
Volume 3, No. 4, July- August 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 209

ISSN No. 0976-5697

A Memory Efficient Listless SPECK (MLSK) Image Compression Algorithm for Low
Memory Applications

N. R. Kidwai*
Department of Electronics & Communication Engineering,

Integral University, Lucknow, India
naimkidwai@gmail.com

Ekram Khan
Department of Electronics Engineering, Aligarh Muslim

University, Aligarh, India
ekhan67@gmail,com

Rizwan Beg
Department of Computer Science and Engineering,

Integral University, India
rizwanbeg@gmail.com

Abstract: Use of data dependent lists to store state information during coding, SPECK (set partitioned embedded block coding) image coding
algorithm requires large run-time memory, and thereby making SPECK image coder unsuitable for memory constrained applications. In this paper, a
memory efficient and fast version of SPECK coder is proposed. The proposed coder uses fixed size static memory, which stores markers to facilitate
coding. Replacement of data dependent lists with small fixed size static memory reduces the memory access time, thereby making it faster than the
original SPECK. The proposed coder is memory efficient and requires only one bit per pixel memory (12.5% of memory required to store image) to
store markers, while coding efficiency and scalability property of the SPECK algorithm is retained thereby making it suitable for resource
constrained portable hand held device and wireless sensor networks.

Keywords: Image coding, wavelet, SPECK, Listless image coder, memory efficient image coder, Block coder

I. INTRODUCTION

Transmission of images over internet and cellular networks
through handheld mobile/ portable multimedia devices, are
growing exponentially. Also emerging wireless multimedia
sensor network (WMSN’s) require real time image
transmission among its nodes and hubs over wireless channel.
These devices and sensors are constrained in terms of memory,
battery life and processing power. Transmission of images
through these devices over internet and wireless channels
require an embedded image compression algorithm which is
efficient and requires minimal resources (memory,
computational power and battery lifetime) [1-5].

State of art image coders such as JPEG2000[6] and
EBCOT[7] are coders with increased computational
complexity, while wavelet based coders Set partitioning in
hierarchal trees (SPIHT)[8] and set partitioning embedded
block coder (SPECK)[9] coders are most suitable coders
among the wavelet based coders for resource constrained
handheld devices and WMSN’s[4] [10].

Figure 1: Block diagram of wavelet based set portioning coders

Wavelet based coders achieve compression by grouping a

large number of insignificant coefficients either in form of
zero-trees or zero-blocks and use data dependent list (dynamic
state memory) to store state of sets and coefficients to be tested
for their significance. Fig. 1 shows the block diagram of
wavelet based set partitioning coders. These coders require
memory for wavelet transformation and use state memory in
form of various list to store state of sets and coefficients during
coding. Use of continuously growing list memory in these
coders, not only result in dynamic state memory requirement,
but also necessitate the need for memory management.
Multiple memory access, memories append and memory
management contributes significantly to computational
complexity of the coder. These problems become more severe
for high resolution images.

Many listless versions of zero tree and zero block coders
[11-14] have been reported earlier. All these coders use fixed
size state tables or markers to keep track of set partitioning.
However the state memory requirements of these coders are
high for low memory applications. NLS [12], a listless
implementation of SPIHT uses 4 bit per coefficient marker
memory (50 % of the memory to store image), while
implementation in [13] uses 3 bit per coefficient state memory
(37.5 % of the memory to store image). LSK [14] a listless
version of SPECK algorithm uses 2 bit per coefficient state
memory (25 % of the memory to store image) to facilitate
encoding.

In this paper, we propose a listless implementation of
SPECK algorithm for efficient coding of wavelet transformed
images that uses one bit per pixel marker (12.5 % of the
memory to store image) to keep track of blocks and
coefficients to be tested for their significance. The proposed

N. R. Kidwai et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012, 209-215

© 2010, IJARCS All Rights Reserved 210

algorithm is termed as Modified Listless SPECK coder
(MLSK) due to the obvious reasons.

