
Volume 3, No. 5, Sept-Oct 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 37

ISSN No. 0976-5697

Ranking by Quality in Spatial Data Using Top-k Preference Theory
Dwibhashyam Srilalitha*

Student II Year M.Tech (CSE)
Department of Computer Science and Engineering

Chaitanya Institute of Science and Technology (CIST)
Madhavi Patnam E.G.Dist. AP India

Sriyazi@gmail.com

K.Venkata Ramana
Asst. Professor

Department of Computer Science and Engineering
Chaitanya Institute of Science and Technology (CIST)

Madhavi Patnam E.G.Dist. AP India
 kvramana.mtech09@gmail.com

M.Vamsi Krishna

Head of the Department
Department of Computer Science and Engineering

Chaitanya Institute of Science and Technology (CIST)
Madhavi Patnam E.G.Dist. AP, India

 vamsimangalam@gmail.com

Abstract: This spatial preference query ranks objects based on the qualities of features in their spatial neighbourhood. For example, using a real estate
agency database of flats for lease, a customer may want to rank the flats with respect to the appropriateness of their location, defined after
aggregating the qualities of other features (e.g., restaurants, cafes, hospital, market, etc.) within their spatial neighbourhood. Such a neighbourhood
concept can be specified by the user via different functions. It can be an explicit circular region within a given distance from the flat. Another
intuitive definition is to consider the whole spatial domain and assign higher weights to the features based on their proximity to the flat. We formally
define spatial preference queries and propose appropriate indexing techniques and search algorithms for them. Extensively evaluation of our methods
on both real and synthetic data reveals that an optimized branch-and-bound solution is efficient and robust with respect to different parameters

Keywords: Databases, Spatial Data, Spatial databases, querying, analysis of data, ranking data, query processing.

I. INTRODUCTION

All SPATIAL database systems manage large collections
of geographic entities, which apart from spatial attributes
contain non spatial information (e.g., name, size, type, price,
etc.). In this paper, we study an interesting type of preference
queries, which select the best spatial location with respect to
the quality of facilities in its spatial neighborhood.

Given a set D of interesting objects (e.g. candidate
Locations), a top-k spatial preference query retrieves the k
objects in D with the highest scores. The score of an object is
defined by the quality of features (e.g., facilities or services) in
its spatial neighborhood. As a motivating example, consider a
real estate agency office that holds a database with available
flats for lease. Here “feature” refers to a class of objects in a
spatial map such as specific facilities or services. A customer
may want to rank the contents of this database with respect to
the quality of their locations, quantified by aggregating non
spatial characteristics of other features (e.g., restaurants, cafes,
hospital, market, etc.) in the spatial neighborhood of the flat
(defined by a spatial range around it). Quality may be
subjective and query-parametric. For example, a user may
define quality with respect to non spatial attributes of
restaurants around it (e.g., whether they serve sea food, price
range, etc.).

II. SCORE FUNCITON

Given a set of data objects and scored feature objects
Query Spatial neighborhood Features of interest (e.g., bars)
Returns Ranked set of k best data objects Score of a data
object Obtained from feature objects in its spatial
neighborhood as per Figure 1.

A. Aggregation of partial scores:
Using sum, max, and min Partial score of a data object for

a set of feature objects Defined by the score of a single feature
object Highest score, Satisfies the spatial constraint, Spatial
constraint, Range, nearest neighbor, and influence.

Figure 1. Example of Top-k Preference

Dwibhashyam Srilalitha et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,37-42

© 2010, IJARCS All Rights Reserved 38

Figure 2. Range Score Influence Score [1]

B. Using Max and Min functions in Range and Influence
score:

As another example, the user (e.g., a tourist) wishes to find
a hotel p that is close to a high-quality restaurant and a high
quality cafe. Figure. 2a illustrates the locations of an object
data set D (hotels) in white, and two feature data sets: the set
F1 (restaurants) in gray, and the set F2 (cafes) in black. The
score T(p) of a hotel p is defined in terms of: 1) the maximum
quality for each feature in the neighborhood region of p, and
2) the aggregation of those qualities. A simple score instance,
called the range score, binds the neighborhood region to a
circular region at p with radius e (shown as a circle), and the
aggregate function to SUM. For instance, the maximum
quality of gray and black points within the circle of p1 are 0.9
and 0.6, respectively, so the score of p1 is T(p1) = 0.9 + 0.6 =
1.5. Similarly, we obtain T(p2) = 1.0 + 0.1 = 1.1 and T(p3) =
0.7 + 0.7 = 1.4. Hence, the hotel p1 is returned as the top
result.

