
Volume 3, No. 5, Sept-Oct 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 136

ISSN No. 0976-5697

Transition from Classic/Traditional to Agile: Critical Steps for Smooth Transition

Lipika Bose
Software Engineer, HCL Technologies

Noida, India.
lipika.bose@gmail.com

Abstract : The Internet economy has altered the rules of software engineering. Traditional development methodologies are too cumbersome to
meet the rapidly changing requirements and short product cycles demanded by business. This paper introduces critical steps required for smooth
transition from classic software development model to agile methodology as per my experience in service organization such as HCL
Technologies that needed to learn agile methodology to support the transition. It also lists the popular methodologies, metrics that matter and
agile estimation and planning techniques. Finally, it summarizes the whole paper.

KEYWORDS: Classical Model, Agile Model, Transformation, Agile Methodologies, Metrics, Estimation And Planning.

I. INTRODUCTION

The day comes when suddenly somebody in the
organization starts talking about Agile, and decides to
implement Agile. This senior person who made this decision,
would have heard somebody saying:

Agile improves productivity!! and saves money Or the
customer would have said, if you don't practice Agile I will
not give the project to you(in an outsourced scenario).

The planning of traditional software [1] development
methods is conventional; it often defines a specific project
scope firstly, then operates the top-down function
decomposition based on the scope and estimates
development time and development costs. In the agile
development [2], one big software project is decomposed
into multiple executable sub-projects. Firstly they finish the
most important functions which are selected by users, use
iterative incremental development methods, make each
iteration results obtain a running system .Development team
focuses on quickly dealing with the changing needs. When
demand changes, development team quickly adjusts scheme.
Because of quickly responding to user demand change, it is
welcomed by small and medium-sized enterprises after it is
put forward.

II. GLIMPSE OF CLASSICAL AND AGILE:

a. Classical Model: The classical/waterfall model[1] is a
sequential design process, often used in software
development processes, in which progress is seen as
flowing steadily downwards (like a waterfall) through
the phases of Requirement Specification, Design,
Construction, Testing, Production/Implementation and
Maintenance. Thus the waterfall model maintains that
one should move to a phase only when its preceding
phase is completed and perfected. The idea behind the
waterfall model may be "measure twice; cut once."
Time spent early in the software production cycle can
lead to greater economy at later stages. McConnell
shows that a bug found in the early stages (such as
requirements specification or design) is cheaper in
money, effort, and time, to fix than the same bug found

later on in the process. Those who opposed to the
waterfall model argue that this idea tends to fall apart
when the problem constantly changes due to
requirement modifications and new realizations about
the problem itself.

b. Agile Model: Agile software development [2] is a group
of software development methods based on iterative
and incremental development. It promotes adaptive
planning, evolutionary development and delivery, a
time-boxed iterative approach, and encourages rapid
and flexible response to change. It is a conceptual
framework that promotes foreseen interactions
throughout the development cycle. Agile methods break
tasks into small increments with minimal planning and
do not directly involve long-term planning. Iterations
are short time frames (timeboxes) that typically last
from one to four weeks. Each iteration involves a team
working through a full software development cycle,
including planning, requirements analysis, design,
coding, unit testing, and acceptance testing when a
working product is demonstrated to stakeholders. This
minimizes overall risk and allows the project to adapt to
changes quickly. Stakeholders produce documentation
as required. An iteration might not add enough
functionality to warrant a market release, but the goal is
to have an available release (with minimal bugs) at the
end of each iteration. Multiple iterations might be
required to release a product or new features.

III. TRANSFORMING FROM THE CLASSICAL
MODEL

The transition from waterfall to agile software
development requires careful planning, collaboration and
change management. When implemented correctly, the agile
model can result in your project team accelerating production
efforts and working more cohesively [3].

Below are the vital points to consider for smooth
transition to agile [3][4]:
a. Expect Some Bumps In The Road - Change Is Never

Easy [5]: Remember people will always resist any new
change. People are happy with their comfort zone. So
let them take some time to realize that they will not

Lipika Bose, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 136-139

© 2010, IJARCS All Rights Reserved 137

have any choice but to uncover the new ways of the
development. A good tactic would be to set-up a
meeting room or some office area dedicated to
documentation and planning for the agile transition.
Post some white papers on the wall, perhaps some
diagrams of the new process - whatever will help get
the team thinking, breathing and offering solutions for
the transition.

b. Training Required: Get all the team members to
undergo training on Agile (XP, Scrum, etc). Entire team
has to attend the agile training [5][6]. I would suggest
starting the training from the top. As per my
understanding, this initiative will be a successful one if
the top management understands the agile. Middle
managers should go for agile certification. Developers
and testers can attend at least 8 hours of agile training to
start with. Otherwise, agile is not that easy to learn in 8
or 16 hours. Every person will need to read a lot before
practicing at the floor. Give them their own time to
learn the agile. They will take time to wear the new skin
of the agile development.

c. Agile Coach Needed: Even when the team is starting
with just a few practices, handholding/mentoring from
an agile coach [6] is needed. A seemingly simple
practice like standup meeting also needs guidance in the
initial stages. Make a group of expert people who will
provide the rules and regulations, policies, guidelines
for the project. You can call this group anything.
Traditional companies call them Agile PMO or Agile
COE etc. Remember these people need to be expert. If
any company does not have these people then hire
them. These people will be pillars in this initiative.

d. Story Board saves time: It is advisable to have a story
board which would be helpful in tracking stories and
disseminating the information to the entire team. The
board can have the following columns: Not Started,
Analysis, Design, Coding + UnitTesting, System
Integration Testing, User Acceptance Testing, and
Released.

e. Co-ordination: Teams need to coordinate during all
planning meetings [7]. Especially important are the
release planning meetings, where milestones/
deliverables are determined by agile project managers
and teams. Continued follow-up and adjustments are
covered in iteration planning meetings and daily
standups. Person in rotation from the team can be
selected as the coordinator, who would focus the team
to talk about what was done yesterday, plans for today
and problems encountered.

f. Consideration of few practices at a time: Don't force
all the Agile practices [6][7] at once. Take one or two
practices at a time and give sufficient time for the team
to learn and practice. - For ex: One can start with
shorter iterations and scrum/daily stand up meetings.

g. Initial longer iteration period: Start with 4-6 weeks
iteration rather than 1 week iteration. Many new comers
to Agile feel suffocated with 1 week iterations. Earlier
the waterfall teams would have delivered softwares
once in 6 months, and suddenly asking them to deliver
in a short period makes them resist to Agile. Start with
the 4 weeks sprint cycle. As per my experience,
developers and testers prefer the longer duration. They
would prefer 4 weeks sprint, which is also quite good.

h. Initial dismantling of current team is not favourable :
Scrum and XP [8][9] advocates specific team structure
like having Product Owner, Team, cross functional
teams, no hierarchy, a team coach, scrum master, etc.
This is a very sensitive issue. Suddenly informing the
team that all of you are same, might heart the ego of
senior people. So, better not to worry about dismantling
the current team structure [5]. Let the team learn slowly
the importance of the values and decide what is best for
them.

i. Different financial reconciliation practices required:
Agile methodology also requires different financial
reconciliation practices. Because teams will go through
more iteration, and potentially even change some of the
original project specifications, the Project Manager will
have to implement more check-points to assess budget.
To exercise budgetary control, the Project Manager
must assess and dole out project hours to team members
in smaller chunks – hours should be assigned to each
team member weekly.

j. Establish a Rhythm of Inspection and Adaptation: In
the review and retrospective held at the end of each
iteration, analyze the benefits and challenges you’ve
just experienced and make recommendations on how to
improve the experience in the next iteration.

k. Test updated as design/coding progress: Efforts
should be made to strengthen test driven development.
Tests should be written upfront and would be updated
as design/coding progressed [3][4]:. The Product
Owners and Developers also play a big part in
achieving agile testing. The Product Owners needs to
participate in defining the acceptance tests prior to the
sprint planning meeting.

l. Automated testing tool preferred: QA needs to get
working builds from development as needed. Testing
needs to start day 1 of the sprint. Automated testing
tools [7] is less time consuming. Everyone owns the
quality of your software, not just the QA team
members. Every member on an agile team plays a
significant part of ensuring the quality of software.
Testing begins long before the testers start writing
automated scripts.

IV. IMPORTANT AGILE METHODOLOGIES

There are many agile development methods [3][8],
Extreme programming is one of the most successful practices
in agile development.
A. Extreme Programming: Extreme programming [8] is

invented by K.Beck. Extreme Programming is
successful because it stresses customer satisfaction. It
advocates frequent "releases" in short development
cycles, which is intended to improve productivity and
introduce checkpoints where new customer
requirements can be adopted. It begins from collecting
user stories, chooses valuable user story into iteration
planning,uses test-driven development way, and then
puts them into the integrated repository after tests.

a. It is implemented in the following ways:
a) Paired Programming: Pair programming [8] is an

agile software development technique in which two
programmers work together at one workstation. One,
the driver, writes code while the other, the observer

Lipika Bose, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 136-139

© 2010, IJARCS All Rights Reserved 138

reviews each line of code as it is typed in. The two
programmers switch roles frequently. While reviewing,
the observer also considers the strategic direction of the
work, coming up with ideas for improvements and
likely future problems to address.