The paper is organized as follows. Section II presents the
overview of SPECK and LSK algorithm. Section III describes
the proposed MLSK algorithm including the linear indexing
property of wavelet coefficients. Simulation results and related
discussions are presented in section IV and finally the paper is
concluded in section V.

II. OVERVIEW OF SPECK AND LSK ALGORITHM

SPECK [9] is bit plane coding algorithm and encodes
significance map of bit planes in decreasing order of their
importance as shown in Fig. 2(a). SPECK coder uses two types
of set: S and I as shown in Fig. 2(b). In the process of coding, S
sets are partitioned by quad partitioning scheme while I sets
are partitioned by octave band partitioning scheme as shown in
Fig. 2(c) and Fig. 2(d). Each pass of SPECK comprises of
sorting, and refinement. It uses two lists: list of insignificant
sets (LIS) and list of significant pixels (LSP) to store state of
sets and pixels. The coding algorithm proceeds as follows.

The algorithm initializes with defining initial threshold,

which depends on the bit plane. The LIS is initialized with a
LL-sub band. In the sorting pass, sets of LIS are tested against
threshold and their significance is encoded. A significant S set
is partitioned into four equal sets and parent set is removed
from the LIS. Each of the newly formed set is tested for their
significance and insignificant is added to LIS while significant
set is recursively partitioned till a coefficient is reached. For a
significant coefficient, sign bit of the coefficient is also coded
and coefficient is send to LSP. After all sets of LIS are tested
for the significance, set I is tested for significance. A
significant I set is partitioned the octave band partitioning
resulting in three sets and a reduced I set. The newly formed
sets are processed in regular image scanning order.

Figure 2: (a) illustration of bit plane coding

(b) S-I partition of SPECK
(c) Quad partition of S set

(d) Octave band partition of SPECK

After all sets of LIS are processed, the refinement pass is
initiated which refines the quantization of the coefficients in
the LSP found significant in earlier passes. The threshold is
then reduced by a factor of two and the sequence of sorting and
refinement passes is repeated. Sets of LIS are processed in
increasing order of their size. The whole process is repeated
until the desired bit rate is achieved.

Though SPECK is an efficient algorithm, large dynamic
state memory requirement and increased computational
complexity limits application of SPECK coder in memory
constrained environment such as handheld multimedia devices
and WMSN’s.

LSK [14] is listless version of SPECK algorithm but does
not use I partitioning of SPECK. State information of
coefficient /block is kept in a fixed size array, with two bits per
pixel of image to enable fast scanning of the bit planes. In
LSK, efficient skipping of blocks of insignificant coefficients is
accomplished using linear indexing [15]. The following
markers are placed in the 2 bit per coefficient state table mark,
to keep track of the set partitions.
MIP : The pixel is in-significant or untested for this bit-plane.
MNP: The pixel is newly significant & will not be refined for
 this bit-plane.
MSP : The pixel is significant and will be refined in this bit
 -plane.
MS2: The block of size 2×2, i.e., 4 elements to be skipped.

 MS2 markers are successively used to skip 4×4 block, 8×8
 block, and so on.

LSK coder uses fixed size array of two bits per coefficient
to store markers facilitating coding. For a 512×512 image
decomposed to 5 levels, the LSK requires 64 KB memory to
store markers while for image size of 1024 x 1024, it is 256 KB
which is significantly higher for memory constrained handheld
devices. Also LSK does not use I sets of SPECK thereby
generating more bits in earlier passes.

III. PROPOSED MLSK ALGORITHM

The proposed MLSK algorithm is a novel listless
implementation of SPECK algorithm with small fixed size state
memory. It uses dyadic wavelet transform with lifting scheme,
which is a fast implementation of conventional wavelet
transform and reduces memory requirement of the transform.
The transformed image is then converted into linear index [12]
[15]. The algorithm achieves functionalities of LIS by using
fixed size marker array and removes LSP by merging
refinement pass in sorting pass. The concept of linear indexing
and detailed algorithm are discussed below.

