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Abstract– High Performance Computing (HPC) has been commonly constructed due to the widely implementation of open source software and 
clustering technology. The growth of clustering technology is also due to the demand of the parallel programming either using shared memory 
systems (SMS) or distributed memory systems (DMS). The DMS hardware platform utilizing the Message Passing Interface (MPI) programming 
model is easier to build and scale than the SMS platform because of the direct access to local memory and mainly the communication is via explicit 
send/receive messages primitives. These message primitives consist of non-blocking and blocking communications. When the programming model 
of non-blocking communication is used, the messages can return soon without waiting for the finish of communication operation, thus allowing the 
overlap of message transfer and computation. By empirically measuring the time, rate and capturing the packets, vital information can be extracted 
from them. The objective of this research is to investigate the TCP/IP protocol statistics of the non-blocking and blocking communications applied on 
various message and overlap sizes. The benefit of understanding the communication overhead of these distinct MPI communication primitives has 
the advantage for the programmer to write efficient parallel software. In this research, a four-node PC cluster is built on a private dedicated LAN 
using the message-passing library MPICH as its parallel software. It is demonstrated conclusively that for a long message size, the large difference in 
the average Mbit per second for the packets shows that the non-blocking overlap messages provides a more efficient communication compared to the 
blocking messages, and therefore will eventually contribute to the improved performance of parallel applications. 
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I. INTRODUCTION 

High Performance Computing (HPC) currently has 
attracted good researchers and produced groundbreaking 
results over the last 13 years [1]. This technology has been 
applied to the commercial world over time with mixed results. 
The two main factors which pushed this technological 
momentum are the open source software and cluster 
computing. The use of open source Linux operating system as 
well as the cluster of personal computers (PCs) as an 
environment for HPC has been shown to be technologically 
promising and economically encouraging. The central 
initiative behind this HPC is due to the demand of parallel 
computing. Parallel computing is a fairly well-established 
field and several programming platforms and standards have 
evolved around it over the past two decades. The two common 
hardware platforms used in this parallel programming HPC 
are the shared memory systems (SMS) and the distributed 
memory systems (DMS) [2]. On the SMS platform, it makes 
effective use of data parallelism and can act on entire arrays at 
once by executing instructions on different indexes of an array 
in different processors. Consequently, this provides automatic 
parallelization with minimal effort needed.  

This includes the High Performance FORTRAN as a 
language suited for this type of parallel programming. On the 
DMS platform, since the memory is distributed, it utilizes the 
message passing programming model where the 
communication has direct access to the local memory of a 
computer node and via the explicit send/receive primitives. 

Thus the situation is radically different since the message 
passing model is easier to build and scale compared to that on 
the SMS platform. The code written only has to be aware of 
the underlying distributed nature of the hardware and uses 
explicit primitives to exchange messages between different 
nodes. The two popular standards for writing parallel 
programs for PC clusters are the Message Passing Interface 
(MPI) and the Parallel Virtual Machines (PVM). Lately, 
parallel programming using the MPI has become the de facto 
standard for building parallel applications on PC clusters [3].  

MPI programming model is easier to build and scale in the 
DMS platform than that in the SMS platform because of the 
direct access to local memory and the communication is via 
explicit primitives. Basically, these explicit primitives are the 
send and receive and their variant messages. The variants of 
these send and receive messages include the blocking and non-
blocking communications [2]. The blocking communication is 
where it makes the send/receive request and waits until the 
reply is returned before it subsequently continues accordingly. 
Whereas, the non-blocking communication is where it makes 
the send/receive request and subsequently continues 
accordingly without waiting for a reply. There are distinct 
flows of communications between these two primitives. The 
programs which utilize these primitives will have dissimilar 
effects eventually. Presently, there are lacks of research in this 
field of programming approach. In terms of software 
development, by understanding the effects of these 
approaches, programmer will have the benefits of writing 
efficient parallel application software. 
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Historically the goal of achieving performance through the 
exploitation of parallelism is as old as electronic digital 
computing itself which emerged from the World War II era. 
Many different approaches have been devised with many 
commercial or experimental versions being implemented over 
the years [4]. Parallel computing architectures may be codified 
in terms of the coupling and the typical latencies involved in 
performing parallel operations [5, 6]. The eight major 
architecture classes are systolic computers [7], vector 
computers [8], single instruction multiple data (SIMD) 
architecture [9], dataflow models [10], processor-in-memory 
(PIM) architecture, massively parallel processors (MPPs) [11], 
distributed computing [12] and lastly commodity clusters [13, 
14]. Commodity clusters may be subdivided into four classes 
and they are Superclusters, Cluster farms, Workstation clusters 
and Beowulf clusters. Beowulf clusters incorporate mass-
market PC technology and employ commercially available 
networks such as Ethernet for local area networks. Thus, these 
characteristics are entirely unlike in a traditional parallel 
computer where it is built of highly specialized hardware and 
the architecture is custom built. 

Beowulf computing is currently one of the parallel 
computing architectures that has been used extensively either 
in the teaching, industrial and commercial sectors. This class 
of computing is formed by a collection of more than one 
computer that are linked via a network. The success of this 
computing architecture is in general due to the exploitation of 
its physical commodity components that are easily available in 
the market. On top of that, the software employed by this type 
of computing are open codes that can be freely downloaded 
from the public domain. The term Beowulf cluster refers to a 
set of regular personal computers (PC) commonly 
interconnected through an Ethernet. It operates as a parallel 
computer but differs from other parallel computers in the 
sense that it consists of mass-produced commodity off-the-
shelf (COTS) hardware. Usually, a parallel computer is built 
of highly specialized hardware and the architecture is chosen 
depending on the needs.  