For ease of understanding the qualities are normalized to
values in [0,1]. In fact, the aggregate function is relevant to
the user’s query. The SUM function attempts to balance the
overall qualities of all features. The MIN function, the top
result becomes the p3, with the score T(p3) = min{0.7 , 0.7} =
0.7. The MAX function, here the top result is p2, with T(p2) =
max{1.0 , 0.1} = 1.0. This is used to optimize the quality in a
single feature.

A meaningful score function is the influence score. Figure
2b illustrates the influence score smoothens the effect of e and
assigns higher weights to cafes that are closer to the hotel. A
hotel p5 and three cafes S1, S2, S3. The circles have their radii
as multiple of e. The score of a café Si is computed by
multiplying its quality with the weight 2-j, where j is the order
of the smallest circle containing Si. Let us assume the scores of
S1, S2, S3 are 0.3/21 = 0.15, 0.9/22 = 0.225 and 1.0/23 = 0.125,
the influence score of p5 is taken as the highest value(0.225)
[1].

III. LITERATURE REVIEW

R-trees are tree data structures used for spatial access
methods, i.e., for indexing multi-dimensional information such
as geographical coordinates, rectangles or polygons. The R-tree

was proposed by Antonin Guttman in 1984 and has found
significant use in both research and real-world applications. [4]
A common real-world usage for an R-tree might be to store
spatial objects such as restaurant locations or the polygons that
typical maps are made of: streets, buildings, outlines of lakes,
coastlines, etc. and then find answers quickly to queries such as
"Find all museums within 2 km of my current location",
"retrieve all road segments within 2 km of my location" (to
display them in a navigation system) or "find the nearest gas
station" (although not taking roads into account).

Figure 3 R-Tree

To group nearby objects and represent them with
their minimum bounding rectangle in the next higher level of
the tree; the "R" in R-tree is for rectangle. Since all objects lie
within this bounding rectangle, a query that does not intersect
the bounding rectangle also cannot intersect any of the
contained objects. At the leaf level, each rectangle describes a
single object; at higher levels the aggregation of an increasing
number of objects. This can also be seen as an increasingly
coarse approximation of the data set. As with most trees, the
searching algorithms (e.g., intersection, containment, nearest
neighbor search) are rather simple. The key idea is to use the
bounding boxes to decide whether or not to search inside a sub
tree. In this way, most of the nodes in the tree are never read
during a search.

Like B-trees, this makes R-trees suitable for large data sets
and databases, where nodes can be paged to memory when
needed, and the whole tree cannot be kept in main memory.

The key difficulty of R-trees is to build an efficient tree that
on one hand is balanced (so the leaf nodes are at the same
height) on the other hand the rectangles do not cover too much
empty space and do not overlap too much (so that during

http://en.wikipedia.org/wiki/Tree_data_structure�
http://en.wikipedia.org/wiki/Spatial_index�
http://en.wikipedia.org/wiki/Spatial_index�
http://en.wikipedia.org/wiki/Spatial_index�
http://en.wikipedia.org/wiki/Geographic_coordinate_system�
http://en.wikipedia.org/wiki/Rectangle�
http://en.wikipedia.org/wiki/Polygon�
http://en.wikipedia.org/wiki/Navigation_system�
http://en.wikipedia.org/wiki/Minimum_bounding_rectangle�
http://en.wikipedia.org/wiki/Intersection_(set_theory)�
http://en.wikipedia.org/wiki/Nearest_neighbor_search�
http://en.wikipedia.org/wiki/Nearest_neighbor_search�
http://en.wikipedia.org/wiki/Nearest_neighbor_search�
http://en.wikipedia.org/wiki/Database�

Dwibhashyam Srilalitha et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,37-42

© 2010, IJARCS All Rights Reserved 39

search, fewer sub trees need to be processed). For example, the
original idea for inserting elements to obtain an efficient tree is
to always insert into the sub tree that requires least enlargement
of its bounding box. Once that page is full, the data is split into
two sets that should cover the minimal area each. Most of the
research and improvements for R-trees aims at improving the
way the tree is built and can be grouped into two objectives:
building an efficient tree from scratch (known as bulk-loading)
and performing changes on an existing tree (insertion and
deletion).