Linear Indexing:

The linear indexing allows addressing a dyadic transformed
wavelet coefficient by a single index instead of two. Let NxN
be the size of the transformed image {ℑi,j}, and let r and c be
the row and column indices of a particular wavelet coefficient.
The linear index i of transformed image {ℑi}, varying in the
range of 0 to N2-1, can be obtained by simply interleaving the
bits of binary representation of r and c [12]. Fig. 3(a) shows
linear indexing of an 8x8 image with two level dyadic
transform in Z scan order. Fig. 3(b) shows sub bands at
different resolution levels of the image. The linear indexing

N. R. Kidwai et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012, 209-215

© 2010, IJARCS All Rights Reserved 211

uses Z scan order to enlist coefficients of sub bands
consecutively in their wavelet coefficients pyramidal structure.

 0 1 2 3 4 5 6 7

0 0 1 4 5 16 17 20 21
1 2 3 6 7 18 19 22 23
2 8 9 12 13 24 25 28 29
3 10 11 14 15 26 27 30 31
4 32 33 36 37 48 49 52 53
5 34 35 38 39 50 51 54 55
6 40 41 44 45 56 57 60 61
7 42 43 46 47 58 59 62 63

 (a) (b)
Figure. 3: Illustration of linear indexing for an 8x8 image with 2-level DWT

(a) linear index, (b) sub bands at different resolution levels

MLSK Algorithm:

Let a zero mean square image X of size (NxN) with N=2p,
that after L level of dyadic Lifting wavelet transform is read
into the linear array {ℑi}, using linear indexing having Npix=N2
coefficients. The LL- band has Npix/4L coefficients. MLSK
algorithm uses set structures and partitioning scheme of
SPECK algorithm. The functionality of LIS is obtained by
using a fixed size marker array. In MLSK, state of blocks of
size 4 (2x2 block) is stored instead of coefficients, thereby
reducing the memory requirement of propose coder. Use of
LSP is avoided in the MLSK by merging refinement pass in the
sorting pass.

The following markers are placed in the state memory
‘mark’ of size Npix/4, to keep track of the set partitions. Each
marker and its meaning is listed below.
MSB: The block of size 4 (2x2 block) is found significant in

early passes
MI: Marker used at the beginning of each insignificant I

block.
MSq: Markers used at the beginning of each insignificant

block of size 4q (2qx2q block). These markers indicate
the block size of insignificant set.

 MS1:block of size 4 (2x2 block), MS2: block of size
42 (4x4 block) and so on

The encoder algorithm shown by flowchart in Fig. 4 is
performed for each bit plane starting with initial threshold T
where T=2n and decrementing up to 0 or until a bit budget is
achieved. The algorithm begins by initializing the static array
‘mark’ of size Npix/4, mapping all possible block of size 4 (2x2
block) of the image. Initially LL-band marker is set
[mark(0)=MS(p-L)], first I set marker is set as MI [mark(4(p-L-1))=
MI] and rest of the elements of the ‘mark’ set to ‘0’.

In MLSK significance of a set or block B against a
threshold T= 2n is given as,

)1(......
)(max ,0

2)(max ,1
)(







<ℑ

<ℑ≤
=

∈

∈

Tif
TTif

B
iBi

iBi
nψ

In sorting pass, all the elements of state memory ‘mark’ are
scanned. For mark (j)=MSq, the block, the size of the block is
specified by the marker. The block is tested against threshold
and its significance is encoded. An insignificant block is
skipped and mark index is incremented accordingly. A
significant block is partitioned into four blocks (quad partition)
and each newly partitioned block is tested against threshold
and its significance is encoded. For a insignificant newly
partitioned block, corresponding mark element is updated by
MS* marker according to size of block. For a significant block
of size 4 (2x2 block), corresponding mark is set as ‘MSB’ and
each coefficient of the block is tested against threshold and its
significance is encoded. For a significant coefficient, its sign
bit is encoded.

