
Volume 3, No. 5, Sept-Oct 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 22

ISSN No. 0976-5697

Analysis of TCP/IP Overhead on Overlapping Message Transfer and
Computation in a Distributed Memory System Architecture

Mohamed Faidz Mohamed Said*1, Mohd Nasir Taib2 and Saadiah Yahya3
1,3Faculty of Computer & Mathematical Sciences, 2Faculty of Electrical Engineering

Universiti Teknologi MARA, 40450 Shah Alam, Malaysia
1faidzms@ieee.org, 2dr.nasir@ieee.org,, 3saadiah@tmsk.uitm.edu.my

Abstract– High Performance Computing (HPC) has been commonly constructed due to the widely implementation of open source software and
clustering technology. The growth of clustering technology is also due to the demand of the parallel programming either using shared memory
systems (SMS) or distributed memory systems (DMS). The DMS hardware platform utilizing the Message Passing Interface (MPI) programming
model is easier to build and scale than the SMS platform because of the direct access to local memory and mainly the communication is via explicit
send/receive messages primitives. These message primitives consist of non-blocking and blocking communications. When the programming model
of non-blocking communication is used, the messages can return soon without waiting for the finish of communication operation, thus allowing the
overlap of message transfer and computation. By empirically measuring the time, rate and capturing the packets, vital information can be extracted
from them. The objective of this research is to investigate the TCP/IP protocol statistics of the non-blocking and blocking communications applied on
various message and overlap sizes. The benefit of understanding the communication overhead of these distinct MPI communication primitives has
the advantage for the programmer to write efficient parallel software. In this research, a four-node PC cluster is built on a private dedicated LAN
using the message-passing library MPICH as its parallel software. It is demonstrated conclusively that for a long message size, the large difference in
the average Mbit per second for the packets shows that the non-blocking overlap messages provides a more efficient communication compared to the
blocking messages, and therefore will eventually contribute to the improved performance of parallel applications.

Keywords: MPICH, cluster computing, overlapping.

I. INTRODUCTION

High Performance Computing (HPC) currently has
attracted good researchers and produced groundbreaking
results over the last 13 years [1]. This technology has been
applied to the commercial world over time with mixed results.
The two main factors which pushed this technological
momentum are the open source software and cluster
computing. The use of open source Linux operating system as
well as the cluster of personal computers (PCs) as an
environment for HPC has been shown to be technologically
promising and economically encouraging. The central
initiative behind this HPC is due to the demand of parallel
computing. Parallel computing is a fairly well-established
field and several programming platforms and standards have
evolved around it over the past two decades. The two common
hardware platforms used in this parallel programming HPC
are the shared memory systems (SMS) and the distributed
memory systems (DMS) [2]. On the SMS platform, it makes
effective use of data parallelism and can act on entire arrays at
once by executing instructions on different indexes of an array
in different processors. Consequently, this provides automatic
parallelization with minimal effort needed.

This includes the High Performance FORTRAN as a
language suited for this type of parallel programming. On the
DMS platform, since the memory is distributed, it utilizes the
message passing programming model where the
communication has direct access to the local memory of a
computer node and via the explicit send/receive primitives.

Thus the situation is radically different since the message
passing model is easier to build and scale compared to that on
the SMS platform. The code written only has to be aware of
the underlying distributed nature of the hardware and uses
explicit primitives to exchange messages between different
nodes. The two popular standards for writing parallel
programs for PC clusters are the Message Passing Interface
(MPI) and the Parallel Virtual Machines (PVM). Lately,
parallel programming using the MPI has become the de facto
standard for building parallel applications on PC clusters [3].

MPI programming model is easier to build and scale in the
DMS platform than that in the SMS platform because of the
direct access to local memory and the communication is via
explicit primitives. Basically, these explicit primitives are the
send and receive and their variant messages. The variants of
these send and receive messages include the blocking and non-
blocking communications [2]. The blocking communication is
where it makes the send/receive request and waits until the
reply is returned before it subsequently continues accordingly.
Whereas, the non-blocking communication is where it makes
the send/receive request and subsequently continues
accordingly without waiting for a reply. There are distinct
flows of communications between these two primitives. The
programs which utilize these primitives will have dissimilar
effects eventually. Presently, there are lacks of research in this
field of programming approach. In terms of software
development, by understanding the effects of these
approaches, programmer will have the benefits of writing
efficient parallel application software.

Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36

© 2010, IJARCS All Rights Reserved 23

Historically the goal of achieving performance through the
exploitation of parallelism is as old as electronic digital
computing itself which emerged from the World War II era.
Many different approaches have been devised with many
commercial or experimental versions being implemented over
the years [4]. Parallel computing architectures may be codified
in terms of the coupling and the typical latencies involved in
performing parallel operations [5, 6]. The eight major
architecture classes are systolic computers [7], vector
computers [8], single instruction multiple data (SIMD)
architecture [9], dataflow models [10], processor-in-memory
(PIM) architecture, massively parallel processors (MPPs) [11],
distributed computing [12] and lastly commodity clusters [13,
14]. Commodity clusters may be subdivided into four classes
and they are Superclusters, Cluster farms, Workstation clusters
and Beowulf clusters. Beowulf clusters incorporate mass-
market PC technology and employ commercially available
networks such as Ethernet for local area networks. Thus, these
characteristics are entirely unlike in a traditional parallel
computer where it is built of highly specialized hardware and
the architecture is custom built.

Beowulf computing is currently one of the parallel
computing architectures that has been used extensively either
in the teaching, industrial and commercial sectors. This class
of computing is formed by a collection of more than one
computer that are linked via a network. The success of this
computing architecture is in general due to the exploitation of
its physical commodity components that are easily available in
the market. On top of that, the software employed by this type
of computing are open codes that can be freely downloaded
from the public domain. The term Beowulf cluster refers to a
set of regular personal computers (PC) commonly
interconnected through an Ethernet. It operates as a parallel
computer but differs from other parallel computers in the
sense that it consists of mass-produced commodity off-the-
shelf (COTS) hardware. Usually, a parallel computer is built
of highly specialized hardware and the architecture is chosen
depending on the needs.

This makes it optimal for solving certain problems.
However, it also makes it very expensive and since it often is
more or less custom built, technical support is exclusive. By
constructing a Beowulf cluster, these issues are solved. The
penalty of going with a Beowulf cluster is in reduced
communication capacity between the processors, since an
Ethernet is much slower than a custom-built interconnect
hardwired to a motherboard [11]. Recently, a rapid increase in
the use of this type of clusters can be observed and this is due
to mainly two reasons. Firstly, the magnitude of the PC market
has allowed PC prices to decrease while sustaining dramatic
performance increase. Secondly, the Linux community [15-
27] has produced a vast asset of free software for these kinds
of applications. Beowulf clusters emphasize no custom
components, no dedicated processors, a private system area
network and a freely available software base. Cluster
computing involves the use of a network of computing
resources to provide a comparatively economical package with
capabilities once reserved for supercomputers. One of the
initial work in developing a Beowulf cluster is carried out by
Andersson [15] at the Department of Scientific Computing,

Uppsala University, Sweden. On the architectural perspective,
the Beowulf cluster can be divided into two types of variants.
The first is the rack-mounted system and the second is the
bladed system. Firstly, the rack-mounted system is a collection
of individual system units placed together and this study uses
this type of implementation. An example of this rack-mounted
system is shown by Fig. 2 where it demonstrates a typical
home-built Beowulf cluster [28].

Figure. 1. A 52-node Beowulf cluster [28]

One of the earliest prevalent clusters of this type is built by
Andersson [15]. With the aids from the system technicians
from National Supercomputer Center, Linkoping University,
he develops a Beowulf cluster called Grendel which is built
from 17 standard PC computers. Every computer consists of
commodity off-the-shelf products and they are connected
together with a fast Ethernet network. The other 16 PCs have
exactly the same configuration, both hardware and software.
The PCs have their own hard drives and each node runs its
own operating system and accesses a common file area
through the front-end PC. All of the installed software is free
and public and the operating system used for all computers is
RedHat Linux. The cluster system is then tested with several
benchmarks, namely the LMbench 2.0 Benchmark, the Stream
Benchmark and the NAS Parallel Benchmark 2.3 (NPB).

Secondly, the bladed system is a collection of individual
motherboards put together within the close vicinity, like in
computer laboratory. An example of this bladed system is
demonstrated by Fig. 1 where it exhibits a 52-node Beowulf
cluster [28] used by the McGill University pulsar group to
search for pulsations from binary pulsars.

Figure. 2. A home-built Beowulf cluster [28]

Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36

© 2010, IJARCS All Rights Reserved 24

An example of this type of implementation is done by
Feng [29]. He presents a novel Beowulf cluster named Bladed
Beowulf which is originally proposed as a cost-effective
alternative to the traditional Beowulf clusters. In his later
work, Feng [30] also introduces this Bladed Beowulf and its
performance metrics.

Generally, there are many reviews on the preliminary
works and discussions in many aspects of the cluster variants.
These reviews and discussions include [31], [32], Underwood
[33], Kuo-Chan [34], Yi-Hsing [35] and Farrell [36].
Uthayopas discusses the issues in building powerful scalable
cluster [37] and also proposes system management for the
Beowulf cluster [38]. Finally, Stafford [39] discusses the
legacy and the future of Beowulf cluster with its founder,
Donald Becker.

Recent years have shown an immense increase in the use
of Beowulf clusters [15, 40]. Their role in providing
multiplicity of data paths, increased access to storage elements
both in memory and disk and scalable performance is reflected
in the wide variety of applications of parallel computing, such
as Slezak [41], Yu-Kwong [42] and Chi-Ho [43]. The research
works cover both the two memory architecture, namely the
shared memory and the message passing. Most of the
researches on the later memory architecture are based on the
MPICH, a software written by Gropp and Lusk from the
Argonne National Laboratory, University of Chicago [44].
The comparison between the message-passing and shared
address space parallelism is presented by Shan [45]. For the
benchmark segment, two microbenchmarks that analyze
network latency that more realistically represents the way that
MPI is typically used is presented by Underwood [46].

For comparing the communication types, the work is done
by Coti [47] who presents scalability comparisons between
MPI blocking and non-blocking check-pointing approaches
and Grove [48] who presents tools to measure and model the
performance of message-passing communication and
application programs. He also presents a new benchmark that
uses timing mechanism to measure the performance of a single
MPI communication routine. For the communication-
computation overlapping, several works have been conducted
by researchers. They are Danalis [49] who presents
approaches for improving communication-computation
overlap in MPI collective operations, Sancho [50] who
proposes a method to evaluate performance improvement for
overlapping communication and computation and Sohn [51]
who examines communication overlapping capability to
improve performance of distributed memory machines. From
the numerous reviews made, most of them deal with the issues
of the computer communication techniques, computational
complexity of scheduling and operating system. Most of these
works also focus on the communication latency and load
among the networked machines.

The network latency, the delay caused by communication
between processors and memory modules over the network
has been identified as a major source of degraded parallel
computing performance. However, these researches have not
ventured into the role and effect of the programming
primitives used in the application software itself. In the
overlapping issue, the analysis on the effect of data size and its

TCP/IP protocols should provide useful information
concerning the efficient use of parallel programming codes
within the clusters of PC.

This research gap requires detailed analysis by using a new
method. Therefore, this research project empirically attempts
to look into this effect and how this overlap issue characterizes
the operation of task, other than the completion time. The
characterizations are based on different message sizes: short
and long. The work would focus on the analysis on the TCP
overhead and its rate.

The scope of this research is a collection of four computers
that are connected to a switch via a network. Each computer is
installed with Linux operating system and MPICH parallel
software. Effects of the blocking, non-blocking and
overlapping communication are measured by a program in C
language which provides information of the time and rate
based on the pertinent routines. The TCP/IP protocols are
captured by a packet sniffer application that is able to monitor
the network usages and extract vital information from them.

This paper is organized as follows. Section II gives the
background theory by explaining in details the processes on
the Beowulf parallel computing. Section III provides the
methodology used in the experiment. Section IV provides the
analyses and discussions on the communicational
measurement while Section V presents the analyses on the
TCP/IP measurements. Finally, Section VI presents the
conclusion of the findings of this research.

II. THEORY

In message-passing programming on Beowulf computing,
a programmer employs message-passing library in order to
produce a desired application. This user-level library operates
on two principal mechanisms.

The first is the method to create separate process for
execution on different computer. Based on the Multiple
Program Multiple Data (MPMD) model, there are separate
programs for each processor. One processor executes master
process while the other processes started from within master
process, as depicted in Fig. 3.

Figure. 3. Multiple Program Multiple Data (MPMD) model

The second is the method to send and receive messages.
Basically, for the point-to-point send and receive primitives,
passing a message between processes is performed using
send() and recv() library calls as shown in Fig. 4.

Process 2 spawn();

Time

Start execution

of process 2

Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36

© 2010, IJARCS All Rights Reserved 25

Figure. 4. Basic send and receive primitives

For the synchronous message passing, the routines actually
return when message transfer completed. For the send routine,
it waits until the complete message can be accepted by the
receiving process before sending the message. While for the
receive routine, it waits until the message it is expecting
arrives. Synchronous routines intrinsically perform two
actions: they transfer data and they synchronize processes.
This is called blocking communication. The examples of the
MPI blocking primitives are MPI_Send() and MPI_Recv().
The blocking primitives formats are MPI_Send (buf, count,
datatype, dest, tag, comm, request) and MPI_Recv (buf, count,
datatype, src, tag, comm, request).

However, for the asynchronous message passing, the
routines do not wait for actions to complete before returning
and it usually requires local storage for messages. In general,
they do not synchronize processes but allow processes to
move forward sooner. Thus, in this type of communication,
the message-passing routines return before message transfer
completed. Message buffer is needed between the source and
the destination to hold message. This is called non-blocking
communication and demonstrated in Fig. 5.

Figure. 5. Message-passing routines return before message transfer completed

The examples of the MPI non-blocking primitives are
MPI_Isend() and MPI_Irecv(). For MPI_Isend(), the send will
return immediately even before source location is safe to be
altered. Meanwhile, for MPI_Irecv(), the receive will return
even if no message to accept. The ‘I’ in ‘Isend’ and ‘Irecv’
means Immediate. The primitives formats are MPI_Isend (buf,
count, datatype, dest, tag, comm, request) and MPI_Irecv(buf,
count, datatype, src, tag, comm, request).

In addition to these primitives, the overlapping of message
transfer and computation is another technique in the Beowulf
computer programming. While the message is being
transmitted, a computer may also permit local computation to
be done. For the purpose of comparison, there are two possible
situations. The first one is without overlap and the second one
is with overlap. These occurrences are shown in the following
diagram in Fig. 6.

Figure. 6. Abstraction of computation and message-passing events (a)

without overlap (b) with overlap

If part of the computation can not be done alongside with
the message-passing, a computer only can compute and then
do message-passing at different time, as depicted in case (a) of
Fig. 6. However, if overlap is permitted, this will allow
optimal use of completion time, as illustrated in case (b) of
Fig. 6. As modern technology allows the later case, the direct
benefit would be the overall reduced completion time.
However, apart from the completion time, there are protocols
effects associated which include the TCP/IP overhead and its
rate. The overhead can be looked from the percentage of data
segment, remote shell segment and the peer-to-peer short
message of the TCP frames. The rate can be examined from
the average packets per second, average bytes per second and
average Mbit per second. These effects can be empirically
measured as different message sizes and overlap sizes are
applied.

III. METHODOLOGY

In order to accomplish this research, a sequence of
development phases are performed (Fig. 7). It is crucial to
organize the phases systematically as it is vital in ensuring a
well-planned process completion.

Process 1 Process 2

send(&x, 2);

recv(&y, 1);

x y

Movement
of data

Generic syntax

Process 1 Process 2

send()

recv()

Message
buffer

Read buffer

Continue
process

Time

Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36

© 2010, IJARCS All Rights Reserved 26

Figure. 7. Methodology for Beowulf cluster developments and experiments

In the early phase of doing this research, it practically
starts with the developments stage (Stage 1), where there are
four work phases of the developments work. These work
phases are the node specification, the hardware set-up, the
software set-up and the node configuration of the Beowulf
cluster system. The work is arranged in this sequence to
ensure that the proper hardware construction is created before
setting up the software on top of it. The initial step in this node
specification phase is specifying the master and the slave. In
order to create a proper naming and numbering convention,
the cluster system is conceptually divided into two main
components, the master component and the slave component.
The convention will have a name node together with a two-
digit number. The master node is given a codename of
node00. The two-digit number 00 is chosen to demonstrate the
function of the master node as the front-end PC. Meanwhile
the first slave node is given a name and number starting with
node01. Thus the second node of this cluster system is node02
and the subsequent third node is node03.

The last consideration is the network interconnection. Due
to the use of a network switch, the link topology being applied
will be the star organization. Step 2 demonstrates the second
work phase in the developments stage, namely the hardware
set-up. This hardware installation phase covers the assembly
work and the connections of the nodes through a network
interconnect. All the nodes being used are complete
standalone systems with monitors, hard drives, keyboards and
their related peripherals. Basically the node is comprised of a
CPU with a cache, a main memory, a personal computer

interconnection (PCI) and a network interface card (NIC).
This cluster system is conceptually a combination of four
nodes namely individual PCs with a network interconnect
device located at the centre of the arrangement. The general
structure of this cluster system is presented in Fig. 8.

Figure. 8. Hardware set-up

Specifically, the physical units of the cluster system are of
heterogeneous characteristics. The entire four nodes are
connected through their respective RJ45 ports to a switch
using unshielded twisted pair (UTP) cables. A full view of this
cluster set-up is illustrated in Fig. 9.

Step 3 illustrates the third work phase in the developments
stage; the software set-up. The software installation phase is
generally divided into three components. The first software
component is the RedHat 9.0 OS. After the successful
installation of the OS, the next component is the MPICH 1.2.0
library. This software installation phase begins after the nodes
are completely assembled physically.

Step 4 demonstrates the fourth work phase in the
developments section; namely the node configuration (Fig.
10). The node configuration phase for the OS part consists of
several tasks.

Figure. 9. A full view of the cluster set-up

These tasks involve the creation and modification of important
system files to ensure that the system is fully functional. The
MPI library also has specific essential files that have to be
correctly set to run parallel program.

Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36

© 2010, IJARCS All Rights Reserved 27

Figure. 10. Flowchart of node configuration

Lastly, the proper environment for the experimental data
collection should be appropriately established to ensure that
the data collection is consistent. This includes the correct
command execution, file and directory location. The proper IP
address and aliasing of all the nodes are primarily established
in the /etc/hosts file. Each node in the cluster has a similar
hosts file with appropriate changes to the first line reflecting
the hostname of that node itself. Thus, slave node01 would
have a first line of the text 192.168.0.9 node01 with the third
line containing the IP and hostname of node00. All other
nodes are configured in the same manner with the 127.0.0.1
localhost line is not removed. This file is edited on every
cluster node by adding the names and IP addresses of every
node in the cluster. This allows these machines to be accessed
by name instead of by IP number. In general, the system files
that need to be created and modified are illustrated by the
flowchart as shown in Fig. 10.

For the validation test (Stage 2), there are two types of
tests applied to ensure that the whole system is properly
working and functioning. The first is the validation for the
Linux OS installation and the second is the validation for the
MPICH installation. In order to validate the successful setup
of the Linux OS into each of the nodes, several attribute
elements of the node system can be verified. These attribute
elements will prove that the OS is correctly set-up and
functioning. The elements consist of the configuration
verification, the routing table verification, the data transfer

verification, the re-verification of the overall performance and
slave validation. These system elements are verified and
confirmed on the master node as well as on all of the remote
slave nodes. For the validation of the MPI installation (Step
6), Hello World program is applied. In this program, the MPI
specifies the library calls to be used in a C program. The MPI
program contains one call to MPI_Init and one call to
MPI_Finalize. Therefore all other MPI routines must be called
after MPI_Init and before MPI_Finalize. Furthermore the C
program must also include the file mpi.h statement at the
beginning of the program.

A. Benchmarking:
In this benchmarking phase (Stage 3), it describes the

chosen benchmarking being used in the Beowulf cluster
system. For the reliability testing, the performance of the
developed cluster is tested using the authoritative benchmarks.
There are two kinds of benchmark programs; the hardware
benchmarks and the parallel benchmarks. For comparison
purposes, the Grendel cluster system (G-cluster) is chosen
[15]. The hardware benchmarks used is the LMbench 2.0
benchmark while the parallel benchmark applied is the NAS
Parallel Benchmark 2.3 (NPB 2.3). LMbench is a set of small
benchmarks used to measure performance of computer
components which are vital for efficient system performance.
The aim of these benchmark tests is to provide the real
application figures that can be achieved by normal
applications. The main performance bottlenecks of current
systems are latency, bandwidth or a combination of these two.
LMbench tests focus on the system’s ability to transfer data
between processor, cache, memory, disk and network.
However, these tests do not measure the graphics throughput,
computational speed or any multiprocessor features of a
computer node. Since LMbench is highly portable, it should
run as is with gcc as default compiler. This LMbench
benchmark tests six different aspects of the system. These are
the processor and processes, the context switching, the
communication latency, the file and virtual memory system
latencies, the communication bandwidths and the memory
latencies.

Firstly, the results of LMbench 2.0 benchmark for the
processor and processes are displayed below (Table 1). The
times shown are in microseconds (µs). In the nineth test
(Table 1), for creating a process through fork+exec, the exec
proc measures the time it takes to create a new process and
have that process perform a new task. The time taken to exec
proc for this cluster is 344.0 µs compared to 706.2 µs. Lastly,
in the tenth test, for creating a process through fork+/bin/sh –
c, the shell proc measures the time it takes to create a new
process and have the new process running a program by
asking the shell to find that program and run it. The time taken
to shell proc for this cluster is 2247 µs compared to 3605.3 µs.
Generally, the comparison results from the LMbench tests for
the processor and processes show that this Beowulf cluster
produces significantly better performance of a small-scale
cluster.

