2011.

	Types of Code Changes:
	Computing Program Differences Techniques:

