
Volume 3, No. 5, Sept-Oct 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 343

ISSN No. 0976-5697

An Adaptive and bounded Approach to Mine Frequent Pattern in Large Scale
Databases

C. Vinothini*
Assistant professor,Department of CSE,

Dr.NGP Institute of Technology,
Coimbatore,India

Vinucrazy56@gmail.com

E. Meenachi
Assistant professor,Department ofCSE,

Park College of Engineering and Technology,
Coimbatore,India

meenakshy88@gmail.com

Abstract: Frequent Patterns are very important in knowledge discovery and data mining process such as mining of association rules, correlations
etc. Many existing incremental mining algorithms are Apriori-based, which are not easily adoptable to solve association rule mining. In FP-tree
isa compact representation of transaction database that contains frequency information of all relevant Frequent Patterns (FP) in a dataset. Mining
association rules among items in a large database has been recognized as one of the most important data mining problems. An earlier approach
proposes a model that is capable of mining in transactional database, but that approach is not capable of managing the problem of changing the
memory dynamically. In order to solve this problem we have been proposed a hybrid of two algorithms that could be able to handle the dynamic
change of memory, dynamic databases and also to solve the problem of association rule mining problems. So memory can be utilized effectively
in large scale transaction database.

Index terms: Frequent Patterns, transcation database, Apriori algorithm, Association rule, FP tree

I. INTRODUCTION

Data mining is a term that refers to searching a large data
set in an attempt to detect hidden or low-level patterns. Data
mining is becoming increasingly common in both the
private and public sectors. Industries such as banking,
insurance, medicine, and retailing commonly use data
mining to reduce costs, enhance research, and increase sales.
In the public sector, data mining applications initially were
used as a means to detect fraud and waste, but have grown
to also be used for purposes such as measuring and
improving program performance. However, some of the
homeland security data mining applications represent a
significant expansion in the quantity and scope of data to be
analyzed.

In this paper association rule mining defines finding
frequent patterns, associations, correlations, or causal
structures among sets of items or objects in transaction
databases, relational databases, and other information
repositories. The main Applications are Basket data
analysis, cross-marketing, catalog design, loss-leader
analysis, clustering, classification, etc.[1]

Association rule mining is to find out association rules
that satisfy the predefined minimum support and confidence
from a given database. The problem is usually decomposed
into two sub problems. One is to find those itemsets whose
occurrences exceed a predefined threshold in the database;
those itemsets are called frequent or large itemsets. The
second problem is to generate association rules from those
large itemsets with the constraints of minimal confidence.

The task of discovering all frequent itemsets is quite
challenging. The search space is exponential in the number
of items occurring in the database. The support threshold
limits the output to a hopefully reasonable subspace. Also,
such databases could be massive, containing millions of
transactions, making support counting a tough problem.

Frequent pattern mining has been studied for over a decade
with tons of algorithms developed
Apriori
FPgrowth (it only considered in this paper)

Large data are data sets characterized by a large number
of columns (i.e., attributes)and few rows (i.e., transactions).
We propose in this paper a method to mine frequent from a
large data without transposing the data set. The key idea is
to use extension of a pattern to check these constraints,
because the extension has few objects in large
databases.[3]We show a new property to compute the
extension of a pattern and a new pruning criterion. Their
simultaneous use is on the core of the hybrid of adaptive and
bounded algorithm that we propose to extract the frequent
patterns from large database.

II. RELATED WORK

Han et al. proposed FP-growth algorithm [4] to discover
frequent patterns from FP-tree. FP-growth traverses the FP-
tree in a depth-first manner. It requires only two scans of the
dataset to construct FP-tree, unlike Apriori algorithm [6]
that makes multiples cans over the dataset. Since the
introduction of FP-growth algorithm three major algorithms
have been proposed, namely AFPIM, CATS tree, and Can
Tree that have adopted FP-tree for incremental mining of
frequent patterns. Several efficient algorithms have been
proposed for finding frequent itemsets and the association
rules are derived from the frequent item sets, such as the
Apriori[4] and DHP algorithms.