R-trees do not guarantee worst-case performance, but
generally perform well with real-world data. While more of
theoretical interest, the (bulk-loaded) Priority R-Tree variant of
the R-tree is also worst-case optimal, but due to the increased
complexity, has not received much attention in practical
applications so far.

When data is organized in an R-Tree, the k nearest
neighbors (for any Lp-Norm) of all points can efficiently be
computed using a spatial join. This is beneficial for many
algorithms based on the k nearest neighbors.

IV. SPATIAL QUERY EVALUATION ON R-TREES

A real estate agency maintains a database that contains
information of flats available for rent. A potential customer
wishes to view the top 10 flats with the largest sizes and lowest
prices. In this case, the score of each flat is expressed by the
sum of two qualities: size and price, after normalization to the
domain [0, 1] (e.g., 1 means the largest size and the lowest
price). In spatial databases, ranking is often associated to
nearest neighbor (NN) retrieval. Given a query location, we are
interested in retrieving the set of nearest objects to it that
qualify a condition (e.g., restaurants). Assuming that the set of
interesting objects is indexed by an R-tree, we can apply
distance bounds and traverse the index in a branch-and-bound
fashion to obtain the answer [5],. Nevertheless, it is not always
possible to use multi dimensional indexes for top-k retrieval.

First, such indexes break down in high-dimensional spaces
[6], [7]. Second, top-k queries may involve an arbitrary set of
user-specified attributes (e.g., size and price) from possible
ones (e.g., size, price, distance to the beach, number of
bedrooms, floor, etc.) and indexes may not be available for all
possible attribute combinations (i.e., they are too expensive to
create and maintain). Third, information for different rankings
to be combined (i.e., for different attributes) could appear
indifferent databases (in a distributed database scenario) and
unified indexes may not exist for them. Solutions for top-k
queries [3], [8], [9], focus on the efficient merging of object
rankings that may arrive from different (distributed) sources.

Their motivation is to minimize the number of accesses to
the input rankings until the objects with the top k aggregate
scores have been identified. To achieve this, upper and lower
bounds for the objects seen so far are maintained while
scanning the sorted lists In the following sections, we first
review the R-tree, which is the most popular spatial access
method and the NN search algorithm of [5] . Then, we survey
recent research of feature-based spatial queries.

Figure 4. Spatial Queries on R-Tree [1]

The most popular spatial access method is the R-tree [4]
which indexes minimum bounding rectangles (MBRs) of
objects. Figure.4 shows a set D = {p1; . . . ; p8} of spatial
objects (e.g., points) and an R-tree that indexes them. R-trees
can efficiently process main spatial query types, including
spatial range queries, nearest neighbor queries, and spatial
joins. Given a spatial region W, a spatial range query retrieves
from D the objects that intersect W. For instance, consider a
range query that asks for all objects within the shaded area in
Figure. 4. Starting from the root of the tree, the query is
processed by recursively following entries, having MBRs that
intersect the query region. For instance, e1 does not intersect
the query region, thus the sub tree pointed by e1 cannot
contain any query result. In contrast, e2 is followed by the
algorithm and the points in the corresponding node are
examined recursively to find the query result p7. A nearest
neighbor query takes as input a query object q and returns the
closest object in D to q. For instance, the nearest neighbor of q
in Figure.4 is p7. Its generalization is the k-NN query, which
returns the k closest objects to q, given a positive integer k.
NN (and k-NN) queries can be efficiently processed using the
best-first (BF) algorithm [5] of, provided that D is indexed by
an R-tree. A min-heap H which organizes R-tree entries based
on the (minimum) distance of their MBRs to q is initialized
with the root entries. In order to find the NN of q in Figure.4,
BF first inserts to H entries e1, e2, e3, and their distances to q.

Then, the nearest entry e2 is retrieved from H and objects
p1, p7, p8 are inserted to H. The next nearest entry in H is p7,
which is the nearest neighbor of q. In terms of I/O, the BF
algorithm is shown to be no worse than any NN algorithm on
the same R-tree. The aggregate R-tree (a R-tree) is a variant of
the R-tree, where each non leaf entry augments an aggregate
measure for some attribute value (measure) of all points in its
sub tree. As an example, the tree shown in Figure.4 can be
upgraded to a MAX a R-tree over the point set, if entries e1,
e2, e3 contain the maximum measure values of sets {p2, p3},
{p1, p8, p7}, {p4, p5, p6}, respectively. Assume that the
measure values of p4, p5, p6 are 0.2, 0.1, 0.4, respectively. In
this case, the aggregate measure augmented in e3 would be
max {0.2, 0.1, 0.4} = 0.4. In this paper, we employ MAX a R-
trees for indexing the feature data sets (e.g., restaurants), in
order to accelerate the processing of top-k spatial preference
queries. Given a feature data set F and a multidimensional
region R, the range top-k query selects the tuples (from F)
within the region R and returns only those with the k highest