This makes it optimal for solving certain problems. 
However, it also makes it very expensive and since it often is 
more or less custom built, technical support is exclusive. By 
constructing a Beowulf cluster, these issues are solved. The 
penalty of going with a Beowulf cluster is in reduced 
communication capacity between the processors, since an 
Ethernet is much slower than a custom-built interconnect 
hardwired to a motherboard [11]. Recently, a rapid increase in 
the use of this type of clusters can be observed and this is due 
to mainly two reasons. Firstly, the magnitude of the PC market 
has allowed PC prices to decrease while sustaining dramatic 
performance increase. Secondly, the Linux community [15-
27] has produced a vast asset of free software for these kinds 
of applications. Beowulf clusters emphasize no custom 
components, no dedicated processors, a private system area 
network and a freely available software base. Cluster 
computing involves the use of a network of computing 
resources to provide a comparatively economical package with 
capabilities once reserved for supercomputers. One of the 
initial work in developing a Beowulf cluster is carried out by 
Andersson [15] at the Department of Scientific Computing, 

Uppsala University, Sweden. On the architectural perspective, 
the Beowulf cluster can be divided into two types of variants. 
The first is the rack-mounted system and the second is the 
bladed system. Firstly, the rack-mounted system is a collection 
of individual system units placed together and this study uses 
this type of implementation. An example of this rack-mounted 
system is shown by Fig. 2 where it demonstrates a typical 
home-built Beowulf cluster [28]. 

 

 
Figure. 1.   A 52-node Beowulf cluster [28] 

One of the earliest prevalent clusters of this type is built by 
Andersson [15]. With the aids from the system technicians 
from National Supercomputer Center, Linkoping University, 
he develops a Beowulf cluster called Grendel which is built 
from 17 standard PC computers. Every computer consists of 
commodity off-the-shelf products and they are connected 
together with a fast Ethernet network. The other 16 PCs have 
exactly the same configuration, both hardware and software. 
The PCs have their own hard drives and each node runs its 
own operating system and accesses a common file area 
through the front-end PC. All of the installed software is free 
and public and the operating system used for all computers is 
RedHat Linux. The cluster system is then tested with several 
benchmarks, namely the LMbench 2.0 Benchmark, the Stream 
Benchmark and the NAS Parallel Benchmark 2.3 (NPB). 

Secondly, the bladed system is a collection of individual 
motherboards put together within the close vicinity, like in 
computer laboratory. An example of this bladed system is 
demonstrated by Fig. 1 where it exhibits a 52-node Beowulf 
cluster [28] used by the McGill University pulsar group to 
search for pulsations from binary pulsars. 

 

 
Figure. 2.   A home-built Beowulf cluster [28] 
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An example of this type of implementation is done by 
Feng [29]. He presents a novel Beowulf cluster named Bladed 
Beowulf which is originally proposed as a cost-effective 
alternative to the traditional Beowulf clusters. In his later 
work, Feng [30] also introduces this Bladed Beowulf and its 
performance metrics. 

Generally, there are many reviews on the preliminary 
works and discussions in many aspects of the cluster variants. 
These reviews and discussions include [31], [32], Underwood 
[33], Kuo-Chan [34], Yi-Hsing [35] and Farrell [36]. 
Uthayopas discusses the issues in building powerful scalable 
cluster [37] and also proposes system management for the 
Beowulf cluster [38]. Finally, Stafford [39] discusses the 
legacy and the future of Beowulf cluster with its founder, 
Donald Becker. 

Recent years have shown an immense increase in the use 
of Beowulf clusters [15, 40]. Their role in providing 
multiplicity of data paths, increased access to storage elements 
both in memory and disk and scalable performance is reflected 
in the wide variety of applications of parallel computing, such 
as Slezak [41], Yu-Kwong [42] and Chi-Ho [43]. The research 
works cover both the two memory architecture, namely the 
shared memory and the message passing. Most of the 
researches on the later memory architecture are based on the 
MPICH, a software written by Gropp and Lusk from the 
Argonne National Laboratory, University of Chicago [44]. 
The comparison between the message-passing and shared 
address space parallelism is presented by Shan [45]. For the 
benchmark segment, two microbenchmarks that analyze 
network latency that more realistically represents the way that 
MPI is typically used is presented by Underwood [46].  

For comparing the communication types, the work is done 
by Coti [47] who presents scalability comparisons between 
MPI blocking and non-blocking check-pointing approaches 
and Grove [48] who presents tools to measure and model the 
performance of message-passing communication and 
application programs. He also presents a new benchmark that 
uses timing mechanism to measure the performance of a single 
MPI communication routine. For the communication-
computation overlapping, several works have been conducted 
by researchers. They are Danalis [49] who presents 
approaches for improving communication-computation 
overlap in MPI collective operations, Sancho [50] who 
proposes a method to evaluate performance improvement for 
overlapping communication and computation and Sohn [51] 
who examines communication overlapping capability to 
improve performance of distributed memory machines. From 
the numerous reviews made, most of them deal with the issues 
of the computer communication techniques, computational 
complexity of scheduling and operating system. Most of these 
works also focus on the communication latency and load 
among the networked machines.  

The network latency, the delay caused by communication 
between processors and memory modules over the network 
has been identified as a major source of degraded parallel 
computing performance. However, these researches have not 
ventured into the role and effect of the programming 
primitives used in the application software itself. In the 
overlapping issue, the analysis on the effect of data size and its 

TCP/IP protocols should provide useful information 
concerning the efficient use of parallel programming codes 
within the clusters of PC. 

This research gap requires detailed analysis by using a new 
method. Therefore, this research project empirically attempts 
to look into this effect and how this overlap issue characterizes 
the operation of task, other than the completion time. The 
characterizations are based on different message sizes: short 
and long. The work would focus on the analysis on the TCP 
overhead and its rate. 

The scope of this research is a collection of four computers 
that are connected to a switch via a network. Each computer is 
installed with Linux operating system and MPICH parallel 
software. Effects of the blocking, non-blocking and 
overlapping communication are measured by a program in C 
language which provides information of the time and rate 
based on the pertinent routines. The TCP/IP protocols are 
captured by a packet sniffer application that is able to monitor 
the network usages and extract vital information from them. 

This paper is organized as follows. Section II gives the 
background theory by explaining in details the processes on 
the Beowulf parallel computing. Section III provides the 
methodology used in the experiment. Section IV provides the 
analyses and discussions on the communicational 
measurement while Section V presents the analyses on the 
TCP/IP measurements. Finally, Section VI presents the 
conclusion of the findings of this research. 