APRIORI: The Apriori heuristic achieves good
performance gained by (possibly significantly) reducing the
size of candidate sets. However, in situations with a large
number of frequent patterns, long patterns, or quite low
minimum support thresholds, an Apriori-like algorithm may
suffer from the following two nontrivial costs:

a) It is costly to handle a huge number of candidate sets.

C. Vinothiniet al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,343-347

© 2010, IJARCS All Rights Reserved 344

b) It is tedious to repeatedly scan the database and
check a large set of candidates by pattern matching,
which is especially true for mining long patterns.[14]

a. Cats tree:
CATS tree (Compressed and Arranged Transaction

Sequence Tree) [5] mainly for interactive mining. The
CATS tree extends the idea of the FP-tree to improve
storage compression, and allows frequent-pattern mining
without the generation of candidate itemsets. Once cats are
built, it can be used for multiple frequent pattern mining
with different supports. The idea of tree construction is as
follows. It requires one database scan to build the tree. New
transactions are added at the root level. At each level, items
of the new transaction are compared with children (or
descendant) nodes. If the same items exist in both the new
transaction and the children (or descendant) nodes, the
transaction is merged with the node at the highest frequency
level. The remainder of the transaction is then added to the
merged nodes, and this process is repeated recursively until
all common items are found. Any remaining items of the
transaction are added as a new branch to the last merged
node. If the frequency of anode becomes higher than its
ancestors, then it has to swap with the ancestors so as to
ensure that its frequency is lower than or equal to the
frequencies of its ancestors. Let us consider the following
example to gain a better understanding of how the CATS
tree is constructed.[4]
Example 1 Consider the following database

Figure 1. a) Initial Dataset b) Projected Dataset with minthreshold=50%

Figure: 2 Step wise Construction of CATS tree while processing each

Transaction

Figure 2 show CATS tree is constructed considering the
dataset of Figure 1. However, CATS tree too has two
limitations. First, for each new transaction it is required to
find the right path for the new transaction to merge in.
Second, it is required to swap and merge the nodes during
the updates, as the nodes in CATS tree arelocally sorted.[8]

b. Can tree:
CanT ree (Canonical-order Tree), that captures the

content of the transaction database and orders tree nodes

according to some canonical order.[7] The canonical order
can be determined by the user prior to mining process.
Canonical ordering can be lexicographic or based on certain
property values of items By exploiting its nice properties,
the Can Tree can be easily maintained when database
transactions are inserted, deleted, and/or modified.[10] For
example, the Can Tree does not require adjustment,
merging, and/or splitting of tree nodes during maintenance.
No rescan of the entire updated database or reconstruction of
a new tree is needed for incremental updating.[12]

c. Fp tree:
In this paper, we consider the FP-growth approach, Han

et al. [4] suggested that the FP-tree can be saved in the
secondary memory if it cannot be accommodated in main
memory. FP tree is a fundamental data structure for FP
growth. Their proposal is a disc-resident version of the FP-
tree that would use the B+-tree, which is a very popular
structure. They proposed that the top level nodes of the B+-
tree can be split based on the roots of item prefix subtrees,
and the second level based on the common prefix paths, and
so on. They also proposed a group accessing scheme to
improve the I/O access related to the disc-based nodes so
that one would traverse nodes that are in memory first
before fetching other nodes from disc.

The general idea of mining frequent pattern using FP
tree is divide and conquer method, it happens recursively
grow frequent pattern path. The method of mining the
frequent pattern is for each item, it constructs its conditional
pattern base, then its conditional FP tree. Again, repeat the
process until the resulting FP tree is empty, or it contains
only one path. For this we considered an algorithm as
Adaptive and Bounded memory based approach to mine
frequent pattern.[13]

III. FP TREE CONSTRUCTION

We mainly present a running example to demonstrate the
different aspects related to Han et al.’s [2] FP-growth and
FP-tree as the underlying structure because both are required
to thoroughly understand the approach proposed in this
paper.