‘MSB’ marker indicates that the corresponding block of
size 4 has been found significant in previous passes and it
contains at least one coefficient which requires refinement in
the pass. A coefficient found is significant in previous passes is
identified by the fact that coefficients magnitude is greater than
or equal to twice of threshold, For the coefficients of the block
found significant in earlier passes, refinement bit is encoded,
For other coefficient of the block their significance is encoded
and for significant coefficient its sign bit is encoded.

‘MI’ marker indicates an I block. The corresponding I
block is tested against threshold and its significance is encoded.
For a insignificant I block, the pass ends while for a significant
block, octave band partitioning is effected by setting
corresponding mark element for three newly formed square
block as corresponding MS* marker and for new I block as MI
if the reduced block exits. Then the testing of S blocks
proceeds as explained above.

MLSK algorithm is symmetrical and its decoder follows
the same overall procedure as the encoder with some low-level
changes. To decode, (use input) instead of output, and set the
(bits) and signs of coefficients. The decoder performs mid-
tread de-quantization for coefficients that are not fully decoded

As the MLSK use set partitioning rules of SPECK, both
coder produces the exact same output bits in each pass, though
in a different order because refinement is merged in sorting
pass as shown in Fig. 5. Thus slight degradation of PSNR may
occur in MLSK than SPECK, if bit budget is exhausted in the
middle of pass as bits will also be used for refinement.
However, at the end of sorting pass, MLSK encodes same
information as that of SPECK. Thus the MLSK generates
embedded bit stream with progressive transmission using small
fixed size markers,

The use of small fixed size memory reduces the
computational cost involved in multiple memory access and
appending the dynamic memory of SPECK. The coding
complexity of MLSK coding algorithm is at par with LSK due
to less memory access in MLSK and also due to use of
different MS* markers while in LSK, skipping of bigger sets is
achieved by using consecutive MS2 markers [14].

Resolution
level 2

1 2

3 4

6

5

7

Resolution
level 1

N. R. Kidwai et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012, 209-215

© 2010, IJARCS All Rights Reserved 212

n=n-1

|ℑ(i+k)|<T

|ℑ(i+k)|≥T

ℑ(i+k)

j=j+1

no

yes

j=j+1

k=k+1

yes

k>3

j=j+ λ/4

no j<Npix/4

mark(j) = log4(j)
mark(2j) = log4(j)
mark(3j) = log4(j)

 mark(4j) = MI

j=j+Npix

mark(j) = q-1
mark(j+λ/4) = q-1
mark(j+2λ/4) = q-1
mark(j+3λ/4) = q-1

mark(j)= ‘MSP”

k=0

|S|≥T

S
|S|<T

i=4j; λ=4q;
S={ℑk; i≤k<i+ λ}

λ
λ>4

λ=4

output ‘1’ output ‘0’

output ‘0’

output ‘1’
output sign
bit of C(i+k)

MI marker

MSq marker

mark(j) MSB marker

|I|≥T

I
|I|<T

i=4j;
I={ℑk; i≤k<Npix}

T=2n; j=0

{ℑi }: Linear array of image transform of size (1xNpix); L: transform levels
Npix ; size of array (Npix=4p, for 2px2p image) , n = log2(max{ℑi}), ; Initialize ‘mark' of size
(1xNpix/4) with ‘mark’(0)=MS(p-L) marker, ‘mark’(4(p-L-1)) = MI marker and rest elements as ‘0’

i=4j

k=0

output ‘0’

output ‘1’
output sign
bit of ℑ(i+k)

output n th
bit of ℑ(i+k)

k=k+1

yes

no
k>3

|ℑ(i+k)|<T |ℑ(i+k)|≥2T

T≤|ℑi+k)|<2T

ℑ(i+k)

Figure 4 : flowchart of MLSK algorithm

N. R. Kidwai et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012, 209-215

© 2010, IJARCS All Rights Reserved 213

 State Memory:

SPECK use linked lists to store the significant information
of coefficients, and blocks there by requiring a data dependent
memory. The proposed MLSK coder uses a static list to store
leading markers. Here the memory required for storing the state
information in MLSK, LSK and SPECK are estimated. The
required memory size for MLSK and LSK is fixed while for
SPECK it is proportional to the number of entries in the
corresponding lists (LIS and LSP).