II. THEORY 

In message-passing programming on Beowulf computing, 
a programmer employs message-passing library in order to 
produce a desired application. This user-level library operates 
on two principal mechanisms. 

The first is the method to create separate process for 
execution on different computer. Based on the Multiple 
Program Multiple Data (MPMD) model, there are separate 
programs for each processor. One processor executes master 
process while the other processes started from within master 
process, as depicted in Fig. 3. 

 

 
Figure. 3.   Multiple Program Multiple Data (MPMD) model 

The second is the method to send and receive messages. 
Basically, for the point-to-point send and receive primitives, 
passing a message between processes is performed using 
send() and recv() library calls as shown in Fig. 4. 

Process 2 spawn(); 

Time 

Start execution 

of process 2 
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Figure. 4.   Basic send and receive primitives 

For the synchronous message passing, the routines actually 
return when message transfer completed. For the send routine, 
it waits until the complete message can be accepted by the 
receiving process before sending the message. While for the 
receive routine, it waits until the message it is expecting 
arrives. Synchronous routines intrinsically perform two 
actions: they transfer data and they synchronize processes. 
This is called blocking communication. The examples of the 
MPI blocking primitives are MPI_Send() and MPI_Recv(). 
The blocking primitives formats are MPI_Send (buf, count, 
datatype, dest, tag, comm, request) and MPI_Recv (buf, count, 
datatype, src, tag, comm, request). 

However, for the asynchronous message passing, the 
routines do not wait for actions to complete before returning 
and it usually requires local storage for messages. In general, 
they do not synchronize processes but allow processes to 
move forward sooner. Thus, in this type of communication, 
the message-passing routines return before message transfer 
completed. Message buffer is needed between the source and 
the destination to hold message. This is called non-blocking 
communication and demonstrated in Fig. 5. 

 

 
Figure. 5. Message-passing routines return before message transfer completed 

The examples of the MPI non-blocking primitives are 
MPI_Isend() and MPI_Irecv(). For MPI_Isend(), the send will 
return immediately even before source location is safe to be 
altered. Meanwhile, for MPI_Irecv(), the receive will return 
even if no message to accept. The ‘I’ in ‘Isend’ and ‘Irecv’ 
means Immediate. The primitives formats are MPI_Isend (buf, 
count, datatype, dest, tag, comm, request) and MPI_Irecv(buf, 
count, datatype, src, tag, comm, request). 

In addition to these primitives, the overlapping of message 
transfer and computation is another technique in the Beowulf 
computer programming. While the message is being 
transmitted, a computer may also permit local computation to 
be done. For the purpose of comparison, there are two possible 
situations. The first one is without overlap and the second one 
is with overlap. These occurrences are shown in the following 
diagram in Fig. 6. 

 
Figure. 6.   Abstraction of computation and message-passing events (a) 

without overlap (b) with overlap 

If part of the computation can not be done alongside with 
the message-passing, a computer only can compute and then 
do message-passing at different time, as depicted in case (a) of 
Fig. 6. However, if overlap is permitted, this will allow 
optimal use of completion time, as illustrated in case (b) of 
Fig. 6. As modern technology allows the later case, the direct 
benefit would be the overall reduced completion time. 
However, apart from the completion time, there are protocols 
effects associated which include the TCP/IP overhead and its 
rate. The overhead can be looked from the percentage of data 
segment, remote shell segment and the peer-to-peer short 
message of the TCP frames. The rate can be examined from 
the average packets per second, average bytes per second and 
average Mbit per second. These effects can be empirically 
measured as different message sizes and overlap sizes are 
applied. 

III. METHODOLOGY 

In order to accomplish this research, a sequence of 
development phases are performed (Fig. 7). It is crucial to 
organize the phases systematically as it is vital in ensuring a 
well-planned process completion. 

 

Process 1 Process 2 

send(&x, 2); 

recv(&y, 1); 

x y 

Movement 
of data 

Generic syntax 

Process 1 Process 2 

send()
 

recv()
 

Message 
buffer 

Read buffer 

Continue 
process 

Time 
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Figure. 7.   Methodology for Beowulf cluster developments and experiments 

In the early phase of doing this research, it practically 
starts with the developments stage (Stage 1), where there are 
four work phases of the developments work. These work 
phases are the node specification, the hardware set-up, the 
software set-up and the node configuration of the Beowulf 
cluster system. The work is arranged in this sequence to 
ensure that the proper hardware construction is created before 
setting up the software on top of it. The initial step in this node 
specification phase is specifying the master and the slave. In 
order to create a proper naming and numbering convention, 
the cluster system is conceptually divided into two main 
components, the master component and the slave component. 
The convention will have a name node together with a two-
digit number. The master node is given a codename of 
node00. The two-digit number 00 is chosen to demonstrate the 
function of the master node as the front-end PC. Meanwhile 
the first slave node is given a name and number starting with 
node01. Thus the second node of this cluster system is node02 
and the subsequent third node is node03.  

The last consideration is the network interconnection. Due 
to the use of a network switch, the link topology being applied 
will be the star organization. Step 2 demonstrates the second 
work phase in the developments stage, namely the hardware 
set-up. This hardware installation phase covers the assembly 
work and the connections of the nodes through a network 
interconnect. All the nodes being used are complete 
standalone systems with monitors, hard drives, keyboards and 
their related peripherals. Basically the node is comprised of a 
CPU with a cache, a main memory, a personal computer 

interconnection (PCI) and a network interface card (NIC). 
This cluster system is conceptually a combination of four 
nodes namely individual PCs with a network interconnect 
device located at the centre of the arrangement. The general 
structure of this cluster system is presented in Fig. 8. 

 
Figure. 8.   Hardware set-up 

Specifically, the physical units of the cluster system are of 
heterogeneous characteristics. The entire four nodes are 
connected through their respective RJ45 ports to a switch 
using unshielded twisted pair (UTP) cables. A full view of this 
cluster set-up is illustrated in Fig. 9.  

