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Abstract: This spatial preference query ranks objects based on the qualities of features in their spatial neighbourhood. For example, using a real estate 
agency database of flats for lease, a customer may want to rank the flats with respect to the appropriateness of their location, defined after 
aggregating the qualities of other features (e.g., restaurants, cafes, hospital, market, etc.) within their spatial neighbourhood. Such a neighbourhood 
concept can be specified by the user via different functions. It can be an explicit circular region within a given distance from the flat. Another 
intuitive definition is to consider the whole spatial domain and assign higher weights to the features based on their proximity to the flat. We formally 
define spatial preference queries and propose appropriate indexing techniques and search algorithms for them. Extensively evaluation of our methods 
on both real and synthetic data reveals that an optimized branch-and-bound solution is efficient and robust with respect to different parameters 
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I. INTRODUCTION  

All SPATIAL database systems manage large collections 
of geographic entities, which apart from spatial attributes 
contain non spatial information (e.g., name, size, type, price, 
etc.). In this paper, we study an interesting type of preference 
queries, which select the best spatial location with respect to 
the quality of facilities in its spatial neighborhood. 

Given a set D of interesting objects (e.g. candidate 
Locations), a top-k spatial preference query retrieves the k 
objects in D with the highest scores. The score of an object is 
defined by the quality of features (e.g., facilities or services) in 
its spatial neighborhood. As a motivating example, consider a 
real estate agency office that holds a database with available 
flats for lease. Here “feature” refers to a class of objects in a 
spatial map such as specific facilities or services. A customer 
may want to rank the contents of  this database with respect to 
the quality of their locations, quantified by aggregating non 
spatial characteristics of other features (e.g., restaurants, cafes, 
hospital, market, etc.) in the spatial neighborhood of the flat 
(defined by a spatial range around it). Quality may be 
subjective and query-parametric. For example, a user may 
define quality with respect to non spatial attributes of 
restaurants around it (e.g., whether they serve sea food, price 
range, etc.). 

II. SCORE FUNCITON 

Given a set of data objects and scored feature objects 
Query  Spatial neighborhood Features of interest (e.g., bars)  
Returns Ranked set of k best data objects  Score of a data 
object Obtained from feature objects in its spatial 
neighborhood as per Figure 1. 

A. Aggregation of partial scores:  
Using  sum, max, and  min Partial score of a data object for 

a set of feature objects Defined by the score of a single feature 
object Highest score, Satisfies the spatial constraint, Spatial 
constraint, Range,  nearest neighbor, and influence. 
 

 
Figure 1. Example of Top-k Preference 
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Figure 2.  Range Score  Influence Score [1] 

B. Using Max and Min functions in Range and Influence 
score: 

As another example, the user (e.g., a tourist) wishes to find 
a hotel p that is close to a high-quality restaurant and a high 
quality cafe. Figure. 2a illustrates the locations of an object 
data set D (hotels) in white, and two feature data sets: the set 
F1 (restaurants) in gray, and the set F2 (cafes) in black. The 
score T(p) of a hotel p is defined in terms of: 1) the maximum 
quality for each feature in the neighborhood region of p, and 
2) the aggregation of those qualities. A simple score instance, 
called the range score, binds the neighborhood region to a 
circular region at p with radius e (shown as a circle), and the 
aggregate function to SUM. For instance, the maximum 
quality of gray and black points within the circle of p1 are 0.9 
and 0.6, respectively, so the score of p1 is T(p1) = 0.9 + 0.6 = 
1.5. Similarly, we obtain T(p2) = 1.0 + 0.1 = 1.1 and  T(p3) = 
0.7 + 0.7 = 1.4. Hence, the hotel p1 is returned as the top 
result. 

For ease of understanding the qualities are normalized to 
values in [0,1].  In fact, the aggregate function is relevant to 
the user’s query. The SUM function attempts to balance the 
overall qualities of all features.  The MIN function, the top 
result becomes the p3, with the score T(p3) = min{0.7 , 0.7} = 
0.7.  The MAX function, here the top result is p2, with   T(p2) = 
max{1.0 , 0.1} = 1.0.  This is used to optimize the quality in a 
single feature. 