In this section, we describe the construction procedure of
the FP-tree and its algorithm via an illustrative example.

Lets consider an example for mine frequent pattern,
Table: 1 A Transaction data Base as runing example

Table I shows a transactional database with six

transactions. Every row is identified by TID and consists of
a set of items that occur together in a single transaction. In
order to construct the FP-tree from this transactional
database, first scan the database once to collect the count of
the items present in the database. Then, sort the items
according to their frequencies in descending order to build
the frequent item list. Only items that meet the minimum

C. Vinothiniet al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,343-347

© 2010, IJARCS All Rights Reserved 345

support threshold are considered for building the FP-tree.
All items with their frequency counts are shown are the
items sorted according to their frequencies in descending
order. Only items that meet the minimum support threshold
are shown in tabulation. Finds and arranged the frequent
pattern with table (1).Once the tree is constructed; it is
possible to mine for frequent patterns using the FP-Growth
approach, which is a recursive mining approach that divides
the mining task into separate smaller ones. The FP-Growth
approach starts mining by looking up the header table and
selecting items that meet the specified minimum support
criteria.

Figure: 3TheFP- Tree in Example 1

After construction of FP tree, child node is added to the
branch while maintaining the prefix path property of the FP-
Tree. But the time when this prefix path is created and
where in the linear memory space the nodes of the prefix
path are placed, depend on the order by which the
transactions are read and added to the file. So nodes are
numbered and store in linear memory as array like fashion.
Basically FP growth suffers from spatial and temporal
localities. To improve the spatial and temporal localities
from FP growth are:

a. Approximate Sorting
b. Reorganizing Data, I/O Conscious FP-Tree
c. Reorganizing Computation, Page Blocking
d. Issues Associated With Relying on VMM

IV. PROBLEM DEFINITION

In this section, we will describe the problem in this
paper. Let’s consider raw transactional databases, total main
memory (M), secondary storage(S) are available. Based on
this, finds all frequent patterns which corresponds to
database and its support threshold. Similarly, an ARM
model, finds from database, all association rules that meet
the desired thresholds for support σ and confidence c.
traditionally, there are no restrictions on the use of M and S.
A particular mining model may use any portion of M and/or
S that the model requires to find the frequent
patterns/association rules. Moreover, the model must
assume that its memory is limited and hence cannot grow
beyond the already specified size; it is possible that other
parts of the main memory may be assigned to other tasks
that are independent of the mining task.[6]

V. BOUNDED AND ADAPTIVE APPROACH

In this section, we present the architecture of the
proposed frequent pattern mining model , which can mine
frequent patterns management unit of the model allocates a
contiguous portion of main memory M.B, where structures
required for the mining task, which includes the following:

a) Size Of (M.B) = B × size Of (M)[9]. This allocated
contiguous block of memory stores all the data using
a bounded portion of the main memory. Each
component of the proposed architecture shown in
Figure. Based on this ratio B, the memory 1) FP-
nodes list (which is an array of FP-nodes where the
initial FP-tree, and subsequently, the conditional FP-
trees are realized);

b) 2) Memory Tree Location Table (MTLT);
c) 3) Disc Tree Location
d) Table (DTLT);
e) 4) Item Location Table (ILT);
f) 5) Count Location Table (CLT); and
g) 6) FB to load blocks of the disc-based prefix tree

A. Secondary storage:
Our proposed mining model realizes the secondary

storage S as a collection of file-based structures. If at any
certain point of the mining process, the MMU cannot
accommodate the data structures in M.B, it translates the
overflowed data structures into linear file-based
structures.[2]

B. Memory management unit:
The MMU lies all the translations necessary to save the

overflowed memory-based data structures (like FP-trees,
MTLT, DTLT, etc.) into the secondary storage S as file-
based structures. It also loads the data structures from the
file-based structures to the desired memory-based structures
when required.[9] The tree translation unit translates a
memory-based FP-tree which are located at the FP-nodes-
list into a disc(file)-based version of I/O-conscious prefix-
tree. Next, the tree is divided into two blocks, where each
block size is less than the size of FB. Next, each block is
saved into a file structure as an I/O-conscious prefix-tree.