Step 3 illustrates the third work phase in the developments 
stage; the software set-up. The software installation phase is 
generally divided into three components. The first software 
component is the RedHat 9.0 OS. After the successful 
installation of the OS, the next component is the MPICH 1.2.0 
library.  This software installation phase begins after the nodes 
are completely assembled physically. 

Step 4 demonstrates the fourth work phase in the 
developments section; namely the node configuration (Fig. 
10). The node configuration phase for the OS part consists of 
several tasks.  

 

 
Figure. 9.   A full view of the cluster set-up 

These tasks involve the creation and modification of important 
system files to ensure that the system is fully functional. The 
MPI library also has specific essential files that have to be 
correctly set to run parallel program. 



Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36 

© 2010, IJARCS All Rights Reserved                                                                                                                                                     27 

 
Figure. 10.   Flowchart of node configuration 

Lastly, the proper environment for the experimental data 
collection should be appropriately established to ensure that 
the data collection is consistent. This includes the correct 
command execution, file and directory location. The proper IP 
address and aliasing of all the nodes are primarily established 
in the /etc/hosts file. Each node in the cluster has a similar 
hosts file with appropriate changes to the first line reflecting 
the hostname of that node itself. Thus, slave node01 would 
have a first line of the text 192.168.0.9 node01 with the third 
line containing the IP and hostname of node00. All other 
nodes are configured in the same manner with the 127.0.0.1 
localhost line is not removed. This file is edited on every 
cluster node by adding the names and IP addresses of every 
node in the cluster. This allows these machines to be accessed 
by name instead of by IP number. In general, the system files 
that need to be created and modified are illustrated by the 
flowchart as shown in Fig. 10. 

For the validation test (Stage 2), there are two types of 
tests applied to ensure that the whole system is properly 
working and functioning. The first is the validation for the 
Linux OS installation and the second is the validation for the 
MPICH installation. In order to validate the successful setup 
of the Linux OS into each of the nodes, several attribute 
elements of the node system can be verified. These attribute 
elements will prove that the OS is correctly set-up and 
functioning. The elements consist of the configuration 
verification, the routing table verification, the data transfer 

verification, the re-verification of the overall performance and 
slave validation. These system elements are verified and 
confirmed on the master node as well as on all of the remote 
slave nodes. For the validation of the MPI installation (Step 
6), Hello World program is applied. In this program, the MPI 
specifies the library calls to be used in a C program. The MPI 
program contains one call to MPI_Init and one call to 
MPI_Finalize. Therefore all other MPI routines must be called 
after MPI_Init and before MPI_Finalize. Furthermore the C 
program must also include the file mpi.h statement at the 
beginning of the program. 

A. Benchmarking: 
In this benchmarking phase (Stage 3), it describes the 

chosen benchmarking being used in the Beowulf cluster 
system. For the reliability testing, the performance of the 
developed cluster is tested using the authoritative benchmarks. 
There are two kinds of benchmark programs; the hardware 
benchmarks and the parallel benchmarks. For comparison 
purposes, the Grendel cluster system (G-cluster) is chosen 
[15]. The hardware benchmarks used is the LMbench 2.0 
benchmark while the parallel benchmark applied is the NAS 
Parallel Benchmark 2.3 (NPB 2.3). LMbench is a set of small 
benchmarks used to measure performance of computer 
components which are vital for efficient system performance. 
The aim of these benchmark tests is to provide the real 
application figures that can be achieved by normal 
applications. The main performance bottlenecks of current 
systems are latency, bandwidth or a combination of these two. 
LMbench tests focus on the system’s ability to transfer data 
between processor, cache, memory, disk and network. 
However, these tests do not measure the graphics throughput, 
computational speed or any multiprocessor features of a 
computer node. Since LMbench is highly portable, it should 
run as is with gcc as default compiler. This LMbench 
benchmark tests six different aspects of the system. These are 
the processor and processes, the context switching, the 
communication latency, the file and virtual memory system 
latencies, the communication bandwidths and the memory 
latencies. 

Firstly, the results of LMbench 2.0 benchmark for the 
processor and processes are displayed below (Table 1). The 
times shown are in microseconds (µs). In the nineth test 
(Table 1), for creating a process through fork+exec, the exec 
proc measures the time it takes to create a new process and 
have that process perform a new task. The time taken to exec 
proc for this cluster is 344.0 µs compared to 706.2 µs. Lastly, 
in the tenth test, for creating a process through fork+/bin/sh –
c, the shell proc measures the time it takes to create a new 
process and have the new process running a program by 
asking the shell to find that program and run it. The time taken 
to shell proc for this cluster is 2247 µs compared to 3605.3 µs. 
Generally, the comparison results from the LMbench tests for 
the processor and processes show that this Beowulf cluster 
produces significantly better performance of a small-scale 
cluster. 
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Table 1.   LMbench 2.0 benchmark for the processor and processes – smaller 
is better 

  This cluster G-cluster 
1 null call 0.45 0.27 
2 null I/O 0.51 0.38 
3 stat 1.78 3.72 
4 open/close 2.38 4.63 
5 select 5.937 26.3 
6 signal install 0.79 0.77 
7 signal handle/catch 2.59 0.95 
8 fork proc 99.0 110.1 
9 exec proc 344.0 706.2 
10 shell proc 2247 3605.3 

 
Secondly, the results of LMbench 2.0 benchmark for the 

communication latencies are exhibited below (Table 2). The 
times shown are in microseconds (µs). In the fifth test (Table 
2), for the interprocess communication latency via TCP/IP, 
TCP measures the time it takes to send a token back and forth 
between a client/server. No work is done in the processes. The 
time taken for the TCP of this cluster is 14.1 µs compared to 
16.4 µs. 
Table 2.   LMbench 2.0 benchmark for the local communication latencies (µs) 

– smaller is better 
  This cluster G-cluster 

1 pipe 4.808 4.021 
2 AF UNIX 9.46 8.34 
3 UDP 11.9 11.5 
4 RPC/UDP 21.4 26.4 
5 TCP 14.1 16.4 
6 RPC/TCP 25.9 39.1 

 
Thirdly, the results of LMbench 2.0 benchmark for the 

local communication bandwidths are displayed below (Table 
3). The measurements shown are in Mbytes per second 
(MB/s). In the third test, for reading and summing of a file, 
file reread measures how fast data is read when reading a file 
in 64KB blocks. Each block is summed up as a series of 4 byte 
integers in an unrolled loop. The benchmark is intended to be 
used on a file that is in memory. The bandwidth for the file 
reread of this cluster is 1149.3 MB/s compared to 332.9 MB/s. 
Generally, the comparison results from the LMbench tests for 
the local communication bandwidths show that this Beowulf 
cluster produces a better performance in the whole local 
communication bandwidths category tests conducted. 