A meaningful score function is the influence score. Figure 
2b illustrates the influence score smoothens the effect of e and 
assigns higher weights to cafes that are closer to the hotel.  A 
hotel p5  and three cafes S1, S2, S3.  The circles have their radii 
as multiple of e. The score of a café Si is computed by 
multiplying its quality with the weight 2-j, where j is the order 
of the smallest circle containing Si.  Let us assume the scores of 
S1, S2,  S3 are 0.3/21 = 0.15, 0.9/22 = 0.225 and 1.0/23 = 0.125, 
the influence score of p5 is taken as the highest value(0.225) 
[1]. 

III. LITERATURE  REVIEW 

R-trees are tree data structures used for spatial access 
methods, i.e., for indexing multi-dimensional information such 
as geographical coordinates, rectangles or polygons. The R-tree 

was proposed by Antonin Guttman in 1984 and has found 
significant use in both research and real-world applications. [4] 
A common real-world usage for an R-tree might be to store 
spatial objects such as restaurant locations or the polygons that 
typical maps are made of: streets, buildings, outlines of lakes, 
coastlines, etc. and then find answers quickly to queries such as 
"Find all museums within 2 km of my current location", 
"retrieve all road segments within 2 km of my location" (to 
display them in a navigation system) or "find the nearest gas 
station" (although not taking roads into account). 
 

 
Figure 3 R-Tree 

To group nearby objects and represent them with 
their minimum bounding rectangle in the next higher level of 
the tree; the "R" in R-tree is for rectangle. Since all objects lie 
within this bounding rectangle, a query that does not intersect 
the bounding rectangle also cannot intersect any of the 
contained objects. At the leaf level, each rectangle describes a 
single object; at higher levels the aggregation of an increasing 
number of objects. This can also be seen as an increasingly 
coarse approximation of the data set. As with most trees, the 
searching algorithms (e.g., intersection, containment, nearest 
neighbor search) are rather simple. The key idea is to use the 
bounding boxes to decide whether or not to search inside a sub 
tree. In this way, most of the nodes in the tree are never read 
during a search. 

Like B-trees, this makes R-trees suitable for large data sets 
and databases, where nodes can be paged to memory when 
needed, and the whole tree cannot be kept in main memory. 

The key difficulty of R-trees is to build an efficient tree that 
on one hand is balanced (so the leaf nodes are at the same 
height) on the other hand the rectangles do not cover too much 
empty space and do not overlap too much (so that during 
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search, fewer sub trees need to be processed). For example, the 
original idea for inserting elements to obtain an efficient tree is 
to always insert into the sub tree that requires least enlargement 
of its bounding box. Once that page is full, the data is split into 
two sets that should cover the minimal area each. Most of the 
research and improvements for R-trees aims at improving the 
way the tree is built and can be grouped into two objectives: 
building an efficient tree from scratch (known as bulk-loading) 
and performing changes on an existing tree (insertion and 
deletion). 

R-trees do not guarantee worst-case performance, but 
generally perform well with real-world data. While more of 
theoretical interest, the (bulk-loaded) Priority R-Tree variant of 
the R-tree is also worst-case optimal, but due to the increased 
complexity, has not received much attention in practical 
applications so far. 

When data is organized in an R-Tree, the k nearest 
neighbors  (for any Lp-Norm) of all points can efficiently be 
computed using a spatial join. This is beneficial for many 
algorithms based on the k nearest neighbors. 

IV. SPATIAL QUERY EVALUATION ON R-TREES 

A real estate agency maintains a database that contains 
information of flats available for rent. A potential customer 
wishes to view the top 10 flats with the largest sizes and lowest 
prices. In this case, the score of each flat is expressed by the 
sum of two qualities: size and price, after normalization to the 
domain [0, 1] (e.g., 1 means the largest size and the lowest 
price). In spatial databases, ranking is often associated to 
nearest neighbor (NN) retrieval. Given a query location, we are 
interested in retrieving the set of nearest objects to it that 
qualify a condition (e.g., restaurants). Assuming that the set of 
interesting objects is indexed by an R-tree, we can apply 
distance bounds and traverse the index in a branch-and-bound 
fashion to obtain the answer [5],. Nevertheless, it is not always 
possible to use multi dimensional indexes for top-k retrieval.  