Disc Tree Location Table(DTLT) is an R-tree- [8]based
structure that stores the knowledge of Prefix-Tree disc node-
Id ranges associated with each prefix-tree Moreover, it
makes sure that the DTLT is always maintained using only a
bounded portion of M.B. It also keeps a hash table
associated with the DTLT structure to easily identify nodes
of the DTLT structure that are actually in memory and those
that are in a disc-based file. Actually, if a node is not present
in the hash table, this subunit assumes the node is stored on
disc and subsequently loads the node in to memory and
creates a corresponding entry in the hash table.

C. Vinothiniet al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,343-347

© 2010, IJARCS All Rights Reserved 346

Figure: 4 -Architecture of Bounded and Adaptive

The ILT structure is also an R-tree based structure,
which stores the node-link pointers of the prefix-trees.[11]
Each ILT internal node contains dimensionality information
as tree Id Range, item Id Range, and node Id Range;
whereas, a leaf node holds the node Ids of a particular item
in a particular prefix tree block, in addition to tree Id, item
Id, and node Id Range. The ILT processing unit does all the
manipulation of the ILT structure in a way similar to how
the DTLT processing unit processed.[1]

MTLT is an R-tree-based structure which keeps track of
the FP-trees that are currently present in memory. MTLT
structure uses this id as dimensionality information. The leaf
node of the MTLT structure contains a pointer to the root
node of the particular FP-tree in memory and also a file
pointer to the header table which if not used is saved on the
disc.[11]

The CLT structure stores the count/frequency list of all
the items in a particular prefix tree. Auxiliary unit is the
subunit manipulates the data structures that are placed on the
Misc and the (File Block)FB portion of M.B; M is the total
main memory and B is the bounded portion of primary
memory .It is mainly used by some of the subunits of the
MMU and the computation unit.[1]

VI. RESULTS

The performance of the proposed frequent pattern
mining model on data sets of different properties with
different main memory usage constraints was studied. The
proposed mining model was configured in such a way that
about 80% of the bounded main memory was allocated for
FP-Nodes-list, 5% for FB, 12% for data structures ILT,
DTLT, MTLT, CLT, and their corresponding hash tables,
and 3% for other Misc data structures.

For mining model, undoubtedly, the FP-Nodes-list needs
the memory the most; so it gets around 80% of the whole
available quota of primary memory. To avoid frequent page
faults for our MMU, around 3% of the memory was
assigned to each of the R-tree-based structures. Exact values

of these parameters should be guided by the data analyst,
and performance of the system may vary based on different
parameter values. However, the above chosen parameter
values seemed to work reasonably well for our experimental
setup and a slight variation from the above specified values
did not seem to make a great impact on the running time if
majority of the memory is assigned to FP-Nodes-list.[1]

The comparative study of the proposed work with the
existing methods has been presented. For the comparison of
the techniques presented in the approach, the following
performance metrics have been used such as time and the
memory usage. The following screenshots represents the
comparative study of the both approaches.

Figure5 Comparitive chart for time taken

The above presented Graph point out the comparative
chart represents the time taken for the frequent pattern
mining for the three approaches namely the FP-Growth,
adaptive FP-Growth and the adaptive FP-Growth based on
the dynamic memory allocation. From the above graph it is
known that the time taken for the frequent pattern mining by
the proposed technique is relatively lesser than the previous
approach also by providing the dynamic memory allocation.

C. Vinothiniet al, International Journal of Advanced Research in Computer Science, 3 (5), Sept –Oct, 2012,343-347

© 2010, IJARCS All Rights Reserved 347

Figure: 5 Comparitive chart for memory usage

From the above graph it is known that the memory taken
for the frequent pattern mining by the proposed technique is
relatively lesser than the previous approach also by
providing the dynamic memory allocation.

