
��������	�
����	�
�������������

������������������������������������ ����!����"��������
�������

�#
#��"$�%�%#��

������&�������������'''��(��� ������

© 2010, IJARCS All Rights Reserved ���

ISSN No. 0976-5697

Creation of Gene Database and Implementation of Transaction Processing

Muhammad Rukunuddin* Ghalib and Kauser Ahmed P

School of Computing Sciences and Engineering, VIT
University

Vellore, India
ruk.ghalib@vit.ac.in, kauserahmed@vit.ac.in

Jaigam Dilshad
School of Biosciences and Technology, VIT University

Vellore, India
dilshad.sbst@gmail.com

Abstract: A rich set of concepts and techniques has been used in the context of gene database creation and transaction processing along with
performance and tuning for the efficient and robust execution of queries. So far, this work has mostly focused on issues related to data-retrieval
queries. However, update operations can also exhibit a number of query processing issues, depending on the complexity of the operations and the
volume of data to process. Such issues include lookup and matching of values, navigational vs. set-oriented algorithms and trade-offs between plans
that do serial or random I/Os .In this paper we present an overview of the basic techniques used to support SQL DML (Data Manipulation
Language) in ORACLE database 10g. Our focus is on the collection of gene information and implementation of some concepts of transaction
operations and performance and tuning operation into the gene database and cancer database. Although atomicity is a well studied topic in transaction
processing and business workflows, such an important capability needs to be revisited in a scientific workflow environment. Atomicity needs to be
defined in dataflow-oriented scientific workflow model. The basic principles of all transaction-processing systems are the same. However, the
terminology may vary from one transaction-processing system to another.

Keywords: GeneBank, SQL DML, DB Transaction Management, Tuning.

I. INTRODUCTION

During the past decade, the massive growth in genetic and
protein databases has created a pressing need for tools to
manage, retrieve and analyze the information contained in
these libraries. Traditional tools to organize, classify and
extract information have often proved inadequate when
confronted with the overwhelming size and density of
information which includes not only sequence and structural
data, but also text that describes the data origin, location,
species, tissue sample, journal articles, and so forth. As of this
writing, the NCBI (National Center for Biotechnology
Information, part of the National Institutes of Health)
GenBank library alone consists of nearly 84 billion bytes of
data and it is only one of several data banks storing similar
information. The scope and size of these databases continues
to rapidly grow and will continue to do so for many years to
come as will the demand for access.

 Currently, retrieval of genomic data is mainly based on
well-established programs such as FASTA and BLAST that
match candidate nucleotide sequences against massive
libraries of sequence acquisitions. There have been few efforts
to provide access to genomic data keyed to the extensive text
annotations commonly found in these data sets. Among the
few systems that deal with keyword based searching are the
proprietary SRS system and protein information resource
(PIR). These are limited, controlled vocabulary systems whose
keys are from manually prepared annotations. To date, there
have been no systems reported to directly generate indices
from the genomic data sets themselves. The reasons for this
are several: the very large size of the underlying data sets, the

size of intermediate indexing files, the complexity of the data,
and the time required to perform the indexing.
 Database consists of an organized collection of data for
one or more multiple uses. One way of
classifying databases involves the type of content, for
example: bibliographic, full-text, numeric, and image. Other
classification methods start from examining database
architectures [1],[4],[7]. A number of database architectures
exist. Many databases use a combination of strategies.

 Databases consist of software-based "containers" that are
structured to collect and store information so users can
retrieve, add, update or remove such information in an
automatic fashion. Database programs are designed for users
so that they can add or delete any information needed. The
structure of a database is tabular, consisting of rows and
columns of information.
 A database management system (DBMS) consists
of software that organizes the storage of data. A DBMS
controls the creation, maintenance, and use of the database
storage structures of social organizations and of their users. It
allows organizations to place control of organization wide
database development in the hands of Database Administrators
(DBAs) and other specialists. In large systems, a DBMS
allows users and other software to store and retrieve data in a
structured way.