Table 3.   LMbench 2.0 benchmark those are for the local communication 
bandwidths (MB/s) – bigger is better 

  This cluster G-cluster 
1 pipe 1181 790.7 
2 AF UNIX 2033 516.3 
3 file reread 1149.3 332.9 
4 Mmap reread 1164.3 462.0 
5 Bcopy (libc) 369.8 300.6 
6 Bcopy (hand) 387.9 264.1 
7 mem read 1522 481.7 
8 mem write 522.4 361.6 

Finally, the results of LMbench 2.0 benchmark for the 
memory latencies are presented below (Table 4). The 
measurements shown are in nanosecond (ns). 

Table 4.   LMbench 2.0 benchmark for the memory latencies 
  This cluster G-cluster 

1 L1 cache 0.836 2.279 
2 L2 cache 7.7070 19.0 
3 Main memory 118.5 151.0 

 
For the memory read latencies, L1 cache, L2 cache and 

Main memory measure the time it takes to read memory with 
varying memory sizes and strides respectively. The entire 
memory hierarchy is measured onboard and external caches, 
main memory and TLB miss latency. It does not measure the 
instruction cache. Generally, the comparison results from the 
LMbench tests for the memory latencies show that this 
Beowulf cluster produces a better performance for a cluster 
since smaller is better. 

For the parallel benchmarks, NAS Parallel Benchmark 2.3 
(NPB) is applied. G-cluster supports two implementations of 
the message passing interface (MPI); LAM and MPICH. The 
results of this cluster show those of class A while the results of 
G-cluster are those of class B.  These comparisons are shown 
in the following Table 5. The unit used is million instructions 
per second (mop/s). 

Table 5.   NAS Parallel Benchmark 2.3 output (mop/s) - bigger is better 
Benchmark code This cluster G-cluster 

MG 7.03 1.31 
FT 5.45 5.62 (4 procs) 
LU 392.17 163.16 
SP 235.84 360.99 (4 procs) 
BT 187.52 no result for 1 and 4 procs  

 
The MG test uses a multigrid method to compute the 

solution of the three-dimensional scalar Poisson equation. It 
partitions the grid by successively dividing it in two, starting 
with the z dimension, then the y and x dimensions, until all 
processors are assigned. In this first test, the rate for this 
cluster is 7.03 mop/s compared to 1.31 mop/s. The FT test 
contains the computational kernel of a three-dimensional FFT-
based spectral method. It performs 1-D FFTs in the x and y 
dimensions on a distributed 3-D array, which is done entirely 
within each processor, and then continues with an array 
transposition which requires an all-to-all communication. The 
final FFT is then performed. In this second test, the rate for 
this cluster is 5.45 mop/s compared to 5.62 mop/s. The LU test 
simulates a CFD application which uses successive over-
relaxation (SSOR) to solve a block lower-block upper 
triangular system of equations, derived from an unfactored 
implicit finite-difference discretization of the Navier-Stokes 
equations in three dimensions. In this third test, the rate for 
this cluster is 392.17 mop/s compared to 163.16 mop/s.  

The SP test simulates a CFD application that solves 
uncoupled systems of equations resulting from an implicit 
finite-difference discretization of the Navier-Stokes equations. 
It solves scalar pentadiagonal systems for a full 
diagonilization of the above scheme. In this fourth test, the 
rate for this cluster is 235.84 mop/s compared to 360.99 
mop/s. The BT test originates from the same problem as SP, 
but instead of solving scalar systems, it solves block-triangular 
systems of 5 x 5 blocks. In this fifth test, the rate for this 
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cluster is 187.52 mop/s. However, comparison can not be 
made since there are no results obtained for the 1 and 4 
processors for the G-cluster. In general, the NAS parallel 
benchmark (NPB) tests conducted are used to measure the 
overall system performance. They are divided into two groups 
depending on the utilization of CPU, memory and network: 
kernel benchmarks and application benchmarks. The kernel 
benchmarks are intended to put pressure on the Linux kernel 
with its implementation of the TCP/IP stack, while the 
application benchmarks concentrate more on CPU and 
memory utilization. In a nutshell, the comparison results for 
the two NPB tests show that this Beowulf cluster produces a 
better performance. 

Next is the methodology for Stage 4 - the no-loading 
measurement. The purpose of obtaining the measurements of 
this cluster system during the period of no loads is to 
investigate the existence of packets. By exploring this period, 
the packets involved with its protocol details can be studied. 
These protocols existing during this period will provide the 
absolute comparison to that during the period of an application 
being run. In the packet capturing phase, the sniffing program 
named Ethereal is installed inside the master node. The data 
obtained are the elapsed time in seconds, the time between the 
first and the last packet in seconds, the packet count, the 
average packets per second, the bytes of traffic, the average 
bytes per second and the average megabit per second. These 
values measured of one run period are compared accordingly 
to that of another run period.  