http://en.wikipedia.org/wiki/Worst-case_performance�
http://en.wikipedia.org/wiki/Priority_R-Tree�
http://en.wikipedia.org/wiki/K_nearest_neighbors�
http://en.wikipedia.org/wiki/K_nearest_neighbors�
http://en.wikipedia.org/wiki/K_nearest_neighbors�
http://en.wikipedia.org/wiki/Lp_space�

Dwibhashyam Srilalitha et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,37-42

© 2010, IJARCS All Rights Reserved 40

qualities. Hong [10] indexed the data set by a MAX a R-tree
and developed an efficient tree traversal algorithm to answer
the query. Instead of finding the best k qualities from F in a
specified region, our (range score) query considers multiple
spatial regions based on the points from the object data set D,
and attempts to find out the best k regions (based on scores
derived from multiple feature data sets Fc).

Feature – Based Spatial Queries solved the problem of
finding top-k sites (e.g. restaurants) based on their influence
on feature points (e.g., residential buildings).[11] As an
example, Figure. 5a shows a set of sites (white points), a set of
features (black points with weights), such that each line links a
feature point to its nearest site. The influence of a site pi is
defined by the sum of weights of feature points having pi as
their closest site. For instance, the score of p1 is 0.9 + 0.5 =
1.4. Similarly, the scores of p2 and p3 are 1.5 and 1.2,
respectively. Hence, p2 is returned as the top-1 influential site.
Related to top-k influential sites query are the optimal location
queries studied in [12], [13]. The goal is to find the location
in space (not chosen from a specific set of sites) that
minimizes an objective function. In Figures. 5b and 5c,
feature points and existing sites are shown as black and gray
points, respectively. Assume that all feature points have the
same quality.

Figure .5 Influential and Optimal location queries. [1]

(a) Top –k influential. (b) Max influence (c) Min distance

The maximum influence optimal location query [12], finds
the location (to insert to the existing set of sites) with the
maximum influence (as defined in [11]), whereas the
minimum distance optimal location query [13], searches for
the location that minimizes the average distance from each
feature point to its nearest site. The optimal locations for both
queries are marked as white points in Figure. 5b, and 5c,
respectively. The techniques proposed in [11], [12], [13], are
specific to the particular query types described above and
cannot be extended for our top-k spatial preference queries.
Also, they deal with a single-feature data set whereas our
queries consider multiple feature data sets. Recently, novel
spatial queries and joins [14], [15], have been proposed for
various spatial decision support problems. However, they do
not utilize non spatial qualities of facilities to define the score
of a location.

V. PROBING ALGORITHMS USED

A. Simple Probing Algorithm:
The baseline algorithm (Brute Force Algorithm) Simple

Probing computes the scores of every object by querying on

feature datasets. This algorithm deals with the collection of
information from single reference point.

B. Group Probing Algorithm:
The algorithm Group Probing is a variant of SP that reduces

I/O cost by computing scores of objects in the same leaf node
concurrently. This algorithm deals with the collection of
information from multiple reference point.

In Group Probing the procedures for computing the cth
component score for a group of points. Consider a subset V of
D for which we want to compute their range score at feature
tree Fc. Initially, the procedure is called with N being the root
node of Fc. If e is a non-leaf entry and its mildest from some
point p ∈ V is within the range c, then the procedure is applied
recursively on the child node of e, since the sub tree of Fc
rooted ate may contribute to the component score of p. In case
e is a leaf entry (i.e., a feature point), the scores of points in V
are updated if they are within distance c from e.
Algorithm 1 : Group Range Score Algorithm
Algorithm group_ range (Node N,, Set V,, Value c,, Value e)
a. for each entry e ∈N do
b. If N is non-leaf then
c. If ∃p ∈ V, min dist(p, e) ≤ e then
d. read the child node N` pointed by e;
e. Group_ Range(N`,V, c, e);
f. Else
g. for each p ∈ V such that dist(p, e) ≤ e do
h. Tc (p) := max { Tc (p), w(e)}; [1]