 Database management systems are usually categorized
according to the database model that they support, such as the
network, relational or object model. The model tends to
determine the query languages that are available to access the
database. One commonly used query language for the
relational database is SQL, although SQL syntax and function
can vary from one DBMS to another. A common query
language for the object database is OQL; although not all

Muhammad Rukunuddin et. al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 433-439

© 2010, IJARCS All Rights Reserved ���

vendors of object databases implement this, majority of them
do implement this method. A great deal of the internal
engineering of a DBMS is independent of the data model, and
is concerned with managing factors such as performance,
concurrency, integrity, and recovery from hardware failures.
In these areas there are large differences between the products.

A relational database management system (RDBMS)
implements features of the relational model. In this
context, Date's "Information Principle" states: "the entire
information content of the database is represented in one and
only one way, namely as explicit values in column positions
(attributes) and rows in relations (tuples). Therefore, there are
no explicit pointers between related tables." This contrasts
with the object database management system (ODBMS),
which does store explicit pointers between related types.

 A gene is a unit of heredity in a living organism. It is
normally a stretch of DNA that codes for a type of protein or
for an RNA chain that has a function in the organism [2]. All
proteins and functional RNA chains are specified by genes.
All living things depend on genes. Genes hold the information
to build and maintain an organism's cells and pass
genetic traits to offspring. A modern working definition of a
gene is "a locatable region of genomic sequence,
corresponding to a unit of inheritance, which is associated
with regulatory regions, transcribed regions, and or other
functional sequence regions "[3]. Colloquial usage of the
term gene (e.g. "good genes, "hair color gene") may actually
refer to an allele: a gene is the basic instruction, a sequence of
nucleic acid (DNA or, in the case of certain viruses RNA),
while an allele is one variant of that instruction.

The human genome is the genome of Homo sapiens,
which is stored on 23 chromosome pairs. Twenty-two of these
are autosomal chromosome pairs, while the remaining pair
is sex-determining. The haploid human genome occupies a
total of just over 3 billion DNA base pairs. The Human
Genome Project (HGP) produced a reference sequence of
the euchromatic human genome, which is used worldwide
in biomedical sciences.

 The haploid human genome contains ca. 23,000 protein-
coding genes, far fewer than had been expected before its
sequencing. In fact, only about 1.5% of the genome codes
for proteins, while the rest consists of non-coding
RNA genes, regulatory sequences, introns, and
(controversially named) "junk" DNA[3],[4].
 The Cancer Gene Census is an ongoing effort to
catalogue those genes for which mutations have been causally
implicated in cancer. The original census and analysis was
published in Nature Reviews Cancer and supplemental
analysis information related to the paper is also available [2].

II. RELATED WORK

A. Indexing genomic sequence libraries

Most genomic databases include, in addition to nucleotide
and protein sequences, a wealth of information in the form of
descriptions, keywords, annotations, hyper-links to text
articles journals and so forth. In many cases, the text
attachments to the data are greater in size than the actual
sequence data. Identifying the important keyword terms from

this data and assigning an elative weight to these terms is one
of the problems addressed in this system. Indexing helps to
improve query processing and performance that helps to speed
up retrieval of values [1], [3], and [8].

B. Constraint acquisition for Entity-Relationship models

Integrity constraints are conditions that capture the
semantics of the application domain under consideration. They
restrict the databases to those that are considered meaningful
to the application at hand. In practice, the decision of
specifying a constraint is very important and extremely
challenging.

C. Atomicity and provenance support for pipelined scientific

workflows

Atomicity is an important transactional property, which
requires that a transaction either runs to completion or has no
partial effect (all-or-nothing). In scientific workflows, some
tasks might fail during execution due to either the failure of
the task itself or inappropriate input to a task. A domain
scientist might require the execution of a sub-workflow to be
atomic in the sense that either the execution of all the tasks of
the sub-workflow runs to completion or none of them has any
effect at all[1],[6].

D. Efficiently supporting secure and reliable collaboration

in scientific workflows

The transactional support is widely used to address the
reliability of systems [6], [7]. In traditional database systems
and work- flows, the consistency of sharing data and
administration among components can be achieved through
implementing strict transaction semantics in terms of
atomicity, consistency, isolation and durability (ACID).
Although extremely reliable, traditional ACID transactions are
not suitable for loosely coupled environments such as Web
service-based business transactions. This is because fine-
grained lock controls and full trustworthiness are not generally
applicable in Web services-based transactions.

III METHODOLOGY

• Collection of human gene related information from various
database.