B.     Algorithm Design: 
In order to make the required measurement program, an 

algorithm is firstly designed. The program is coded using C 
language because of its suitable attribute and more flexible 
than the others. The program is tested to ensure it is correct 
and modifications will be done from time to time if needed. It 
starts with the program initialization and specifying the 
program parameters. To start a program, MPI_Init() is used 
before calling any MPI function. All processes are enrolled in 
a universe called MPI_Comm_World. Each process is given a 
unique rank number from 0 up to p-1 for p processes.  To 
terminate a program, MPI_Finalize() is used. To measure the 
execution time between two points in the code, MPI_Wtime() 
routines are used together with the appropriate variables. 
Thus, initially, the program may call the MPI_Init and later 
call MPI_Comm_rank() and MPI_Comm_size(). The body of 
the measurement program runs the test and the times are 
recorded. The rates and times are inversely proportional. To 
record the total amount of time that the test takes, the 
MPI_Wtime() function is used since the MPI timer is an 
elapsed timer: 
start_time = MPI_Wtime(); run_time = MPI_Wtime() - 
start_time. The time function is a function of several other 
routines of the first data length (first), the last data length 
(last), process 1 (proc1), process 2 (proc2), the 
communication test (commtest) and the context of the 
message-passing operation (msgctx): time_function 
(first,last,incr,proc1,proc2, commtest, msgctx); In the main 
program, the communication test (commtest) is identified as 
double data type, and it is a function of the protocol used. This 

commtest is a function of &argc, argv and protocol_name 
where the protocol name is of char data type and the options 
are blocking, nonblocking and overlap. The context of the 
message-passing operation (msgctx) is a function of proc1 and 
proc2. Finally, the program ends with MPI_Finalize(); and 
return 0. The mpptest of the Linux performance test is chosen 
because it has the merit of having the same purpose of the 
required measurement. The flowchart of the measurement 
program algorithm is shown by Fig. 11. 

 
Figure. 11.   Measurement Algorithm 

All the experiments conducted for the blocking and non-
blocking operations are performed based on various message 
sizes either at lower level or near saturation level to compare 
the effect of different packet sizes. The flowchart of the 
measurement methodology is displayed in Fig. 12. 

 
Figure. 12.   Measurement methodology 
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IV. RESULTS AND DISCUSSIONS  

In this section, it shows the results for the experiments on 
the communicational performance (Step 12). The comparisons 
are made from the perspective of the rate (bandwidth) as the 
message sizes are changed. Fig. 13 provides the results of the 
non-blocking operations on the Beowulf cluster based on the 
different message sizes and number of processors. 

The lowest line is the measurement for np=2, the middle 
line is the measurement for np=3 and the highest line is the 
measurement for np=4. By adding more processors, the rate of 
non-blocking communication for each np generally increases 
up to a certain saturation level. The saturation levels are 
different for each np. Therefore, all non-blocking operations 
with different np show almost the same characteristics of 
gradually rising and becoming stable during saturation level. 

 

Bandwidth for non-blocking operations for message sizes 1 byte - 108 bytes for np=2, 
np=3 and np=4
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Figure. 13.   Rate for the non-blocking operations for np=2, np=3 and np=4 

Similarly, Fig. 14 provides the results of the blocking 
operations on the Beowulf cluster based on the different 
message sizes and number of processors. The lowest line is the 
measurement for np=2, the middle line is the measurement for 
np=3 and the highest line is the measurement for np=4. 
Similarly, by adding more processors, the rate of blocking 
communication for each np generally increases up to a certain 
saturation level. The saturation levels are different for each np. 
Therefore, all blocking operations with different np show 
nearly the same characteristics of gradually rising and 
becoming stable during saturation level. 

 

Bandwidth for blocking operations for message sizes 1 byte - 108 bytes for np=2, np=3 
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Figure. 14.   Bandwidth for the blocking operations for np=2, np=3 and np=4 

Subsequently, Fig. 15 summarizes both results on the non-
blocking and blocking operations for np=2, np=3 and np=4 in 
one graph. Generally, both operations show almost the same 
rate of message passing between different sizes and number of 
processors. The rate differences between these operations are 
very minimal as per each np. This should indicate that the use 
of the non-blocking or blocking routines in this cluster 
computing has very little effects on the overall performance in 
terms of the rate of message transmission. Either routine could 
be applied without having to reconsider the overall impact on 
the running application. 

 

Bandwidth for non-blocking and blocking operations for message sizes 1 byte - 108 

bytes for np=2, np=3 and np=4

0

5

10

15

20

25

1 10 100 1000 10000 100000 1E+06 1E+07

Message size (bytes)

B
an

dw
id

th
 (x

10
6 B

/s
)

np=2 non-blocking

np=2 blocking

np=3 non-blocking

np=3 blocking

np=4 non-blocking

np=4 blocking

 
Figure. 15.   Rate comparison between non-blocking and blocking operations 

for np=2, np=3 and np=4 

A.     Overlapping Results: 
In this subsection, it exhibits the results of the average 

round-trip time on the overlapping experiments (Step 12). 
Initially, the experiments are performed using smaller message 
sizes, ranging from 0 bytes up to 1024 bytes with the 2n stride. 
The result of the average round-trip time for the non-blocking 
overlap communication is displayed in Fig. 16. 

Next, the experiments are similarly performed for the 
blocking communication using smaller message sizes, ranging 
from 0 bytes up to 1024 bytes with the 2n stride. The 
comparison on these different communications from the 
perspective of the average round-trip time is made. The 
average round-trip time comparison for different sizes is 
shown in Fig. 16. Generally, both operations show almost the 
same time for different sizes. 