First, such indexes break down in high-dimensional spaces 
[6], [7]. Second, top-k queries may involve an arbitrary set of 
user-specified attributes (e.g., size and price) from possible 
ones (e.g., size, price, distance to the beach, number of 
bedrooms, floor, etc.) and indexes may not be available for all 
possible attribute combinations (i.e., they are too expensive to 
create and maintain). Third, information for different rankings 
to be combined (i.e., for different attributes) could appear 
indifferent databases (in a distributed database scenario) and 
unified indexes may not exist for them. Solutions for top-k 
queries [3], [8], [9], focus on the efficient merging of object 
rankings that may arrive from different (distributed) sources.  

Their motivation is to minimize the number of accesses to 
the input rankings until the objects with the top k aggregate 
scores have been identified. To achieve this, upper and lower 
bounds for the objects seen so far are maintained while 
scanning the sorted lists In the following sections, we first 
review the R-tree, which is the most popular spatial  access 
method and the NN search algorithm of [5] . Then, we survey 
recent research of feature-based spatial queries. 

 

 
Figure 4. Spatial Queries on R-Tree [1] 

The most popular spatial access method is the R-tree [4] 
which indexes minimum bounding rectangles (MBRs) of 
objects. Figure.4 shows a set D = {p1; . . . ; p8} of spatial 
objects (e.g., points) and an R-tree that indexes them. R-trees 
can efficiently process main spatial query types, including 
spatial range queries, nearest neighbor queries, and spatial 
joins. Given a spatial region W, a spatial range query retrieves 
from D the objects that intersect W. For instance, consider a 
range query that asks for all objects within the shaded area in 
Figure. 4. Starting from the root of the tree, the query is 
processed by recursively following entries, having MBRs that 
intersect the query region. For instance, e1 does not intersect 
the query region, thus the sub tree pointed by e1 cannot 
contain any query result. In contrast, e2 is followed by the 
algorithm and the points in the corresponding node are 
examined recursively to find the query result p7. A nearest 
neighbor query takes as input a query object q and returns the 
closest object in D to q. For instance, the nearest neighbor of q 
in Figure.4 is p7. Its generalization is the k-NN query, which 
returns the k closest objects to q, given a positive integer k. 
NN (and k-NN) queries can be efficiently processed using the 
best-first (BF) algorithm [5] of, provided that D is indexed by 
an R-tree. A min-heap H which organizes R-tree entries based 
on the (minimum) distance of their MBRs to q is initialized 
with the root entries. In order to find the NN of q in Figure.4, 
BF first inserts to H entries e1, e2, e3, and their distances to q.  

Then, the nearest entry e2 is retrieved from H and objects 
p1, p7, p8 are inserted to H. The next nearest entry in H is p7, 
which is the nearest neighbor of q. In terms of I/O, the BF 
algorithm is shown to be no worse than any NN algorithm on 
the same R-tree. The aggregate R-tree (a R-tree) is a variant of 
the R-tree, where each non leaf entry augments an aggregate 
measure for some attribute value (measure) of all points in its 
sub tree. As an example, the tree shown in Figure.4 can be 
upgraded to a MAX a R-tree over the point set, if entries e1, 
e2, e3 contain the maximum measure values of sets {p2, p3}, 
{p1, p8, p7}, {p4, p5, p6}, respectively. Assume that the 
measure values of p4, p5, p6 are 0.2, 0.1, 0.4, respectively. In 
this case, the aggregate measure augmented in e3 would be 
max {0.2, 0.1, 0.4} = 0.4. In this paper, we employ MAX a R-
trees for indexing the feature data sets (e.g., restaurants), in 
order to accelerate the processing of top-k spatial preference 
queries. Given a feature data set F and a multidimensional 
region R, the range top-k query selects the tuples (from F) 
within the region R and returns only those with the k highest 
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qualities. Hong [10] indexed the data set by a MAX a R-tree 
and developed an efficient tree traversal algorithm to answer 
the query. Instead of finding the best k qualities from F in a 
specified region, our (range score) query considers multiple 
spatial regions based on the points  from the object data set D, 
and attempts to find out the best k regions (based on scores 
derived from multiple feature data sets Fc). 