• Classifying the collected information into different criteria.
• Create different tables to add this information.
• Implement the concept of performance and tuning and

transaction processing.

A. Steps involved in creating database

• Installing the Oracle 10g database software is a separate
process from that of creating a database

• GENE Databases can be created using the Database
Configuration Assistant (DBCA tool) or manually using the
CREATE DATABASE command

• When creating a GENE Database manually it is best to
generate scripts using DBCA first, and then to edit them

• The DBA authentication method determines how Oracle
10g validates users logging on with SYSDBA or SYSOPER
privileges

Muhammad Rukunuddin et. al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 433-439

© 2010, IJARCS All Rights Reserved ���

• OS authentication relies on the OS’s security to validate the
user/password, and authorization group.

• The REMOTE_LOGIN_PASSWORDFILE parameter is set
to NONE for OS authentication.

• Password file authentication stores user names and
passwords and group membership in an encrypted file in the
OS

• Set REMOTE_LOGIN_PASSWORDFILE to EXCLUSIVE
for password file authentication.

• The ORAPWD utility generates the password file for
SYSDBA and SYSOPER and then the database maintains it
with changes to passwords.

• Control files can be multiplexed (each subsequent control
file is an exact copy of the first control file).

• Multiplexed copies of control files should be located on
different physical devices to guard against damage.

• Prevent bottlenecks in data access by placing data on several
physical devices (spreads the demand).
• User-managed file management offers more detailed

control over datafiles than Oracle Managed Files, but
requires more manual maintenance tasks.

• DBCA provides an opportunity to customize memory size
and initialization parameters.

• Adjusting of tablespace/datafile sizes and locations
depends on the DB type selected using DBCA.

• After creating GENE database, use Net Manager to set up
a Net Service name for the database.

• Collection of various information regarding GENE from
various sources.

• Adding these information into users schema
• Implement queries to extract information from GENE

DATABASE.
• Implementation of transaction processing concepts.
• Implementation of database performance and tuning

concept.

B. Creating a Database Using DBCA

DBCA enables us to create a database from predefined
templates provided by Oracle or from templates that we or
others have created. A template is a description of a database.

C. Selecting the Template

DBCA displays the templates that are available, which
includes templates that Oracle ships with the DBCA product.
If we or others have created templates, those will be displayed
also. We select the appropriate template for the database that
we want to create. Clicking the "Show Details..." button
displays specific information about the database defined by a
template.

IV. IMPLEMENTATION

A. Considerations before Creating a GENE Database

 Database creation prepares several operating system
files to work together as an Oracle database. We need only
create a database once, regardless of how many datafiles it has

or how many instances access it. Creating a database can also
erase information in an existing database and create a new
database with the same name and physical structure.The
following topics can help prepare us for database creation.

• Planning for database creation

• Meeting creation prerequisite

• Deciding how to create GENE database

B. Meeting Creation Prerequisites

To create a new database, the following prerequisites must be
met:
• The desired Oracle software is installed. This includes

setting up various environment variables unique to our
operating system and establishing the directory structure
for software and database files.

•
• We have the operating system privileges associated with a

fully operational database administrator. We must be
specially authenticated by our operating system or
through a password file, allowing we to start up and shut
down an instance before the database is created or opened.

• There is sufficient memory available to start the Oracle
instance.

• There is sufficient disk storage space for the planned
database on the computer that executes Oracle.

C. Specifying Mode, Initialization Parameters, and Datafiles

The next pages enable us to further define our database.
We specify mode (dedicated server of shared server), set
initialization parameters, and specify datafile locations. Oracle
can determine specific values for we based upon our
description of the database we are trying to create. For
example, Oracle can choose appropriate settings for SGA
memory sizing parameters depending upon whether we select
a typical or custom database.

D. Completing Database Creation

After we have completed the specification of the
parameters that define our database we can:

• Create the database now
• Save the description as a database template
• Generate database creation scripts

If we choose to generate scripts, we can use them to create the
database later without using DBCA, or we can use them as a
checklist.