In SPECK, each entry in LIS is the address of a square
block of arbitrary size including that of a single coefficient. In
actual implementation, a separate list is maintained for each
block size. However, LSP contains the address of significant
coefficient. Let NLIS and NLSP be the number of entries in LIS
and LSP respectively and ‘b’ be number of bits required to
store addressing information, then the total required memory
due to lists in SPECK is given by

MSPECK =b[NLIS + NLSP] bits (2)
LSK uses a static memory of size equal that of coefficients

array to store markers. As LSK uses two bit markers then for a
image size (R x C) memory required for marker is

 MLSK =2RC bits (3)
MLSK uses a static memory of one fourth of coefficients

array size, to store markers. As MLSK uses four bit markers
then for a image size (RxC) memory required for marker is

 MMLSK =RC bits (4)
In worst case all the coefficients may be in either LIS or in

LSP in SPECK coder. For an image size of 512x512, worst
case state memory required for SPECK is 576 KB, for LSK 64
KB and for proposed MLSK it is only 32 KB.

IV. SIMULATION RESULTS

The coding performance, and memory requirement, of the
MLSK coder is evaluated and compared with SPECK, and
LSK on three classical grayscale test images (each 512×512, 8
bits/pixel); Lena, Barbara, and Baboon. A 5-level dyadic
wavelet decomposition using bi-orthogonal 4.4 filter with
lifting scheme is used. Floating point, transform coefficients
are quantized to the nearest integers, and read into the linear

array using linear indexing. The simulations are performed
using MATLAB platform on a PC with Intel CPU T 2080 @
1.73 GHz having 512 MB RAM. All the coders are
implemented on the same platform without arithmetic or
context based coding. The test images are binary encoded once
up to the last bit plane and are decoded at different bit rates
from the same embedded bit-stream.

Coding Efficiency:

Rate-Distortion performance (coding efficiency) of MLSK,
LSK and SPECK coder is measured in terms of peak signal to
noise ratio (PSNR). Coding performance of image ‘Lena’ for
various coders is given in Fig. 6. It can be observed from the
figure that coding efficiency of the MLSK is at par to that
SPECK. It should be noted that at the end of each bit plane
coding gain obtained in MLSK and SPECK algorithms are
identical and slightly better than LSK at lower bit rate. This is
because MLSK coder uses the set partitioning rules of SPECK,
while LSK coder does not use I partitions resulting in some
more bits generated resulting in slightly lower PSNR at low bit
rates. For bit rates somewhere in middle of a pass, the
efficiency of MLSK is slightly lower than that of SPECK and
LSK. This is because in MLSK refinement pass is merged in
sorting pass and a refinement bits are spread in the bit stream.
For the bit rates somewhere in the middle of pass, in the MLSK
bit budget is also consumed in refinement bits thereby reducing
the number of new significant bit coded. This results in
reduction of PSNR as a bit representing a new significant pixel
provides more improvement in PSNR than that of a bit
representing a refinement pixel.

Figure 6: PSNR vs Bit rate for MLSK, SPECK and LSK for ‘LENA’ (512 x

512)
The coding efficiency of SPECK, LSK and MLSK coder

for three test images (Lena, Barbara and Baboon) are given in
Table 1. The results are without arithmetic or context based
coding. It can be observed from the table that PSNR of MLSK
coder is at par with SPECK and LSK. The reduction in coding
gain at some points is due to bits reordering in MLSK. It
should also be noted that at bit rates before the end of pass
MLSK coder has slightly higher coding gain than SPECK e.g.
at 0.25 bpp for image Baboon. This is because these bit

(b)

Figure 5 a bit plane in (a) SPECK (b) MLSK

(a)

bit plane #n bit plane
#n-1

bit plane
#n+1

Significance bits
refinement bits

Sign bits

N. R. Kidwai et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012, 209-215

© 2010, IJARCS All Rights Reserved 214

budgets exhaust near the end of pass and in this condition
MLSK codes most of the new significant information along
with most of the refinement while in SPECK coder codes
almost all new significant information are coded, but most of
the refinement bits remains uncoded.