Feature – Based Spatial Queries solved the problem of 
finding top-k sites (e.g. restaurants) based on their influence 
on feature points (e.g., residential buildings).[11] As an 
example, Figure. 5a shows a set of sites (white points), a set of 
features (black points with weights), such that each line links a 
feature point to its nearest site. The influence of a site   pi is 
defined by the sum of weights of feature points having  pi as 
their closest site. For instance, the score of p1 is 0.9 + 0.5 = 
1.4. Similarly, the scores of p2 and p3 are 1.5 and 1.2, 
respectively. Hence, p2 is returned as the top-1 influential site. 
Related to top-k influential sites query are the optimal location 
queries studied   in [12], [13]. The goal is to find the location 
in space (not chosen from a specific set of sites) that 
minimizes an objective function. In  Figures. 5b and 5c, 
feature points and existing sites are shown as black and gray 
points, respectively. Assume that all feature points have the 
same quality. 

 

Figure .5 Influential and Optimal  location queries. [1] 

(a) Top –k influential. (b) Max influence (c) Min distance 

The maximum influence optimal location query [12], finds 
the location (to insert to the existing set of sites) with the 
maximum influence (as defined in [11]), whereas the 
minimum distance optimal location query [13],  searches for 
the location that minimizes the average distance from each 
feature point to its nearest site. The optimal locations for both 
queries are marked as white points in Figure. 5b, and 5c,  
respectively. The techniques proposed in [11], [12], [13], are 
specific to the particular query types described above and 
cannot be extended for our top-k spatial preference queries. 
Also, they deal with a single-feature data set whereas our 
queries consider multiple feature data sets. Recently, novel 
spatial queries and joins [14], [15], have been proposed for 
various spatial decision support problems. However, they do 
not utilize non spatial qualities of facilities to define the score 
of a location. 

V. PROBING ALGORITHMS USED 

A. Simple Probing Algorithm: 
The baseline algorithm (Brute Force Algorithm) Simple 

Probing computes the scores of every object by querying on 

feature datasets. This algorithm deals with the collection of 
information from single reference point. 

B. Group Probing Algorithm: 
The algorithm Group Probing is a variant of SP that reduces 

I/O cost by computing scores of objects in the same leaf node 
concurrently. This algorithm deals with the collection of 
information from multiple reference point. 

In Group Probing the procedures for computing the cth 
component score for a group of points. Consider a subset V of 
D for which we want to compute their range score at feature 
tree Fc. Initially, the procedure is called with N being the root 
node of Fc. If e is a non-leaf entry and its mildest from some 
point p ∈ V is within the range c, then the procedure is applied 
recursively on the child node of e, since the sub tree of Fc 
rooted ate may contribute to the component score of p. In case 
e is a leaf entry (i.e., a feature point), the scores of points in V 
are updated if they are within distance c from e.  
Algorithm 1 : Group Range Score Algorithm  
Algorithm group_ range (Node N,, Set V,, Value c,, Value e)  
a. for each entry e ∈N do  
b. If N is non-leaf then  
c. If  ∃p ∈ V,  min dist(p, e) ≤ e then  
d. read the child node N` pointed by e;  
e. Group_ Range(N`,V, c, e);  
f. Else  
g. for each p ∈ V such that dist(p, e) ≤ e do  
h. Tc (p) := max { Tc (p), w(e)};    [1] 