Muhammad Rukunuddin et. al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 433-439

© 2010, IJARCS All Rights Reserved ���

Figure 1: Parameterized locations for datafills

E. Implementing Transactions and Performance Tuning

Concepts
 A transaction is a logical unit of work that contains
one or more SQL statements. A transaction is an atomic unit.
The effects of all the SQL statements in a transaction can be
either all committed (applied to the database) or all rolled back
(undone from the database).A transaction begins with the first
executable SQL statement. A transaction ends when it is
committed or rolled back, either explicitly with a COMMIT or
ROLLBACK statement or implicitly when a DDL statement is
issued [5],[6],[7],[8]. Tuning graphs are shown in figures 8, 9,
10, 11.
F. Rollback of Transactions

 Rolling back means undoing any changes to data that
have been performed by SQL statements within an
uncommitted transaction. Oracle uses undo tablespaces (or
rollback segments) to store old values. The redo log contains a
record of changes.
 Oracle lets us roll back an entire uncommitted
transaction. Alternatively, we can roll back the trailing portion
of an uncommitted transaction to a marker called a savepoint.
All types of rollbacks use the same procedures:

• Statement-level rollback (due to statement or
deadlock execution error)

• Rollback to a savepoint
• Rollback of a transaction due to user request
• Rollback of a transaction due to abnormal process

termination
• Rollback of all outstanding transactions when an

instance terminates abnormally
• Rollback of incomplete transactions during recovery

V. RESULTS AND DISCUSSIONS

 Organizing collected information in different table to
create GENE and Cancerous gene database After collecting
all the information related to genes and cancerous gene my
target is to arrange all these collected information into
ORACLE DATABASE to create two separate database .
GENE database listed all the information about genes,

CANCEROUS gene database list only the gene those are
responsible for cancer. In order to create gene database in a
much organized way we create several tables using SQL in
ORACLE DATABASE 10g as given in figure 2.

Figure 2:creating gene tables using oracle databse 10G

Figure 3: Table of Cancer Genes

A. Query of the gene and cancer database to retrieve the

values
 In order to retrieve the values from these databases
(figure 3) we have to perform query which list the set of
information related to these databases. Cancer Database
instance is shown in figure 12.

Query 1

SELECT "SYMBOL", "NAME", "ENTREZ_GENEID",
"CHR", "CHR_BAND", "SOMATIC_MUTATIONS",
"GERMLINE_MUTATIONS", "CANCER_SYNDROME",
"MOLECULAR_GENETICS", "MUTATION_TYPE",

Muhammad Rukunuddin et. al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 433-439

© 2010, IJARCS All Rights Reserved ���

"TRANSLOCATION_PARTNER" FROM
"AMAN"."CANCEROUS_GENES"

Figure 4: Output of Query I

Query 2

SELECT "GENE_SYMBOL", "GENE_NAME", "DESCRIPTION",
"GENBANK#", "UNIGENE#" FROM "AMAN"."GENE_INFO"

Figure 5: Output of Query II

Query 3

SELECT "SYMBOL", "NAME", "ENTREZ_GENEID",
"CHR", "CHR_BAND", "MUTATION_TYPE" FROM
"AMAN"."CANCEROUS_GENE_CHROMOSOME"

Figure 6: Output of Query III

 To access the information from database in user-
friendly way we create an application using visual basic. This
application run in graphical user mode (figure 7) and accepts
the search term from user to print the output.

Figure 7: Application in graphical user mode

B. Savepoints in Transactions

 We can declare intermediate markers called
savepoints within the context of a transaction. Savepoints
divide a long transaction into smaller parts.
 Using savepoints, we can arbitrarily mark our work at
any point within a long transaction. We then have the option
later of rolling back work performed before the current point
in the transaction but after a declared savepoint within the

Muhammad Rukunuddin et. al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 433-439

© 2010, IJARCS All Rights Reserved ���

transaction. For example, we can use savepoints throughout a
long complex series of updates, so if we make an error, we do
not need to resubmit every statement.
 Savepoints are similarly useful in application
programs. If a procedure contains several functions, then we
can create a savepoint before each function begins. Then, if a
function fails, it is easy to return the data to its state before the
function began and re-run the function with revised
parameters or perform a recovery action.
 After a rollback to a savepoint, Oracle releases the
data locks obtained by rolled back statements. Other
transactions that were waiting for the previously locked
resources can proceed. Other transactions that want to update
previously locked rows can do so.
 When a transaction is rolled back to a savepoint, the
following occurs:

1. Oracle rolls back only the statements run after the
savepoint.

2. Oracle preserves the specified savepoint, but all
savepoints that were established after the specified
one are lost.

3. Oracle releases all table and row locks acquired since
that savepoint but retains all data locks acquired
previous to the savepoint.