 

Average round-trip time comparison for overlap communication

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

Message size (bytes)

A
ve

ra
ge

 ti
m

e 
(u

s)

non-blocking
blocking

 
Figure. 16.   Average round-trip time comparison 
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As well, the comparisons on these different 
communications are displayed from the perspective of the 
round-trip rate. Fig. 17 shows the round-trip rate comparison 
for different sizes. Both operations show almost the same rate 
for different sizes. The slightly lower line corresponds to the 
non-blocking routine measurement, while the slightly higher 
line corresponds to the blocking routine measurement. By 
adding message sizes, the rate of both communication routines 
generally increases up to a certain saturation level. The 
saturation levels are also nearly at the same point. Therefore, 
both routines show the same characteristics of gradually rising 
and becoming stable during saturation level. 
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Figure. 17.   Rate comparison 

The comparison of the rates for the overlap communication 
is also made. The overlap sizes are changed from one byte to 
1,000,000 bytes. Fig. 18 demonstrates the results for the 
1,000,000 bytes overlap size. 
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Figure. 18.   Rates for non-blocking and blocking overlap operations for np=2, 

np=3 and np=4 

The graph shows that the rate increases gradually until it 
nearly reaches its saturation level. The comparison of rates 
exhibited are generally significant upon reaching the 
1,000,000 bytes level of the message size. The levels below 
the 100,000 bytes message sizes appear to show insignificant 
levels of comparisons in the range of less than 10 MB per 
second. It is likely that the levels below the 100,000 bytes 
message sizes are generally less responsive to the change of 
message sizes.  

The results presented generally show a significant increase 
of the rates from lower np to higher np as well as from smaller 

message size to larger message. These results may be 
explained by considering the increase of the message size 
itself provide an increasingly higher packet transfer among the 
nodes. Also, the rate is generally proportional to the number of 
processors. Thus, both overlap routines of different np show 
the same characteristics of gradually rising and becoming 
stable during saturation level. 

V. TCP/IP ANALYSIS 

In this section, it presents the experiment results on the 
TCP/IP measurement for the non-blocking communication 
routine. This routine is chosen because based on the previous 
experiments, both routines show very little differences in rate 
and average time taken. This section is divided into two 
subsections; firstly the results on short messages and secondly 
the results on long messages. 

A.      Results on Short Messages: 
For the short messages, the results are broken into two 

different overlap sizes; no overlap (0 byte) and small overlap 
(two bytes). Firstly, the following results are the experiment 
conducted on the two bytes message size, non-blocking and no 
overlap. The protocol statistics shows that the frames collected 
are comprised of 100% transmission control protocol (TCP). 
The data segment and the remote shell segment occupy 
73.41% and 0.14% respectively while the peer-to-peer short 
message constitutes 24.21% of these TCP frames. The results 
also show 2,650.53 average packets per second (avg. 
packets/sec), 293,327.10 the average bytes per second (avg. 
bytes/sec) and 2.35 average Mbit per second (avg. Mbit/sec). 
Secondly, the following results are the experiment conducted 
on the overlap size of two bytes. The frames collected are 
comprised of 99.97% internet protocol (IP) and 0.03% address 
resolution protocol (ARP). For the IP frames, TCP represents 
99.97%. The data segment occupies 72.87%, the remote shell 
segment occupies 0.14% while the peer-to-peer short message 
constitutes 24.05% of these TCP frames. The results also show 
658.81 avg. packets/sec, 72,824.47 avg. bytes/sec and 0.58 
avg. Mbit/sec. 

The TCP data segment and the TCP overhead are analyzed 
overall. For the short messages, the comparison on TCP data 
segment on two bytes message size and blocking is illustrated 
in Fig. 19. 

 

 
Figure. 19.   Comparison on TCP data segment on two bytes message size and 

blocking 
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The TCP Data segment percentage for two bytes overlap 
(73.30%) decreases 0.18% from that for no overlap (73.48%). 
This result suggests that increasing overlap size will reduce 
the portion of data transfer in the cluster system. 

The comparisons on the avg. packets/sec, avg. bytes/sec 
and avg. Mbit/sec are demonstrated in Fig. 20, Fig. 21 and 
Fig. 22 respectively. 

 

 
Figure. 20.   Comparison on average packets per second on two bytes message 

size and blocking 

Firstly, the average packets per second for two bytes 
overlap (1,309.29) drops 999.18 from that for the no overlap 
(2,309.16). This result suggests that increasing overlap size 
will reduce the rate of packet transfer in the cluster system. 

 
Figure. 21.   Comparison on average bytes per second on two bytes message 

size and blocking 

Secondly, the average bytes per second for two bytes 
overlap (255,664.28) drops 110,646.70 from that for the no 
overlap (145,017.58). This result suggests that increasing 
overlap size will reduce the rate of data transfer in the cluster 
system. 

 Thirdly, the average Mbits per second for two bytes 
overlap (2.05) drops 0.89 from that for the no overlap (1.16). 

TCP data segment percentage for two bytes overlap (73.30%) 
decreases 0.18% from that for no overlap (73.48%). These 
results indicate that increasing overlap size on four nodes, two 
bytes message size and blocking operation will decrease the 
message transfer rate in the cluster system. 

 
Figure. 22.   Comparison on average Mbit per second on two bytes message 

size and blocking 

Conclusively, for a small message size, the overlap causes 
a lower percentage of the TCP data segment compared to that 
of the non-overlap. Likewise, the message rate is also smaller 
than that of the non-overlap. 

B.     Results on Long Messages: 
In this second subsection, the results on the long messages 

are demonstrated. The results on this long message segments 
are broken into four different overlap sizes; no overlap (0 
byte), small overlap (2 bytes), medium overlap (1024 bytes) 
and long overlap (8192 bytes). Firstly, the following results 
are the experiment conducted on the non-blocking and no 
overlap. The frames collected are comprised of 100% TCP. 
The data segment occupies 64.70%, the remote shell segment 
occupies 0.06% while the peer-to-peer short message 
constitutes 5.32% of these TCP frames. The results also show 
1,265.89 avg. packets/sec, 1,106,782.52 avg. bytes/sec and 
8.85 avg. Mbit/sec. 

Repetitively, a series of different overlap sizes are 
conducted from two, 1024 to 8192 bytes. For 8192 bytes, the 
frames collected are comprised of 100% TCP. The data 
segment occupies 65.08%, the remote shell segment occupies 
0.05% while the peer-to-peer short message constitutes 5.32% 
of these TCP frames. The results also show 5,756.19 avg. 
packets/sec, 5,066,982.85 avg. bytes/sec and 40.54 avg. 
Mbit/sec. 