C. Branch and Bound Algorithm:  
GP is still expensive as it examines all objects in D and 

computes their component scores. We now propose an 
algorithm that can significantly reduce the number of objects 
to be examined. The key idea is to compute, for non-leaf 
entries e in the object tree D, an upper bound Z (e) of the score 
T(p) For any point p in the sub tree of e. If Z (e) * r then we 
need not access the sub tree of e, thus we can save numerous 
score computations.  
Algorithm 2: Branch and Bound Algorithm  
Wk: = new min-heap of size k (initially empty);  
γ : = 0;  
Algorithm BB (Node N)  
a. V: =  {e\e ∈ N};  
b. If  N is non-leaf then  
c. for c: = 1 to m do  
d. compute Tc (e)  For all e ∈ V concurrently;  
e. remove entries e in V such that  T+ (e) ≤  γ;  
f. sort entries e c V in descending order of? (e);  
g. for each entry e c V such that Z (e) > v do  
h. read the child node N pointed by e;  
i. BB (N);  
j. else  
k. for c: =1 to m do  
l. computeTc (e) For all e ∈ V concurrently;  
m. remove entries e in V such that Z+ (e) * v;  
n. update Wk (and γ) by entries in V;   [1] 
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D. Spatial  Data Events: 
Spatial database system contains spatial and non-spatial 

information for road network. Select the spatial location 
according to client preference. Score is defined by the quality 
of features and features refer to classes of object in spatial 
map. Quality of the spatial events may be subjective or query 
parametric. If the spatial events are subjective then the quality 
with respective to non-spatial attributes, qualities are 
normalized to values 0 to 1 and quality values can be obtained 
from rating providers. The Query-parametric Values are based 
on the queries. Range score binds neighborhood region to 
crisp radius and the aggregation of qualities. Influence score 
smoothens the effect of radius and assign the higher weights.  
 

E. Preferential Queries: 
The preference queries involve selecting the best spatial 

location based on multiple feature data sets on road network. It 
retrieves k points in a data set with highest score. In the 
preference queries apply the R-tree indexing feature to data 
sets with three concepts such as MAX a R-tree to road 
network, efficient tree traversal algorithm and obtain the 
quality from rating providers.  

F. Ranking of spatial query points:  
The two classic ways for ranking objects in spatial data is 

as follows - 1.Spatial Ranking - It orders according to their 
distance. 2. Non Spatial Ranking- It orders based on aggregate 
function. By applying the brute-force approach, compute score 
of all objects in given set and select the top-k ones. Its very 
expensive and also complex. We go for Branch bound and 
optimizing the performance. 

G. Top-k Spatial Query: 
Top-k spatial preference query retrieves k objects in 

database with the highest scores. It uses the concept of 
Branch-and-bound (BB) algorithm and feature join (FJ) 
algorithm to compute the upper bound score of objects in 
optimized way. The solution for top-k queries is obtained via 
merging of object rankings and minimizes the number of 
access until top-k aggregates reached. An alternate method for 
top-k query is multi-way spatial join. 

The algorithm 2 Branch and Bound derives upper bound 
scores for  non-leaf entries in the object tree and prunes those 
that cannot lead  to better results.  This algorithm is responsible 
for integrating the collected data and performs operations to 
give the rank for the spatial data. 

Adaptations  of the proposed algorithms for aggregate 
functions other than SUM, e.g., the  functions MIN and MAX.  
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VII. CONCLUSION 

Top-k spatial preference queries, which provide a novel 
type of ranking for spatial objects based on qualities of features 
in their neighborhood. The neighborhood of an object p is 
captured by the scoring function:     
a. The range score restricts the neighborhood to a crisp 

region centered at   p, whereas 
b. The influence score relaxes the neighborhood to the 

whole space and assigns higher weights to locations 
closer to p. Search for their relevant objects in the object 
tree. Here we are using priority based algorithm by 
selecting the customer who books the flat first by taking 
the average while calculating Euclidean distance and 
aggregate obtained when two aggregates or the distances  
are same with reference to reference points (hospital, 
school, market, railway  station etc) that are located near 
the flats. Solutions for the top-k spatial preference query 
based on the influence score can also be developed.  

In future we will be using this to locate in general the 
places requested by customers and also the possible way of 
transportations 

VIII. REFERENCES 

[1]. Man Lung  Yiu, Hua Lu, Member, IEEE, Nikos Mamoulis, 
and Michail Vaitis, “Ranking Spatial Data by Quality 
Preference,” Proc. IEEE Transactions on Knowledge and  
Data Engineering VOL 23, NO. 3, March 2011. 

[2]. M.L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis, “Top-k 
Spatial Preference Queries,” Proc. IEEE Int’l Conf. Data Eng. 
(ICDE), 2007. 