b) Test Driven Devlopment: Test-driven development
(TDD) [8] is an evolutionary approach to development
which combines test-first development where you write
a test before you write just enough production code to
fulfill that test and refactoring. What is the primary
goal of TDD? One view is it’s one way to think
through your requirements or design before your write
your functional code. Another view is that TDD is a
programming technique. The goal of TDD is to write
clean code that works.

c) Continuous Integration: Continuous integration [8]
aims to improve the quality of software, and to reduce
the time taken to deliver it, by replacing the traditional
practice of applying quality control after completing all
development. Continuous integration refers to integrate
the finished function modules into the code library, then
execute compile process and run all testing. Continuous
integration can detect defects early, hence it can shorten
time to market, increase the transparency of project.

Extreme Programming has many practices like
reconstruction, daily meetings etc.
B. Scrum: The main roles of Scrum [9] are: the "Scrum

Master", who ensures the process is followed, removes
impediments, and protects the Development Team from
disruption, the "Product Owner", who represents the
stakeholders and the business , the "Development
Team", a cross-functional, self-organizing team who do
the actual analysis, design, implementation, testing, etc.
Scrum projects make progress in a series of sprints,
which are timeboxed iterations no more than a month
long. At the start of a sprint, team members commit to
delivering some number of features that were listed on
the project's scrum product backlog. At the end of the
sprint, these features are done --they are coded, tested,
and integrated into the evolving product or system. At
the end of the sprint review is conducted during which
the team demonstrates the new functionality to the
product owner and other interested stakeholders who
provide feedback that could influence the next sprint.

C. Feature Driven Development: There are five main
activities in FDD [3] that are performed iteratively.
The first is Develop An Overall Model. At the start of
a project your goal is to identify and understand the
fundamentals of the domain that your system is
addressing, and throughout the project you will flesh
this model out to reflect what you’re building. The
second step is Build A Features List grouping them
into related sets and subject areas. Next you Plan By
Feature, the end result being a development. The
majority of the effort on an FDD project, roughly 75%,
is comprised of the fourth and fifth steps: Design By
Feature and Build By Feature. These two activities are
exactly include tasks such as detailed modeling,
programming, testing, and packaging of the system.

V. METRICS THAT MATTER

Metrics [10] is used to detrmine the status of a project
and are ways by which a project manager enables delivery

teams to see where resources are needed or spent, or which
areas of a project need more focus. There are various metrics
that provide the measure of the state of an agile project.
Some of them are listed below.
a. Progress: Progress is a function of converting

requirements into a working version of software. The
initial startup step of progress is plan. Plan involves the
estimation of effort required for specific requirements
and the actual value. Comparing the plans and the
efforts allows the manager to adjust their metrics for
next iterations and requirements. It allows sponsors to
have a good idea of the amount of resources to assign to
the project team, as well as agree on project milestones.

b. Quality: Software functional quality [10] reflects how
well it complies with or conforms to a given design,
based on functional requirements or specifications.
Software structural quality refers to how it meets non-
functional requirements that support the delivery of the
functional requirements, such as robustness or
maintainability, the degree to which the software was
produced correctly. Structural quality is evaluated
through the analysis of the software inner structure, its
source code, in effect how its architecture adheres to
sound principles of software architecture. In contrast,
functional quality is typically enforced and measured
through software testing. Identifying the defects at the
earlier stages of the project is one of the key strengths
of agile methods, therefore quality checks prevent
further rework throughout the progress of the project. It
is important, however, that new test cases should be
included in every iteration or when changes are
introduced to the system. Counting the total number of
test cases vs. open defects reflects the progress that the
team has made in terms of development work.

c. Team Morale: The higher the morale, the more
effective team members work; the more attrition is
prevented, overall performance is reflected in the
product’s quality. Overall team morale is directly
related to the level of individual morale. The amount of
personal investment that people put into the project is
related to how they manage stress levels as the next
iteration approaches, and how issues are communicated
during development or rework.

d. Effort Overrun: Now when sprint is over, you need to
compare the planned effort (from available capacity) Vs
the actual efforts. What is the acceptable percentage in
the variance? It depends on your project or company.

e. Capacity Utilization: How much time are you spending
in the productive delivery/engineering activities?

f. Leave Details: This is very important in Agile projects
as you have only limited time to deliver the sprint
commitment.

VI. AGILE ESTIMATION AND PLANNING

Estimating is estimating the [resources, time, size]
required to develop a [user story, feature, or requirement].
Planning is putting the estimates together to formulate a
project plan and schedule.

Estimations cab be made at three levels[11]:
A. Iteration Plan Estimation.
B. Release Plan Estimation.
C. Project Estimation.