VII. CONCLUSION AND FUTUREWORK

In this work, an approach of frequent pattern mining
based on the adaptive FP-Growth approach is presented by
handling the memory allocation dynamically. Also the
proposed approach have been compared with the present
work in case of the performance metrics such as the time
taken and the memory usage by the approaches for the
frequent pattern mining. From the results it was found that
the proposed work scale up the performance of the approach
of frequent pattern mining from the large database and also
able to have a dynamic memory management by developing
a specialized memory management unit and by eradicating
the concept of behavior of depending up on the virtual
Memory Management. This method can be further used for
research studies in order to make the approach more specific
and to be handled for any range of the large database
handling the different types of the data.

VIII. REFERENCES

[1]. Muhaimenul Adnan and RedaAlhajj,” A Bounded and
Adaptive Memory-BasedApproach to Mine Frequent
Patterns From Very Large Databases”, IEEE Transactions
on Systems, Man, and Cybernetics—Part b: Cybernetics,
Vol. 41, no. 1, February 2011.

[2]. Sotiris Kotsiantis, DimitrisKanellopoulos,”Association
Rules Mining: A Recent Overview”,GESTS International

Transactions on Computer Science and Engineering,
Vol.32 (1), 2006, pp. 71-82

[3]. R.C. Agarwal, C.C. Aggarwal, and V.V.V. Prasad.“Depth
first generationof long patterns”. In Ramakrishnan et al.
[32], pages 108–118.

[4]. R. Agrawal, T. Imielinski, and A. N. Swami.“Mining
association rules between sets of items in large databases”.
In ACM SIGMOD’93, pages 207–216, Washington, D.C.,
1993.

[5]. C´elineH´ebert and Bruno Cr´emilleux,”Mining Frequent
δ-Free Patterns in Large Databases”, A. Hoffmann, H.
Motoda, and T. Scheffer (Eds.): DS 2005, LNAI 3735, pp.
124–136, 2005_c Springer-Verlag Berlin Heidelberg 2005.

[6]. R.J. Bayardo. “Efficiently mining long patterns from
databases”.InProc. SIGMOD 1998, pp. 85–93.

[7]. J. Han, J. Pei, Y. Yin and R. Mao, “Mining Frequent
Patterns without Candidate Generation:A Frequent-Pattern
Tree Approach”. Data Mining and Knowledge
Discovery,8(1), 2004, pp.53-87.

[8]. W. Cheung and O.R. Za ı̈ane. Incremental mining of
frequent patterns without candidate generation or support
constraint. In Proc. IDEAS2003, pp. 111–116.

[9]. Agrawal R., Imielinski, T., and Swami, A. 1993. “Mining
association rules between sets of items in large databases”.
In Proc. of ACM-SIGMOD, 1993 (SIGMOD‟ 93), pp.
207–216

[10]. Carson Kai-Sang Leung∗Quamrul I. Khan
TariqulHoque,”CanTree: A Tree Structure forEfficient
Incremental Mining of Frequent Patterns”Proceedings of
the Fifth IEEE International Conference on Data Mining
(ICDM’05)1550-4786/05 $20.00 © 2005 IEEE

[11]. A. Guttman, “R-trees: A dynamic index structure for
spatial searching,” in Proc. ACM SIGMOD, B. Yormark,
Ed., 1984, pp. 47–57.

[12]. 7.Leung,C. K.-S., Q. I. Khan, and T. Hoque, (2005)
“Cantree: A tree structure for efficientincremental mining
of frequent patterns,” in Proc. IEEE Int. Conf. Data
Mining, Los Alamitos, CA,pp. 274–281.

[13]. Rácz.R, (2004) “nonordfp: An FP-growth variation without
rebuilding the FP-tree,” in Proc.FIMI.

[14]. Cheung,W. and O. R. Zaiane, (2003) “Incremental mining
of frequent patterns without candidate generation or
support constraint,” in Proc. IEEE Int. Conf. Database Eng.
Appl., Los Alamitos, CA,pp. 111–116.