/etc/xinetd.d/rsh

/etc/shadow

/etc/passwd

/etc/hosts.allow

/etc/xinetd.d/rexec

/etc/exports

/etc/securetty

/etc/pam.d/rsh

/etc/xinetd.d/telnet

/etc/xinetd.d/rlogin

/root/.rhosts

/etc/hosts.equiv

/etc/hosts

/root/.bashrc_profile

new route

new ifconfig

Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36

© 2010, IJARCS All Rights Reserved 28

Table 1. LMbench 2.0 benchmark for the processor and processes – smaller
is better

 This cluster G-cluster
1 null call 0.45 0.27
2 null I/O 0.51 0.38
3 stat 1.78 3.72
4 open/close 2.38 4.63
5 select 5.937 26.3
6 signal install 0.79 0.77
7 signal handle/catch 2.59 0.95
8 fork proc 99.0 110.1
9 exec proc 344.0 706.2
10 shell proc 2247 3605.3

Secondly, the results of LMbench 2.0 benchmark for the

communication latencies are exhibited below (Table 2). The
times shown are in microseconds (µs). In the fifth test (Table
2), for the interprocess communication latency via TCP/IP,
TCP measures the time it takes to send a token back and forth
between a client/server. No work is done in the processes. The
time taken for the TCP of this cluster is 14.1 µs compared to
16.4 µs.
Table 2. LMbench 2.0 benchmark for the local communication latencies (µs)

– smaller is better
 This cluster G-cluster

1 pipe 4.808 4.021
2 AF UNIX 9.46 8.34
3 UDP 11.9 11.5
4 RPC/UDP 21.4 26.4
5 TCP 14.1 16.4
6 RPC/TCP 25.9 39.1

Thirdly, the results of LMbench 2.0 benchmark for the

local communication bandwidths are displayed below (Table
3). The measurements shown are in Mbytes per second
(MB/s). In the third test, for reading and summing of a file,
file reread measures how fast data is read when reading a file
in 64KB blocks. Each block is summed up as a series of 4 byte
integers in an unrolled loop. The benchmark is intended to be
used on a file that is in memory. The bandwidth for the file
reread of this cluster is 1149.3 MB/s compared to 332.9 MB/s.
Generally, the comparison results from the LMbench tests for
the local communication bandwidths show that this Beowulf
cluster produces a better performance in the whole local
communication bandwidths category tests conducted.

Table 3. LMbench 2.0 benchmark those are for the local communication
bandwidths (MB/s) – bigger is better

 This cluster G-cluster
1 pipe 1181 790.7
2 AF UNIX 2033 516.3
3 file reread 1149.3 332.9
4 Mmap reread 1164.3 462.0
5 Bcopy (libc) 369.8 300.6
6 Bcopy (hand) 387.9 264.1
7 mem read 1522 481.7
8 mem write 522.4 361.6

Finally, the results of LMbench 2.0 benchmark for the
memory latencies are presented below (Table 4). The
measurements shown are in nanosecond (ns).

Table 4. LMbench 2.0 benchmark for the memory latencies
 This cluster G-cluster

1 L1 cache 0.836 2.279
2 L2 cache 7.7070 19.0
3 Main memory 118.5 151.0

For the memory read latencies, L1 cache, L2 cache and

Main memory measure the time it takes to read memory with
varying memory sizes and strides respectively. The entire
memory hierarchy is measured onboard and external caches,
main memory and TLB miss latency. It does not measure the
instruction cache. Generally, the comparison results from the
LMbench tests for the memory latencies show that this
Beowulf cluster produces a better performance for a cluster
since smaller is better.

For the parallel benchmarks, NAS Parallel Benchmark 2.3
(NPB) is applied. G-cluster supports two implementations of
the message passing interface (MPI); LAM and MPICH. The
results of this cluster show those of class A while the results of
G-cluster are those of class B. These comparisons are shown
in the following Table 5. The unit used is million instructions
per second (mop/s).

Table 5. NAS Parallel Benchmark 2.3 output (mop/s) - bigger is better
Benchmark code This cluster G-cluster

MG 7.03 1.31
FT 5.45 5.62 (4 procs)
LU 392.17 163.16
SP 235.84 360.99 (4 procs)
BT 187.52 no result for 1 and 4 procs

The MG test uses a multigrid method to compute the

solution of the three-dimensional scalar Poisson equation. It
partitions the grid by successively dividing it in two, starting
with the z dimension, then the y and x dimensions, until all
processors are assigned. In this first test, the rate for this
cluster is 7.03 mop/s compared to 1.31 mop/s. The FT test
contains the computational kernel of a three-dimensional FFT-
based spectral method. It performs 1-D FFTs in the x and y
dimensions on a distributed 3-D array, which is done entirely
within each processor, and then continues with an array
transposition which requires an all-to-all communication. The
final FFT is then performed. In this second test, the rate for
this cluster is 5.45 mop/s compared to 5.62 mop/s. The LU test
simulates a CFD application which uses successive over-
relaxation (SSOR) to solve a block lower-block upper
triangular system of equations, derived from an unfactored
implicit finite-difference discretization of the Navier-Stokes
equations in three dimensions. In this third test, the rate for
this cluster is 392.17 mop/s compared to 163.16 mop/s.

The SP test simulates a CFD application that solves
uncoupled systems of equations resulting from an implicit
finite-difference discretization of the Navier-Stokes equations.
It solves scalar pentadiagonal systems for a full
diagonilization of the above scheme. In this fourth test, the
rate for this cluster is 235.84 mop/s compared to 360.99
mop/s. The BT test originates from the same problem as SP,
but instead of solving scalar systems, it solves block-triangular
systems of 5 x 5 blocks. In this fifth test, the rate for this

Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36

© 2010, IJARCS All Rights Reserved 29

cluster is 187.52 mop/s. However, comparison can not be
made since there are no results obtained for the 1 and 4
processors for the G-cluster. In general, the NAS parallel
benchmark (NPB) tests conducted are used to measure the
overall system performance. They are divided into two groups
depending on the utilization of CPU, memory and network:
kernel benchmarks and application benchmarks. The kernel
benchmarks are intended to put pressure on the Linux kernel
with its implementation of the TCP/IP stack, while the
application benchmarks concentrate more on CPU and
memory utilization. In a nutshell, the comparison results for
the two NPB tests show that this Beowulf cluster produces a
better performance.

Next is the methodology for Stage 4 - the no-loading
measurement. The purpose of obtaining the measurements of
this cluster system during the period of no loads is to
investigate the existence of packets. By exploring this period,
the packets involved with its protocol details can be studied.
These protocols existing during this period will provide the
absolute comparison to that during the period of an application
being run. In the packet capturing phase, the sniffing program
named Ethereal is installed inside the master node. The data
obtained are the elapsed time in seconds, the time between the
first and the last packet in seconds, the packet count, the
average packets per second, the bytes of traffic, the average
bytes per second and the average megabit per second. These
values measured of one run period are compared accordingly
to that of another run period.