Table 1 Coding performance of SPECK, LSK, MLSK (dB)

The visual performances of MLSK coder and SPECK coder
are shown in Fig, 7 for the three test images Lena, Barbara and
Baboon. In subjective evaluation, the reconstructed images
appear to be similar for both coders.

 LENA
(512x512)

BARBARA
(512x512)

BABOON
(512x512)

SP
EC

K

LS
K

M
LS

K

Figure. 7: comparative coding results of test images at 0.125 BPP
State Memory

The memory requirements of MLSK coder, LSK and
SPECK to store state information are compared in Table 2 for
the three test images. SPECK coder requires data dependent

variable memory (dynamic memory) while LSK and proposed
MLSK coder replace dynamic memory with fixed size static
memory. From the table it is evident that in terms of processing
memory MLSK coder outperforms others. LSK require 2 bit
per coefficient static memory while MLSK require 1 bit per
coefficient (4 bit per 4 coefficient) to store significance state.

Table 2 State Memory required (in KB)

Figure 8 State Memory required (KB) for image ‘LENA’ (512x512) in
SPECK, LSK, MLSK

Fig, 8 shows the state memory required for the coding of
image Lena. It can be observed from the figure that state
memory required for SPECK coder increases with bit rate
while for LSK and MLSK, it is of fixed size, From the figure it
is evident that in terms of processing memory, LSK

BPP SPECK LSK MLSK

LENA (512 x512)

0.0625 27.114 26.989 26.908

0.125 30.044 29.916 29.817

0.25 33.245 33.073 33.007

0.5 36.553 36.292 36.280

1 39.709 39.535 39.484

BARBARA (512 x512)

0.0625 22.814 22.742 22.704

0.125 24.425 24.057 24.004

0.25 27.139 26.692 26.620

0.5 30.989 30.570 30.518

1 35.885 35.438 35.344

BABOON (512 x512)

0.0625 20.524 20.486 20.490

0.125 21.477 21.384 21.387

0.25 22.738 22.734 22.841

0.5 24.968 24.712 24.617

1 28.372 28.116 27.955

*Above results are without arithmetic / context based coding

BPP SPECK LSK MLSK

LENA (512 x512)

0.0625 13.3 64 32

0.125 24.8 64 32

0.25 46.7 64 32

0.5 88.5 64 32

1 182.7 64 32

BARBARA (512 x512)

0.0625 16.4 64 32

0.125 35.0 64 32

0.25 53.1 64 32

0.5 102.6 64 32

1 171.8 64 32

BABOON (512 x512)

0.0625 19.8 64 32

0.125 38.0 64 32

0.25 80.6 64 32

0.5 131.5 64 32

1 200.1 64 32

*Memory required to store image and wavelet transform is not accounted in
above results

N. R. Kidwai et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012, 209-215

© 2010, IJARCS All Rights Reserved 215

outperforms SPECK for bit rates higher than 0.35 bit per pixel
while proposed MLSK coder outperforms SPECK for bit rates
higher than 0.15 bit per pixel. Thus MLSK coder is more
suitable for low bit rate coding than LSK

V. CONCLUSIONS

In this paper we have proposed a novel implementation of
listless SPECK using fixed size markers memory (one bit per
pixel). It is observed that proposed MLSK coder outperforms
SPECK and LSK in terms of memory requirements while
coding efficiency is at par with that of SPECK. MLSK coder
generates same size of bit stream as that of SPECK in a pass
but in different order due to merging of refinement pass into
sorting pass. Bit ordering of SPECK offers slightly better
coding gain in the middle of a pass, but at the end of each bit
plane coding gain is exactly identical. In terms of
computational complexity proposed coder is at par with LSK
while outperforms SPECK coder. Due to low memory
requirement and low computational complexity, the MLSK
coder is suitable for resource constrained devices such as
portable camera, PDAs and wireless multimedia sensor
networks..