[3]. N. Bruno, L. Gravano, and A. Marian, “Evaluating Top-k 
Queries over Web-Accessible Databases,” Proc. IEEE Int’l 
Conf. Data Eng. (ICDE), 2002.  

[4]. A. Guttman, “R-Trees: A Dynamic Index Structure for 
Spatial Searching,” Proc. ACM SIGMOD, 1984. 

[5]. G.R. Hjaltason and H. Samet, “Distance Browsing in Spatial 
Databases,” ACM Trans. Database Systems, vol. 24, no. 2, 
pp. 265-318, 1999. 

[6]. R. Weber, H.-J. Schek, and S. Blott, “A Quantitative Analysis  
and  Performance Study for Similarity-Search Methods in 
High-Dimensional Spaces,” Proc. Int’l Conf. Very Large 
Data Bases (VLDB), 1998 

[7]. K.S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, 
“When is „Nearest Neighbor‟ Meaningful?” Proc. Seventh 
Int‟ l Conf. Database Theory (ICDT), 1999.  

[8]. R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation 
Algorithms for Middleware,”Proc. Int‟ l Symp. Principles of 
Database Systems (PODS), 2001. 

[9]. I.F. Ilyas, W.G. Aref, and A. Elmagarmid, “Supporting Top-k 
Join Queries inRelational Databases,” Proc. 29th Int‟ l Conf. 
Very Large Data Bases (VLDB), 2003.  

[10]. S. Hong, B. Moon, and S. Lee, “Efficient Execution of Range 
Top-k Queries in Aggregate R-Trees,” IEICE Trans. 



Dwibhashyam Srilalitha et al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,37-42 

© 2010, IJARCS All Rights Reserved                                                                                                                                                    42 

Information and Systems, vol. 88-D, no. 11, pp. 2544-2554, 
2005. 

[11]. T. Xia, D. Zhang, E. Kanoulas, and Y. Du, “On Computing 
Top-t Most Influential Spatial Sites,” Proc. 31st Int’l Conf. 
Very Large Data Bases (VLDB), 2005. 

[12]. Y. Du, D. Zhang, and T. Xia, “The Optimal-Location Query,” 
Proc.Int’l Symp. Spatial and Temporal Databases (SSTD), 
2005. 

[13]. D. Zhang, Y. Du, T. Xia, and Y. Tao, “Progessive 
Computation of The Min-Dist Optimal-Location Query,” 
Proc. 32nd Int’l Conf. Very Large Data Bases (VLDB), 2006. 

[14]. Y. Chen and J.M. Patel, “Efficient Evaluation of All-Nearest- 
Neighbor Queries,” Proc. IEEE Int’l Conf. Data Eng. (ICDE), 
2007. 

[15]. P.G.Y. Kumar and R. Janardan, “Efficient Algorithms for 
Reverse Proximity Query Problems,” Proc. 16th ACM Int’l 
Conf. Advances in Geographic Information Systems (GIS), 
2008. 

 


	INTRODUCTION
	SCORE FUNCITON
	Aggregation of partial scores:
	Using Max and Min functions in Range and Influence score:

	LITERATURE  REVIEW
	SPATIAL QUERY EVALUATION ON R-TREES
	PROBING ALGORITHMS USED
	Simple Probing Algorithm:
	Group Probing Algorithm:
	Branch and Bound Algorithm:
	V: =  {e\e ( N};
	If  N is non-leaf then
	for c: = 1 to m do
	compute Tc (e)  For all e ( V concurrently;
	remove entries e in V such that  T+ (e) ≤  (;
	sort entries e c V in descending order of? (e);
	for each entry e c V such that Z (e) > v do
	read the child node N pointed by e;
	BB (N);
	else
	for c: =1 to m do
	computeTc (e) For all e ( V concurrently;
	remove entries e in V such that Z+ (e) * v;
	update Wk (and () by entries in V;   [1]

	Spatial  Data Events:
	Preferential Queries:
	Ranking of spatial query points:
	Top-k Spatial Query:

	ACKNOWLEDGMENT
	CONCLUSION
	REFERENCES