B. Algorithm Design:
In order to make the required measurement program, an

algorithm is firstly designed. The program is coded using C
language because of its suitable attribute and more flexible
than the others. The program is tested to ensure it is correct
and modifications will be done from time to time if needed. It
starts with the program initialization and specifying the
program parameters. To start a program, MPI_Init() is used
before calling any MPI function. All processes are enrolled in
a universe called MPI_Comm_World. Each process is given a
unique rank number from 0 up to p-1 for p processes. To
terminate a program, MPI_Finalize() is used. To measure the
execution time between two points in the code, MPI_Wtime()
routines are used together with the appropriate variables.
Thus, initially, the program may call the MPI_Init and later
call MPI_Comm_rank() and MPI_Comm_size(). The body of
the measurement program runs the test and the times are
recorded. The rates and times are inversely proportional. To
record the total amount of time that the test takes, the
MPI_Wtime() function is used since the MPI timer is an
elapsed timer:
start_time = MPI_Wtime(); run_time = MPI_Wtime() -
start_time. The time function is a function of several other
routines of the first data length (first), the last data length
(last), process 1 (proc1), process 2 (proc2), the
communication test (commtest) and the context of the
message-passing operation (msgctx): time_function
(first,last,incr,proc1,proc2, commtest, msgctx); In the main
program, the communication test (commtest) is identified as
double data type, and it is a function of the protocol used. This

commtest is a function of &argc, argv and protocol_name
where the protocol name is of char data type and the options
are blocking, nonblocking and overlap. The context of the
message-passing operation (msgctx) is a function of proc1 and
proc2. Finally, the program ends with MPI_Finalize(); and
return 0. The mpptest of the Linux performance test is chosen
because it has the merit of having the same purpose of the
required measurement. The flowchart of the measurement
program algorithm is shown by Fig. 11.

Figure. 11. Measurement Algorithm

All the experiments conducted for the blocking and non-
blocking operations are performed based on various message
sizes either at lower level or near saturation level to compare
the effect of different packet sizes. The flowchart of the
measurement methodology is displayed in Fig. 12.

Figure. 12. Measurement methodology

stop

change the values of
MS, OS and np

Set the values of message size (MS),
overlap size (OS) and number of processor

no

start

Program initilization

Results recorded – average time, rate,
frame & bytes.

yes

finish?

Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36

© 2010, IJARCS All Rights Reserved 30

IV. RESULTS AND DISCUSSIONS

In this section, it shows the results for the experiments on
the communicational performance (Step 12). The comparisons
are made from the perspective of the rate (bandwidth) as the
message sizes are changed. Fig. 13 provides the results of the
non-blocking operations on the Beowulf cluster based on the
different message sizes and number of processors.

The lowest line is the measurement for np=2, the middle
line is the measurement for np=3 and the highest line is the
measurement for np=4. By adding more processors, the rate of
non-blocking communication for each np generally increases
up to a certain saturation level. The saturation levels are
different for each np. Therefore, all non-blocking operations
with different np show almost the same characteristics of
gradually rising and becoming stable during saturation level.

Bandwidth for non-blocking operations for message sizes 1 byte - 108 bytes for np=2,
np=3 and np=4

0

5

10

15

20

25

1 10 10
0

10
00

10
00

0

10
00

00

10
00

00
0

10
00

00
00

1E
+08

Message size (bytes)

B
an

dw
id

th
 (x

10
6 B

/s
)

np=2 non-blocking

np=3 non-blocking

np=4 non-blocking

Figure. 13. Rate for the non-blocking operations for np=2, np=3 and np=4

Similarly, Fig. 14 provides the results of the blocking
operations on the Beowulf cluster based on the different
message sizes and number of processors. The lowest line is the
measurement for np=2, the middle line is the measurement for
np=3 and the highest line is the measurement for np=4.
Similarly, by adding more processors, the rate of blocking
communication for each np generally increases up to a certain
saturation level. The saturation levels are different for each np.
Therefore, all blocking operations with different np show
nearly the same characteristics of gradually rising and
becoming stable during saturation level.

Bandwidth for blocking operations for message sizes 1 byte - 108 bytes for np=2, np=3
and np=4

0

5

10

15

20

25

1 10 10
0

10
00

10
00

0

10
00

00

10
00

00
0

10
00

00
00

1E
+0

8

Message size (bytes)

B
a

n
d

w
id

th
 (

x
1

06
B

/s
)

np=2 blocking

np=3 blocking

np=4 blocking

Figure. 14. Bandwidth for the blocking operations for np=2, np=3 and np=4

Subsequently, Fig. 15 summarizes both results on the non-
blocking and blocking operations for np=2, np=3 and np=4 in
one graph. Generally, both operations show almost the same
rate of message passing between different sizes and number of
processors. The rate differences between these operations are
very minimal as per each np. This should indicate that the use
of the non-blocking or blocking routines in this cluster
computing has very little effects on the overall performance in
terms of the rate of message transmission. Either routine could
be applied without having to reconsider the overall impact on
the running application.

Bandwidth for non-blocking and blocking operations for message sizes 1 byte - 108

bytes for np=2, np=3 and np=4

0

5

10

15

20

25

1 10 100 1000 10000 100000 1E+06 1E+07

Message size (bytes)

B
an

dw
id

th
 (x

10
6 B

/s
)

np=2 non-blocking

np=2 blocking

np=3 non-blocking

np=3 blocking

np=4 non-blocking

np=4 blocking

Figure. 15. Rate comparison between non-blocking and blocking operations

for np=2, np=3 and np=4

A. Overlapping Results:
In this subsection, it exhibits the results of the average

round-trip time on the overlapping experiments (Step 12).
Initially, the experiments are performed using smaller message
sizes, ranging from 0 bytes up to 1024 bytes with the 2n stride.
The result of the average round-trip time for the non-blocking
overlap communication is displayed in Fig. 16.

Next, the experiments are similarly performed for the
blocking communication using smaller message sizes, ranging
from 0 bytes up to 1024 bytes with the 2n stride. The
comparison on these different communications from the
perspective of the average round-trip time is made. The
average round-trip time comparison for different sizes is
shown in Fig. 16. Generally, both operations show almost the
same time for different sizes.

Average round-trip time comparison for overlap communication

0.00

50.00

100.00

150.00

200.00

250.00

300.00

0 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

Message size (bytes)

A
ve

ra
ge

 ti
m

e
(u

s)

non-blocking
blocking

Figure. 16. Average round-trip time comparison

Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36

© 2010, IJARCS All Rights Reserved 31

As well, the comparisons on these different
communications are displayed from the perspective of the
round-trip rate. Fig. 17 shows the round-trip rate comparison
for different sizes. Both operations show almost the same rate
for different sizes. The slightly lower line corresponds to the
non-blocking routine measurement, while the slightly higher
line corresponds to the blocking routine measurement. By
adding message sizes, the rate of both communication routines
generally increases up to a certain saturation level. The
saturation levels are also nearly at the same point. Therefore,
both routines show the same characteristics of gradually rising
and becoming stable during saturation level.

Round-trip bandwidth comparison for different ove rlap communication

0.0000

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

0 64 12
8

19
2

25
6

32
0

38
4

44
8

51
2

57
6

64
0

70
4

76
8

83
2

89
6

96
0

10
24

Message size (bytes)

B
an

dw
id

th
 (M

by
te

s/
s)

non-blocking
blocking

Figure. 17. Rate comparison

The comparison of the rates for the overlap communication
is also made. The overlap sizes are changed from one byte to
1,000,000 bytes. Fig. 18 demonstrates the results for the
1,000,000 bytes overlap size.