VI. REFERENCES

[1] D Lee, H Kim, M Rahimi, D Estrin and J. D. Villasenor,
“Energy efficient image compression for resource-
constrained platforms”, IEEE Trans. Image Process, vol. 18,
No. 9, pp. 2100-2113, Sept. 2009.

[2] I. F. Akyildiz, T. Melodia, K. R. Chowdhury, “A survey on
wireless multimedia sensor networks”, Computer Networks
(Elsevier) Journal, Vol. 51, No.4, pp. 921-960, March 2007.

[3] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “Wireless
Multimedia Sensor Networks: Applications and Testbeds”,
Proceedings of IEEE, Vol. 96, No.10,pp. 1588-1605,
October 2008.

[4] Li Wern Chew, Li-Minn Ang, and Kah Phooi Seng, ”Survey
of image compression algorithms in wireless sensor
networks.”: International Symposium on Information
Technology Malaysia, 2008. pp. 1-9. 2008.

[5] Satyajayant Misra, Martin Reisslein, and Guoliang Xue, “A
Survey of Multimedia Streaming in Wireless Sensor

Networks”, IEEE Communication Surveys & Tutorials, Vol.
10,No. 4 pp. 18-39, 2008.

[6] D. Santa-Cruz, R. Grosbois and T. Ebrahimi, “JPEG 2000
performance evaluation and assessment,” Signal Processing:
Image Communication, vol. 17, pp. 113–130, Jan. 2002.

[7] D. Taubman.: ‘High performance scalable image
compression with EBCOT’, IEEE Trans. Image Process., 9,
pp. 1158–1170, 2000.

[8] A. Said, W. A. Pearlman: ‘A new fast and efficient codec
based on set partitioning in hierarchical trees’, IEEE Trans.
Circuits Syst. Video Technol., vol. 6, pp. 243–250, 1996

[9] W. A. Pearlman, A. Islam, N. Nagaraj, A. Said: ‘Efficient
low complexity image coding with set-partitioning embedded
block coder’, IEEE Trans. Circuits Syst. Video Technol., 14,
pp. 1219–1235, 2004.

[10] R.Sudhakar, Ms R. Karthiga, S.Jayaraman, “Image
Compression using Coding of Wavelet Coefficients–A
Survey”, ICGST-GVIP Journal, Vol. 5, No. 6 pp. 25-38, June
2005.

[11] W. K. Lin and N. Burgess, “Listless zerotree coding for color
images”, In Proc. of the 32nd Asilomar Conf. on Signals,
Systems and Computers, vol. 1, pp. 231-235, Nov 1998.

[12] F. W. Wheeler and W. A. Pearlman, “SPIHT image
compression without lists”, IEEE conference on acoustics,
speech and signal processing (ICASSP2000), vol. 4, pp.
2047-2050, May 2000.

[13] H. Pan, W. C. Siu, et al.. "A fast and low memory image
coding algorithm based on lifting wavelet transform and
modified SPIHT" Signal Processing: Image Communication,
Vol. 23, No.3, 146-161, 2008.

[14] M. V. Latte, N. H. Ayachit and D. K. Deshpande, “Reduced
memory listless SPECK image compression”, Elsevier’s
Journal of Digital Signal Processing, vol. 16, issue 6, pp. 817-
824, Nov. 2006.

[15] G. Seetharaman and B. Zavidovique, “Z-trees: Adaptive
pyramid algorithms for segmentation,’’ in Proc. of the
International Conf. on Image Processing (ICIP-98), pp. 294-
298, 1998.

	INTRODUCTION
	OVERVIEW OF SPECK AND LSK ALGORITHM
	PROPOSED MLSK ALGORITHM
	Linear Indexing:
	MLSK Algorithm:
	State Memory:

	SIMULATION RESULTS
	Coding Efficiency:
	Figure. 7: comparative coding results of test images at 0.125 BPP
	State Memory

	CONCLUSIONS
	REFERENCES