C. Branch and Bound Algorithm:
GP is still expensive as it examines all objects in D and

computes their component scores. We now propose an
algorithm that can significantly reduce the number of objects
to be examined. The key idea is to compute, for non-leaf
entries e in the object tree D, an upper bound Z (e) of the score
T(p) For any point p in the sub tree of e. If Z (e) * r then we
need not access the sub tree of e, thus we can save numerous
score computations.
Algorithm 2: Branch and Bound Algorithm
Wk: = new min-heap of size k (initially empty);
γ : = 0;
Algorithm BB (Node N)
a. V: = {e\e ∈ N};
b. If N is non-leaf then
c. for c: = 1 to m do
d. compute Tc (e) For all e ∈ V concurrently;
e. remove entries e in V such that T+ (e) ≤ γ;
f. sort entries e c V in descending order of? (e);
g. for each entry e c V such that Z (e) > v do
h. read the child node N pointed by e;
i. BB (N);
j. else
k. for c: =1 to m do
l. computeTc (e) For all e ∈ V concurrently;
m. remove entries e in V such that Z+ (e) * v;
n. update Wk (and γ) by entries in V; [1]

Dwibhashyam Srilalitha et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,37-42

© 2010, IJARCS All Rights Reserved 41

D. Spatial Data Events:
Spatial database system contains spatial and non-spatial

information for road network. Select the spatial location
according to client preference. Score is defined by the quality
of features and features refer to classes of object in spatial
map. Quality of the spatial events may be subjective or query
parametric. If the spatial events are subjective then the quality
with respective to non-spatial attributes, qualities are
normalized to values 0 to 1 and quality values can be obtained
from rating providers. The Query-parametric Values are based
on the queries. Range score binds neighborhood region to
crisp radius and the aggregation of qualities. Influence score
smoothens the effect of radius and assign the higher weights.

E. Preferential Queries:
The preference queries involve selecting the best spatial

location based on multiple feature data sets on road network. It
retrieves k points in a data set with highest score. In the
preference queries apply the R-tree indexing feature to data
sets with three concepts such as MAX a R-tree to road
network, efficient tree traversal algorithm and obtain the
quality from rating providers.

F. Ranking of spatial query points:
The two classic ways for ranking objects in spatial data is

as follows - 1.Spatial Ranking - It orders according to their
distance. 2. Non Spatial Ranking- It orders based on aggregate
function. By applying the brute-force approach, compute score
of all objects in given set and select the top-k ones. Its very
expensive and also complex. We go for Branch bound and
optimizing the performance.

G. Top-k Spatial Query:
Top-k spatial preference query retrieves k objects in

database with the highest scores. It uses the concept of
Branch-and-bound (BB) algorithm and feature join (FJ)
algorithm to compute the upper bound score of objects in
optimized way. The solution for top-k queries is obtained via
merging of object rankings and minimizes the number of
access until top-k aggregates reached. An alternate method for
top-k query is multi-way spatial join.

The algorithm 2 Branch and Bound derives upper bound
scores for non-leaf entries in the object tree and prunes those
that cannot lead to better results. This algorithm is responsible
for integrating the collected data and performs operations to
give the rank for the spatial data.

Adaptations of the proposed algorithms for aggregate
functions other than SUM, e.g., the functions MIN and MAX.

VI. ACKNOWLEDGMENT

I thank my Internal guide, and the HOD of our department
(who are my co authors) and also Sri Surya Associates who
helped me to gather data of houses / flats which are available
for let out by allowing me to gather from their database in our
area. Also they were interested in our project implementation
in real time.

VII. CONCLUSION

Top-k spatial preference queries, which provide a novel
type of ranking for spatial objects based on qualities of features
in their neighborhood. The neighborhood of an object p is
captured by the scoring function:
a. The range score restricts the neighborhood to a crisp

region centered at p, whereas
b. The influence score relaxes the neighborhood to the

whole space and assigns higher weights to locations
closer to p. Search for their relevant objects in the object
tree. Here we are using priority based algorithm by
selecting the customer who books the flat first by taking
the average while calculating Euclidean distance and
aggregate obtained when two aggregates or the distances
are same with reference to reference points (hospital,
school, market, railway station etc) that are located near
the flats. Solutions for the top-k spatial preference query
based on the influence score can also be developed.

In future we will be using this to locate in general the
places requested by customers and also the possible way of
transportations

VIII. REFERENCES

[1]. Man Lung Yiu, Hua Lu, Member, IEEE, Nikos Mamoulis,
and Michail Vaitis, “Ranking Spatial Data by Quality
Preference,” Proc. IEEE Transactions on Knowledge and
Data Engineering VOL 23, NO. 3, March 2011.

[2]. M.L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis, “Top-k
Spatial Preference Queries,” Proc. IEEE Int’l Conf. Data Eng.
(ICDE), 2007.

[3]. N. Bruno, L. Gravano, and A. Marian, “Evaluating Top-k
Queries over Web-Accessible Databases,” Proc. IEEE Int’l
Conf. Data Eng. (ICDE), 2002.

[4]. A. Guttman, “R-Trees: A Dynamic Index Structure for
Spatial Searching,” Proc. ACM SIGMOD, 1984.

[5]. G.R. Hjaltason and H. Samet, “Distance Browsing in Spatial
Databases,” ACM Trans. Database Systems, vol. 24, no. 2,
pp. 265-318, 1999.

[6]. R. Weber, H.-J. Schek, and S. Blott, “A Quantitative Analysis
and Performance Study for Similarity-Search Methods in
High-Dimensional Spaces,” Proc. Int’l Conf. Very Large
Data Bases (VLDB), 1998

[7]. K.S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft,
“When is „Nearest Neighbor‟ Meaningful?” Proc. Seventh
Int‟ l Conf. Database Theory (ICDT), 1999.

[8]. R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation
Algorithms for Middleware,”Proc. Int‟ l Symp. Principles of
Database Systems (PODS), 2001.

[9]. I.F. Ilyas, W.G. Aref, and A. Elmagarmid, “Supporting Top-k
Join Queries inRelational Databases,” Proc. 29th Int‟ l Conf.
Very Large Data Bases (VLDB), 2003.

[10]. S. Hong, B. Moon, and S. Lee, “Efficient Execution of Range
Top-k Queries in Aggregate R-Trees,” IEICE Trans.

Dwibhashyam Srilalitha et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,37-42

© 2010, IJARCS All Rights Reserved 42

Information and Systems, vol. 88-D, no. 11, pp. 2544-2554,
2005.

[11]. T. Xia, D. Zhang, E. Kanoulas, and Y. Du, “On Computing
Top-t Most Influential Spatial Sites,” Proc. 31st Int’l Conf.
Very Large Data Bases (VLDB), 2005.

[12]. Y. Du, D. Zhang, and T. Xia, “The Optimal-Location Query,”
Proc.Int’l Symp. Spatial and Temporal Databases (SSTD),
2005.

[13]. D. Zhang, Y. Du, T. Xia, and Y. Tao, “Progessive
Computation of The Min-Dist Optimal-Location Query,”
Proc. 32nd Int’l Conf. Very Large Data Bases (VLDB), 2006.

[14]. Y. Chen and J.M. Patel, “Efficient Evaluation of All-Nearest-
Neighbor Queries,” Proc. IEEE Int’l Conf. Data Eng. (ICDE),
2007.

[15]. P.G.Y. Kumar and R. Janardan, “Efficient Algorithms for
Reverse Proximity Query Problems,” Proc. 16th ACM Int’l
Conf. Advances in Geographic Information Systems (GIS),
2008.

	INTRODUCTION
	SCORE FUNCITON
	Aggregation of partial scores:
	Using Max and Min functions in Range and Influence score:

	LITERATURE REVIEW
	SPATIAL QUERY EVALUATION ON R-TREES
	PROBING ALGORITHMS USED
	Simple Probing Algorithm:
	Group Probing Algorithm:
	Branch and Bound Algorithm:
	V: = {e\e (N};
	If N is non-leaf then
	for c: = 1 to m do
	compute Tc (e) For all e (V concurrently;
	remove entries e in V such that T+ (e) ≤ (;
	sort entries e c V in descending order of? (e);
	for each entry e c V such that Z (e) > v do
	read the child node N pointed by e;
	BB (N);
	else
	for c: =1 to m do
	computeTc (e) For all e (V concurrently;
	remove entries e in V such that Z+ (e) * v;
	update Wk (and () by entries in V; [1]

	Spatial Data Events:
	Preferential Queries:
	Ranking of spatial query points:
	Top-k Spatial Query:

	ACKNOWLEDGMENT
	CONCLUSION
	REFERENCES