Bandwidth for non-blocking and blocking 1000000 bytes (B) overlap operations for message sizes 1
byte - 108 bytes for np=2, np=3 and np=4

0

5

10

15

20

25

1 10 100 1000 10000 100000 1E+06 1E+07 1E+08
Message size (bytes)

B
an

dw
id

th
 (x

10
6B

/s
)

np=2 non-blocking

np=2 blocking

np=3 non-blocking

np=3 blocking

np=4 non-blocking

np=4 blocking

Figure. 18. Rates for non-blocking and blocking overlap operations for np=2,

np=3 and np=4

The graph shows that the rate increases gradually until it
nearly reaches its saturation level. The comparison of rates
exhibited are generally significant upon reaching the
1,000,000 bytes level of the message size. The levels below
the 100,000 bytes message sizes appear to show insignificant
levels of comparisons in the range of less than 10 MB per
second. It is likely that the levels below the 100,000 bytes
message sizes are generally less responsive to the change of
message sizes.

The results presented generally show a significant increase
of the rates from lower np to higher np as well as from smaller

message size to larger message. These results may be
explained by considering the increase of the message size
itself provide an increasingly higher packet transfer among the
nodes. Also, the rate is generally proportional to the number of
processors. Thus, both overlap routines of different np show
the same characteristics of gradually rising and becoming
stable during saturation level.

V. TCP/IP ANALYSIS

In this section, it presents the experiment results on the
TCP/IP measurement for the non-blocking communication
routine. This routine is chosen because based on the previous
experiments, both routines show very little differences in rate
and average time taken. This section is divided into two
subsections; firstly the results on short messages and secondly
the results on long messages.

A. Results on Short Messages:
For the short messages, the results are broken into two

different overlap sizes; no overlap (0 byte) and small overlap
(two bytes). Firstly, the following results are the experiment
conducted on the two bytes message size, non-blocking and no
overlap. The protocol statistics shows that the frames collected
are comprised of 100% transmission control protocol (TCP).
The data segment and the remote shell segment occupy
73.41% and 0.14% respectively while the peer-to-peer short
message constitutes 24.21% of these TCP frames. The results
also show 2,650.53 average packets per second (avg.
packets/sec), 293,327.10 the average bytes per second (avg.
bytes/sec) and 2.35 average Mbit per second (avg. Mbit/sec).
Secondly, the following results are the experiment conducted
on the overlap size of two bytes. The frames collected are
comprised of 99.97% internet protocol (IP) and 0.03% address
resolution protocol (ARP). For the IP frames, TCP represents
99.97%. The data segment occupies 72.87%, the remote shell
segment occupies 0.14% while the peer-to-peer short message
constitutes 24.05% of these TCP frames. The results also show
658.81 avg. packets/sec, 72,824.47 avg. bytes/sec and 0.58
avg. Mbit/sec.

The TCP data segment and the TCP overhead are analyzed
overall. For the short messages, the comparison on TCP data
segment on two bytes message size and blocking is illustrated
in Fig. 19.

Figure. 19. Comparison on TCP data segment on two bytes message size and

blocking

Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36

© 2010, IJARCS All Rights Reserved 32

The TCP Data segment percentage for two bytes overlap
(73.30%) decreases 0.18% from that for no overlap (73.48%).
This result suggests that increasing overlap size will reduce
the portion of data transfer in the cluster system.

The comparisons on the avg. packets/sec, avg. bytes/sec
and avg. Mbit/sec are demonstrated in Fig. 20, Fig. 21 and
Fig. 22 respectively.

Figure. 20. Comparison on average packets per second on two bytes message

size and blocking

Firstly, the average packets per second for two bytes
overlap (1,309.29) drops 999.18 from that for the no overlap
(2,309.16). This result suggests that increasing overlap size
will reduce the rate of packet transfer in the cluster system.

Figure. 21. Comparison on average bytes per second on two bytes message

size and blocking

Secondly, the average bytes per second for two bytes
overlap (255,664.28) drops 110,646.70 from that for the no
overlap (145,017.58). This result suggests that increasing
overlap size will reduce the rate of data transfer in the cluster
system.

 Thirdly, the average Mbits per second for two bytes
overlap (2.05) drops 0.89 from that for the no overlap (1.16).

TCP data segment percentage for two bytes overlap (73.30%)
decreases 0.18% from that for no overlap (73.48%). These
results indicate that increasing overlap size on four nodes, two
bytes message size and blocking operation will decrease the
message transfer rate in the cluster system.

Figure. 22. Comparison on average Mbit per second on two bytes message

size and blocking

Conclusively, for a small message size, the overlap causes
a lower percentage of the TCP data segment compared to that
of the non-overlap. Likewise, the message rate is also smaller
than that of the non-overlap.

B. Results on Long Messages:
In this second subsection, the results on the long messages

are demonstrated. The results on this long message segments
are broken into four different overlap sizes; no overlap (0
byte), small overlap (2 bytes), medium overlap (1024 bytes)
and long overlap (8192 bytes). Firstly, the following results
are the experiment conducted on the non-blocking and no
overlap. The frames collected are comprised of 100% TCP.
The data segment occupies 64.70%, the remote shell segment
occupies 0.06% while the peer-to-peer short message
constitutes 5.32% of these TCP frames. The results also show
1,265.89 avg. packets/sec, 1,106,782.52 avg. bytes/sec and
8.85 avg. Mbit/sec.

Repetitively, a series of different overlap sizes are
conducted from two, 1024 to 8192 bytes. For 8192 bytes, the
frames collected are comprised of 100% TCP. The data
segment occupies 65.08%, the remote shell segment occupies
0.05% while the peer-to-peer short message constitutes 5.32%
of these TCP frames. The results also show 5,756.19 avg.
packets/sec, 5,066,982.85 avg. bytes/sec and 40.54 avg.
Mbit/sec.

Again repetitively, a series of different overlap sizes are
conducted on the blocking communication. The comparison
on TCP data segment for two, 1024 and 8192 bytes message
size is illustrated in Fig. 23. The TCP data segment percentage
for two bytes (64.70%) increases 8.16% to that for 1024 bytes
(72.86%). Likewise, the TCP data segment percentage for
1024 bytes increases 0.57% to that for 8192 bytes (73.43%).
This result suggests that for the blocking communication,
increasing message size will reduce the portion of data transfer
in the cluster system.

Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36

© 2010, IJARCS All Rights Reserved 33

Figure. 23. The comparison on TCP Data segment on blocking, no overlap

for two, 1024 and 8192 bytes message sizes

The comparisons on average packets per second, average
bytes per second and average Mbit per second are
demonstrated in Fig. 24, Fig. 25 and Fig. 26 respectively. The
average packets per second for 8192 bytes size (1,132,335.03)
raise drops 876,670.75 from that for the two bytes size
(255,664.28) but drops 511,435.88 from that for the 1024
bytes size (1,388,106.63). The same phenomena can be seen
on the average bytes per second as well as on average Mbit
per second. However, different effect is observed for the TCP
data segment percentage for three message sizes. These results
indicate that the message transfer rate in the cluster system
will be increased for the very large size compared to that for
small increment.