4. Record the transaction in the transaction journal
 Oracle must allow for two situations. If all three SQL
statements can be performed to maintain the accounts in
proper balance, the effects of the transaction can be applied to
the database. However, if a problem such as insufficient funds,
invalid account number, or a hardware failure prevents one or
two of the statements in the transaction from completing, the
entire transaction must be rolled back so that the balance of all
accounts is correct.

Figure 8: Performance tuning graph of the transaction processes

Figure 9: Instance Disk I/O and Instance throughput

Figure 10: Sessions Tuning Activity

Figure 11:Active sessions tuning for 5 minutes interval

Muhammad Rukunuddin et. al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 433-439

© 2010, IJARCS All Rights Reserved ���

Figure 12: Database instance for Cancer Genes

VI. CONCLUSION AND FUTURE ASPECTS

Our database consists of an organized collection of data
for one or more multiple uses. One way of
classifying databases involves the type of content, for
example: bibliographic, full-text, numeric, and image. Other
classification methods start from examining database
architectures. A number of database architectures exist. Many
databases use a combination of strategies. Until our database
is perfectly tuned it is not efficient.
 Oracle includes numerous data structures to improve
the speed of Oracle SQL queries. Taking advantage of the low
cost of disk storage, Oracle includes many new indexing
algorithms that dramatically increase the speed with which
Oracle queries are serviced. Voluminous amount of
information collected from different databases are stored in
Gene Database and Cancer Database in an organized manner.
Implementation of concept of performance and tuning helps to
smooth database performance. Indexing the table provides a
best solution to minimize the query execution plan.
 In traditional database systems and work-flows, the
consistency of sharing data and administration among
components can be achieved through implementing strict
transaction semantics in terms of atomicity, consistency,
isolation and durability (ACID). Although extremely reliable,
traditional ACID transactions are not suitable for loosely
coupled environments such as Web service-based business
transactions. This is because fine-grained lock controls and
full trustworthiness are not generally applicable in Web
services-based transactions. Although a number of proposals
are presented to address this issue, currently, the existing Web
service frameworks still lack effective models and approaches
for the reliable (fault-tolerant, transactional) execution of a
group of Web services is our future focus.
 This project comprises of voluminous information
about Human Gene and Human Cancerous gene which will
greatly help researcher to retrieve all the information
regarding their research without browsing so many database.

Accessing these information in graphical modes from any
platform (Linux, windows, solaris) through the browser
convenient to researcher.

VII. REFERENCES

[1] Melanie R. Nelson, Stephanie J. Reisinger, Stephen G.

Henry, “Designing databases to store biological
information”, Biosilico, 2003, Volume 1, Issue 4 Pages
134-142

[2] Patricia G Baker, Andy Brass, “Recent developments in
biological sequence databases”, Current Opinion in
Biotechnology, 1998, Volume 9, Issue 1, Pages 54-58

[3] Edmond J. Breen, Keith L. Williams, “Hash function
performance on different biological databases”,
Computational Methods Programs, Biomed, 1989,
Volume 28, Issue 2, Pages 87-91.

[4] Graham Chen, “Distributed transaction processing
standards and their applications”, Computer Standards &
Interfaces archive, 1995,
Volume 17, Issue 4, Pages: 363 - 373

[5] Ranjit Bose, Stephen D. Burd,”Control and coordination
of heterogeneous transaction processing systems”,
Information and Software Technology, 1997, Volume 39,
Issue 3, Pages 171-184.

[6] Özgür Ulusoy, “Transaction processing in distributed
active real-time database systems”, Journal of Systems
and Software, 1998, Volume 42, Issue 3, Pages 247-262

[7] Philip A. Bernstein, Eric Newcomer, “Transaction
Processing Application Architecture”, Principles of
Transaction Processing (Second Edition), ISBN: 978-1-
55860-623-4.

[8] Arthur J. Bernstein, David S. Gerstl, Philip M. Lewis,
“Concurrency control for step-decomposed transactions”,
Information Systems, 1999, Volume 24, Issue 8, Pages
673-698