Again repetitively, a series of different overlap sizes are 
conducted on the blocking communication. The comparison 
on TCP data segment for two, 1024 and 8192 bytes message 
size is illustrated in Fig. 23. The TCP data segment percentage 
for two bytes (64.70%) increases 8.16% to that for 1024 bytes 
(72.86%). Likewise, the TCP data segment percentage for 
1024 bytes increases 0.57% to that for 8192 bytes (73.43%).  
This result suggests that for the blocking communication, 
increasing message size will reduce the portion of data transfer 
in the cluster system. 
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Figure. 23.   The comparison on TCP Data segment on blocking, no overlap 

for two, 1024 and 8192 bytes message sizes 

The comparisons on average packets per second, average 
bytes per second and average Mbit per second are 
demonstrated in Fig. 24, Fig. 25 and Fig. 26 respectively. The 
average packets per second for 8192 bytes size (1,132,335.03) 
raise drops 876,670.75 from that for the two bytes size 
(255,664.28) but drops 511,435.88 from that for the 1024 
bytes size (1,388,106.63). The same phenomena can be seen 
on the average bytes per second as well as on average Mbit 
per second. However, different effect is observed for the TCP 
data segment percentage for three message sizes. These results 
indicate that the message transfer rate in the cluster system 
will be increased for the very large size compared to that for 
small increment. 

 

 
Figure. 24.   Comparison on average packets per second on blocking, no 

overlap for two, 1024 and 8192 bytes message sizes 

Generally, for the non-overlap experiment, the TCP rate 
percentage will drop as the message size increases. However, 
similar effect is not seen for the small size region. The results 
for the small message size suggest that the load of a message 
has little effect on the message rates; however the rate would 
be significantly affected for the bigger message sizes. 

 

 
Figure. 25.   Comparison on average bytes per second on blocking, no overlap 

for two, 1024 and 8192 bytes message sizes 

 
Figure. 26.   Comparison on average Mbit per second on blocking, no overlap 

for two, 1024 and 8192 bytes message sizes 

As a summary, Fig. 27 shows the overall TCP/IP 
measurement comparison between the two message sizes and 
with the addition of middle sizes of 1024 bytes. The sizes 
conceptually represent the MPI program loads. Only the 
blocking MPI routines are considered here since there are very 
small differences between the two different MPI routines 
during the previous analysis performed. As in Fig. 27, as the 
message sizes are changed from short to long, the percentage 
of the TCP data segment generally increases. It indicates that 
the TCP/IP overhead gets higher as the size is added.  For a 
small message size, the two-byte overlap illustrates a lower 
percentage of the TCP data segment compared to that of the 
non overlap. For the two-byte overlap, the message rate is also 
smaller than that of the non overlap. This is indicated by the 
results on the average packets per second, average bytes per 
second and average Mbit per second. The same phenomena 
can also be observed for the large message sizes. 

Thus, looking from this overlap issue, the general 
characteristics of the parallel operation on the Beowulf cluster 
demonstrates that as the message transfer is overlapped with 
computation, the TCP/IP overhead of the packet decreases. 
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Figure. 27.   The comparison on TCP Data segment on four nodes, blocking 

for two bytes, 1024 bytes and 8192 bytes message sizes 

Through this research study, the measurement 
methodology implemented on the Beowulf cluster computing 
provides an alternative approach of finding the comparison 
between utilizing different program routines in an application. 
The study also focused on the effects of overlapping the 
message transfer and computation by focusing on the TCP/IP 
segment and the rate of the message. 

VI. CONCLUSION 

This research provides many novel findings on the 
developed Beowulf cluster system with its message-passing 
implementation. This Beowulf cluster has been compared to 
other cluster in many benchmarks as to exhibit that this setup 
has a comparable high-performance computing capability. 

This cluster system shows the use the distributed memory 
system utilizing the message-passing interface programming 
model where the communication is via explicit messages 
primitives. These message primitives consist of the blocking 
and non-blocking communications. The blocking 
communication involves the send/receive request and waits 
until the reply is returned. However, when the programming 
model of non-blocking communication is used, the messages 
can return soon without waiting for the finish of 

communication operation because the communication 
operation can be managed by communication system in 
bottom layer of system. Therefore, the processor could treat 
the computation at the same time of dealing with the 
communication by the communication unit. This eventually 
allows the overlap of computation and communication. From 
this study, the research shows that the message rate will 
increase as the number of nodes increases. The average round-
trip time also shows very small difference between the two 
MPI routines. It is demonstrated that for a long message size, 
the large difference in the average Mbit per second for the 
packets shows that the non-blocking overlap messages 
provides a more efficient communication compared to the 
blocking messages. The same phenomena can also be 
observed for the large message sizes. Therefore, this 
summarizes that the inherent characteristics of the parallel 
operation that as the message transfer is increasingly 
overlapped with computation, the TCP/IP overhead of the 
packet decreases, as illustrated in Fig. 28. 

 
Figure. 28.   Changes in TCP/IP overhead 

This research introduces an alternative method to observe 
this phenomenon. By looking into the information on the 
packet data, time and rate based on the two different MPI 
routines, detailed studies can be examined which lead to the 
percentage of the TCP data segment and the rate of message 
transfer. The benefit of understanding the communication 
overhead of these distinct MPI communication primitives has 
the advantage for the programmer to write efficient parallel 
software and therefore will eventually contribute to the 
improved performance of parallel applications. Finally, the 
studies obtained from this research could be applied as key 
guidelines in developing parallel application program for 
future researches that employ similar Beowulf cluster 
computing system. 

A.     Recommendations for Future Research: 
The communications performed by the MPI library 

routines require buffer space to complete the operation. Future 
research can look into the effect on the TCP overhead when 



Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36 

© 2010, IJARCS All Rights Reserved                                                                                                                                                     35 

the size of this buffer space is changed. Apart from the point-
to-point communication, future work could also examine the 
collective communication. There are the group message-
passing routines where these routines send messages to a 
group of processes. They also receive messages from a group 
of processes. These collective routines are broadcast, scatter, 
gather and reduce. Hence, the comparison between the point-
to-point and collective communications could provide the 
efficiency comparison on both categories of the MPI routines. 
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