Figure. 24. Comparison on average packets per second on blocking, no

overlap for two, 1024 and 8192 bytes message sizes

Generally, for the non-overlap experiment, the TCP rate
percentage will drop as the message size increases. However,
similar effect is not seen for the small size region. The results
for the small message size suggest that the load of a message
has little effect on the message rates; however the rate would
be significantly affected for the bigger message sizes.

Figure. 25. Comparison on average bytes per second on blocking, no overlap

for two, 1024 and 8192 bytes message sizes

Figure. 26. Comparison on average Mbit per second on blocking, no overlap

for two, 1024 and 8192 bytes message sizes

As a summary, Fig. 27 shows the overall TCP/IP
measurement comparison between the two message sizes and
with the addition of middle sizes of 1024 bytes. The sizes
conceptually represent the MPI program loads. Only the
blocking MPI routines are considered here since there are very
small differences between the two different MPI routines
during the previous analysis performed. As in Fig. 27, as the
message sizes are changed from short to long, the percentage
of the TCP data segment generally increases. It indicates that
the TCP/IP overhead gets higher as the size is added. For a
small message size, the two-byte overlap illustrates a lower
percentage of the TCP data segment compared to that of the
non overlap. For the two-byte overlap, the message rate is also
smaller than that of the non overlap. This is indicated by the
results on the average packets per second, average bytes per
second and average Mbit per second. The same phenomena
can also be observed for the large message sizes.

Thus, looking from this overlap issue, the general
characteristics of the parallel operation on the Beowulf cluster
demonstrates that as the message transfer is overlapped with
computation, the TCP/IP overhead of the packet decreases.

Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36

© 2010, IJARCS All Rights Reserved 34

Figure. 27. The comparison on TCP Data segment on four nodes, blocking

for two bytes, 1024 bytes and 8192 bytes message sizes

Through this research study, the measurement
methodology implemented on the Beowulf cluster computing
provides an alternative approach of finding the comparison
between utilizing different program routines in an application.
The study also focused on the effects of overlapping the
message transfer and computation by focusing on the TCP/IP
segment and the rate of the message.

VI. CONCLUSION

This research provides many novel findings on the
developed Beowulf cluster system with its message-passing
implementation. This Beowulf cluster has been compared to
other cluster in many benchmarks as to exhibit that this setup
has a comparable high-performance computing capability.

This cluster system shows the use the distributed memory
system utilizing the message-passing interface programming
model where the communication is via explicit messages
primitives. These message primitives consist of the blocking
and non-blocking communications. The blocking
communication involves the send/receive request and waits
until the reply is returned. However, when the programming
model of non-blocking communication is used, the messages
can return soon without waiting for the finish of

communication operation because the communication
operation can be managed by communication system in
bottom layer of system. Therefore, the processor could treat
the computation at the same time of dealing with the
communication by the communication unit. This eventually
allows the overlap of computation and communication. From
this study, the research shows that the message rate will
increase as the number of nodes increases. The average round-
trip time also shows very small difference between the two
MPI routines. It is demonstrated that for a long message size,
the large difference in the average Mbit per second for the
packets shows that the non-blocking overlap messages
provides a more efficient communication compared to the
blocking messages. The same phenomena can also be
observed for the large message sizes. Therefore, this
summarizes that the inherent characteristics of the parallel
operation that as the message transfer is increasingly
overlapped with computation, the TCP/IP overhead of the
packet decreases, as illustrated in Fig. 28.

Figure. 28. Changes in TCP/IP overhead

This research introduces an alternative method to observe
this phenomenon. By looking into the information on the
packet data, time and rate based on the two different MPI
routines, detailed studies can be examined which lead to the
percentage of the TCP data segment and the rate of message
transfer. The benefit of understanding the communication
overhead of these distinct MPI communication primitives has
the advantage for the programmer to write efficient parallel
software and therefore will eventually contribute to the
improved performance of parallel applications. Finally, the
studies obtained from this research could be applied as key
guidelines in developing parallel application program for
future researches that employ similar Beowulf cluster
computing system.

A. Recommendations for Future Research:
The communications performed by the MPI library

routines require buffer space to complete the operation. Future
research can look into the effect on the TCP overhead when

Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36

© 2010, IJARCS All Rights Reserved 35

the size of this buffer space is changed. Apart from the point-
to-point communication, future work could also examine the
collective communication. There are the group message-
passing routines where these routines send messages to a
group of processes. They also receive messages from a group
of processes. These collective routines are broadcast, scatter,
gather and reduce. Hence, the comparison between the point-
to-point and collective communications could provide the
efficiency comparison on both categories of the MPI routines.

VII. REFERENCES

[1]. E. Hagersten and G. Papadopoulos, "Scanning the Technology.
Parallel Computing in the Commercial Marketplace: Research
and Innovation at Work," Proceedings of the IEEE, vol. 87 no.
3, 1999.

[2]. A. Grama, A. Gupta, G. Karypis, and V. Kumar, Introduction to
Parallel Computing, Second ed. London: Pearson - Addison
Wesley, 2003.

[3]. MPI - The Message Passing Interface (MPI) standard. [Online].
Available: http: //www.mpi-forum.org/, accessed on 30 Jan
2006.

[4]. G. K. Thiruvathukal, "Guest Editors' Introduction: Cluster
Computing," Computing in Science & Engineering, vol. 7 no.
2, pp. 11-13, 2005.

[5]. M. J. Flynn, "Very High-Speed Computing Systems,"
Proceedings of the IEEE, vol. 54 no. 12, pp. 1901-1909, 1969.

[6]. M. Flynn, "Multiprocessors," in Chapter 8 Lectures, 1998.

[7]. K. T. Johnson, A. R. Hurson, and B. Shirazi, "General-Purpose
Systolic Arrays," Computer, vol. Nov. 1993, pp. 20-31, 1993.

[8]. G. R. Luecke, B. Raffin, and J. J. Coyle, "Comparing the
Communication Performance and Scalability of a Linux and a
NT Cluster of PCs, a Cray Origin 2000, an IBM SP and a Cray
T3E-600," 1999, pp. 26-35.

[9]. M. Sung, "SIMD Parallel Processing," Architectures
Anonymous, vol. 6, pp. 11, 2000.

[10]. R. M. Karp and R. E. Miller, "Properties of a Model for Parallel
Computations: Determinacy, Termination, Queueing," J.
Applied Mathematics, vol. 14, pp. 1390-1411, 1966.

[11]. H. Kai, W. Choming, W. Cho-Li, and X. Zhiwei, "Resource
Scaling Effects on MPP Performance: The STAP Benchmark
Implications," IEEE Transactions on Parallel and Distributed
Systems, vol. 10 no. 5, pp. 509-527, 1999.

[12]. K. Watanabe, T. Otsuka, J. I. Tsuchiya, H. Amano, H. Harada,
J. Yamamoto, H. Nishi, and T. Kudoh, "Performance
Evaluation of RHiNET 2/NI: A Network Interface for
Distributed Parallel Computing Systems," 2003, pp. 318-325.

[13]. M. Faidz, M. N. Taib, and S. Yahya, "Overlapping Effect of
Message-Passing and Computation in a Beowulf Cluster
Computing," unpublished, 2012.

[14]. M. Faidz, M. N. Taib, and S. Yahya, "Analysis of the MPI
Communication Performance in a Distributed Memory System
Architecture," unpublished, 2012.

[15]. K.-J. Andersson, D. Aronsson, and P. Karlsson, "An Evaluation
of the System Performance of a Beowulf Cluster. Internal
Report No. 2001:4," http://www.nsc.liu.se/grendel, 2001.

[16]. "Linux links, http://www.linuxlinks.com," accessed on 1 Feb
2007.

[17]. M. Perry, "Building Linux Beowulf Clusters,"
http://fscked.org/writings/clusters/cluster.html 2000.

[18]. "Linux Start, http://www.linuxlinks.com/," accessed on 1 Feb
2007.

[19]. "The Beowulf Underground," http://beowulf-underground.org/,
accessed on 1 Feb 2007.

[20]. "The Linux HOWTO Index,
http://sunsite.unc.edu/mdw/HOWTO," accessed on 1 Feb 2007.

[21]. "RedHat Linux, http://www.redhat.com/," accessed on 1 Feb
2007.

[22]. "Mandrake Linux, http://www.redhat.com/," accessed on 1 Feb
2007.

[23]. "Linux Software for Scientists, http://www.llp.fu-
berlin.de/baum/linuxlist-a.html," accessed on 30 Jan 2007.

[24]. "Linux Gazette," http://www.linuxgazette.com/, accessed on 1
Feb 2007.

[25]. "Linux Journal's Linux Resources, http://www.ssc.com/linux,"
accessed on 1 Feb 2007.

[26]. S. Blank, "Using MPICH to Build a Small Private Beowulf
Cluster," http://www.linuxjournal.com/article/5690, 2002.

[27]. "Scientific Applications on Linux, http://sal.kachinatech.com/,"
accessed on 1 Feb 2007.

[28]. "Beowulf (computing),
http://en.wikipedia.org/wiki/Beowulf_(computing)#Original_B
eowulf_HOWTO_Definition," accessed on 4 Dec 2007.

[29]. W. Feng, M. Warren, and E. Weigle, "The Bladed Beowulf: A
Cost-Effective Alternative to Traditional Beowulfs," in Proc.
The IEEE International Conference on Cluster Computing
(CLUSTER'02), 2002.

[30]. W. Feng, M. Warren, and E. Weigle, "Honey, I Shrunk the
Beowulf!," in Proc. The International Conference on Parallel
Processing (ICPP'02), 2002.

[31]. L. Wen-lang, X. An-dong, and R. Wen, "The Construction and
Test for a Small Beowulf Parallel Computing System," in Proc.
Third International Symposium on Intelligent Information
Technology and Security Informatics (IITSI), Jinggangshan,
China, 2010, pp. 767-770.

[32]. M. Warren, E. H. Weigle, and W.-C. Feng, "High-Density
Computing: A 240-Processor Beowulf in One Cubic Meter," in
Proc. The IEEE/ACM SC2002 Conference (SC'02), 2002.

[33]. K. D. Underwood, R. R. Sass, and I. Walter B. Ligon, "Cost
Effectiveness of an Adaptable Computing Cluster," in Proc.
The ACM/IEEE SC2001 Conference (SC'01), 2001.

[34]. H. Kuo-Chan, C. Hsi-Ya, S. Cherng-Yeu, C. Chaur-Yi, and T.
Shou-Cheng, "Benchmarking and Performance Evaluation of
NCHC PC Cluster," National Center for High-Performance
Computing, Hsinchu, Taiwan, 2000, pp. 923-928.

Mohamed Faidz Mohamed Said et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,22-36

© 2010, IJARCS All Rights Reserved 36

[35]. C. Yi-Hsing and J. W. Chen, "Designing an Enhanced PC
Cluster System for Scalable Network Services," in Proc. 19th
International Conference on Advanced Information Networking
and Applications (AINA 2005), 2005, pp. 163-166.

[36]. P. Farrell, "Factors Involved in the Performance of
Computations on Beowulf Clusters," Electronic Transactions
on Numerical Analysis, vol. 15, pp. 211-224, 2003.

[37]. P. Uthayopas, T. Angskun, and J. Maneesilp, "On the Building
of the Next Generation Integrated Environment for Beowulf
Clusters," in Proc. The International Symposium on Parallel
Architectures, Algorithms and Networks (ISPAN'02), 2002, pp.
1-6.

[38]. P. Uthayopas, S. Paisitbenchapol, T. Angskun, and J.
Maneesilp, "System Management Framework and Tools for
Beowulf Cluster," Computer and Network System Research
Laboratory, Kasetsart University, Bangkok, 2000.

[39]. J. Stafford, "Beowulf Founder: Linux is Ready for High-
Performance Computing," SearchOpenSource.com, 2004.

[40]. R. Kunz and J. Watson, "Clusters - Modern High Performance
Computing Platforms," Penn State Applied Research
Laboratory, 2004.

[41]. D. Fernandez Slezak, P. G. Turjanski, D. Montaldo, and E. E.
Mocskos, "Hands-On Experience in HPC with Secondary
School Students," IEEE Transactions on Education, vol. 53, pp.
128-135, 2010.

[42]. K. Yu-Kwong, "Parallel program execution on a heterogeneous
PC cluster using task duplication," 2000, pp. 364-374.

[43]. L. Chi-Ho, P. Kui-Hong, and K. Jong-Hwan, "Hybrid parallel,
evolutionary algorithms for constrained optimization utilizing
PC clustering," 2001, pp. 1436-1441.

[44]. W. Gropp and E. Lusk, User's Guide for MPICH, a Portable
Implementation of MPI Version 1.2.0: Argonne National
Laboratory, University of Chicago, 1996.

[45]. H. Shan, J. P. Singh, L. Oliker, and R. Biswas, "Message
Passing and Shared Address Space Parallelism on an SMP
Cluster," Parallel Computing, vol. 29 no. 2, pp. 167-186, 2002.

[46]. K. D. Underwood and R. Brightwell, "The Impact of MPI
Queue Usage on Message Latency," in Proc. International
Conference on Parallel Processing (ICPP 2004), 2004, pp. 152-
160.

[47]. C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E.
Rodriguez, and F. Cappello, "MPI Tools and Performance
Studies - Blocking vs. Non-Blocking Coordinated
Checkpointing for Large-Scale Fault Tolerant MPI," in Proc.
2006 ACM/IEEE Conference on Supercomputing Tampa,
Florida 2006, pp. 127.

[48]. D. Grove and P. Coddington, "Precise MPI Performance
Measurement using MPIBench,"
http://parallel.hpc.unsw.edu.au/HPCAsia/papers/72.pdf, 2001.

[49]. A. Danalis, K.-Y. Kim, L. Pollock, and M. Swany,
"Transformations to Parallel Codes for Communication-
Computation Overlap," in Proc. 2005 ACM/IEEE Conference
on Supercomputing 2005, pp. 58.

[50]. J. C. Sancho, K. J. Barker, D. J. Kerbyson, and K. Davis,
"Quantifying the Potential Benefit of Overlapping
Communication and Computation in Large-Scale Scientific
Applications," in Proc. ACM/IEEE SC 2006 Supercomputing
Conference (SC '06), Tampa, FL, 2006, pp. 17-32.

[51]. A. Sohn, P. Yunheung, K. Jui-Yuan, Y. Kodama, and Y.
Yamaguchi, "Communication Studies of Single-threaded and
Multithreaded Distributed-Memory Machines," in Proc. Fifth
International Symposium On High-Performance Computer
Architecture, Orlando, FL, 1999, pp. 310-314.

	Analysis of TCP/IP Overhead on Overlapping Message Transfer and Computation in a Distributed Memory System Architecture