Some of the estimation units are:

Lipika Bose, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012, 136-139

© 2010, IJARCS All Rights Reserved 139

a) Ideal Time: Time taken to complete the task if there
are no interruptions.

b) Story Points: Relative measurements among user
stories like user requirements, feature lists, use case
scenario.

c) Velocity: Number of estimation units that get
completed by a team in single iteration.

a. Iteration Plan Estimates: In this the entire team gets
together at the beginning of an iteration. They prioritize
each of the items. Estimation of each item is done. Use
the team velocity to stack the tasks into iteration.
Velocity is estimated using historical data ie. by
previous iterations or by running the average of past
iterations. Velocity [3] is also calculated using
forecasting such as determining the ideal hours per
iteration. Burn down charts are prepared showing
amount of work remaining at the start of each iteration.

b. Release Plan Estimation: The goal of initial release
planning [11] is to estimate roughly which features will
be delivered by the release deadline (presuming the
deadline is fixed), or to choose a rough delivery date for
a given set of features (if scope is fixed). It involves
identifying and commting to the following[11]:

A goal for the release.
A prioritized set of stories that will be developed in the

release.
A coarse estimate for each story.
Project managers, senior developers and business

analysts involved in release planning or estimation. It is
similar to iteration planning but here we extend the technique
to multiple iterations. In agile projects we plan continuously,
and we correct our course as we go. One of the primary
mechanisms for course correction is allowing the release plan
to evolve in response to all kinds of feedback. It will take at
least a couple of iterations for team velocity to settle down.
Iterations will sometimes deliver less functionality than was
planned for, and sometimes more.
c. Project Estimation: The key factors of project

estimation are cost, effort, time. Planning poker is one
the common estimation technique in agile. In this each
estimator is given a card. Each card contains a valid
estimate. Story is read and discussed briefly. Each
estimator selects a card that reflect their estimates.
Discussions take place and re-estimations are done to
get convergence.

VII. CONCLUSION

Thus by following some above mentioned steps
transformation from a waterfall model to agile can be
simpler. Different methodologies depending upon the project
requirements are followed. Proper estimation and planning
plays a vital role in the success of releases. Various metrics

are kept in consideration to improve the overall quality of the
project.

One common criticism of agile software development
methods is that it is developer-centric rather than user-
centric. Agile software development focuses on processes for
getting requirements and developing code and does not focus
on product design. Agile methods seem best for
developmental and non-sequential projects. Many
organizations believe that agile methodologies are too
extreme, and adopt a hybrid approach that mixes elements of
agile and plan-driven approaches.

VIII. REFERENCES

[1]. Humphrey W., “A Discipline for Software Engineering",
Addison-Wesley, 1995.

[2]. See A. Cockburn, “A Methodology Per Project,” 1999,
http://alistair.cockburn.us/crystal/articles/mpp/methodology
perproject.html and A. Cockburn, Agile Software
Development, Addison Wesley, Boston, 2002.

[3]. Robert C.M, Martin, Micah Martin. Deng Hui, Sun Ming
translation, “Principle, Mode and Practice of Agile Software
Development”. Posts & Telecom Press. 2008. pp: 123-156.

[4]. Schatz, B. & Abdelshafi, I. Primavera gets agile: A
successful transition to agile development. IEEE Software.
22(3). 2005.

[5]. Lawrence, R. Avanade Inc., Seattle, WA Yslas, B. Three-
way cultural change: introducing agile within two non-agile
companies and a non-agile methodology. Agile Conference,
2006. Conference Publications. 5pp.-262.2006.

[6]. Boehm, B. & Turner, R. Management challenges to
implement agile processes in traditional development
organizations. IEEE Software. 22(5), 30-40. 2005.

[7]. Livermore, J.A. Factors that impact implementing an agile
software development methodology. Southeast Con, 2007.
Proceedings. IEEE. Conference Publications .82-86.2007.

[8]. DaYong Sang, Wang Ying, LiHua Wu.”Agile Software
Development Methods and Practices”Xi-an: XIDIAN
University press.2010.pp:160-180.

[9]. Mann, C. & Maurer, F. A case study on the impact of scrum
on overtime and customer satisfaction. Proceedings of the
Agile development Conference (ADC’05). Denver, CO. 70-
79. 2005.

[10]. Da Yong Sang. “Requirement Analysis of Agile
Development Process “.Programmer, 2009, 2, pp: 70-75.

[11]. M. Cohn, Agile Estimating and Planning, Prentice Hall
Professional Technical Reference, Upper Saddle River, NJ,
2006, pp. 215-245.

http://alistair.cockburn.us/crystal/articles/mpp/methodology�

