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Abstract: A new metaheuristic, known as Global Bacteria Optimization (GBO), is known to solve multi-objective optimization problems and results 
from previous work has shown improvement over those solutions generated by other metaheuristics, such as genetic algorithms (GA), evolutionary 
algorithms (EA) and swarm algorithms (PSO). This metaheuristic is inspired on bacteria phototaxis behavior, where the solution space is reduced and 
gets far closer to the Pareto optima solutions. In this paper, the analytical aspect of the solution to multi-objective problems is approached, where it 
has been demonstrated how two mathematical functions, when minimized, produce Pareto Optima solutions. A review of the MCDM theory states 
the conditions that are required for two or more functions to reach their optimal solutions simultaneously. Metrics, such as extreme points and 
spacing, were compared to exact solutions obtained by MCDM techniques programmed in GAMS, proving that GBO not only produce Pareto 
Optima solutions, but robustness is also obtained. 
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I. INTRODUCTION 

It has been widely known that today’s decision making 
problems are based on several criteria or objectives, given that 
in a situation it is everyday more difficult to decide between 
two or several objectives. The reason for this is due to the fact 
that usually the objectives are conflicting; this means that if 
one is improved the other is affected. For example, if both 
time and cost are being minimized in order to operate any 
industrial process, it can be observed that the minimization of 
time requires a greater investment in cost and the 
minimization of the cost requires a greater time of execution; 
ending up both objectives in conflict. The existence of several 
objectives in an optimization problem is denominated 
multiobjective optimization and this gives rise to a theory 
designed by Vilfredo Pareto [1].     

As for the optimization problems, it is important to 
understand the existence of the complexity of any 
optimization problem. This occurs when the problem can’t be 
solved by exploring all possible scenarios and if this occurred 
the computer wouldn’t finish in many years, depending on the 
size of the problem. This gives rise to heuristics and 
metaheuristics, which gives “good” solutions to large 
optimization problems in fairly small execution times. 

Among the metaheuristic approaches, it can be observed 
that much work has been done with genetic algorithms (GA), 
evolutionary algorithms (EA), swarm algorithms (PSO), tabu 
search and ant colony optimization (ACO). 

All of these metaheuristics were originated from problems 
observed in nature and were adapted to optimization problems, 
implementing new ways to obtain near to optimal or optimal 
solutions, by shortening the search space available, thus, 
improving algorithm execution times. For example, ACO 

algorithm is based on the behavior of ant colonies as they 
search for the best trail that leads to their source of food. 

The metaheuristic named Global Bacteria Optimization 
(GBO) algorithm, which is introduced in this paper, is based 
on the process that takes place in phototropic bacteria, its 
mobility and life cycle in the participating colony. It has been 
proven that the, so called, “moving towards the light” process 
as a search space procedure produces excellent results, 
reaching objective values that are competitive in comparison 
to other metaheuristics [2]. 

In this paper, the analytical aspect of the solution to multi-
objective problems is approached, where it has been 
demonstrated how two mathematical functions, when 
minimized, produce Pareto Optima solutions. Metrics such as 
extreme points and spacing, were compared to exact solutions 
obtained by MCDM techniques programmed in GAMS, 
proving that GBO not only produce Pareto Optima, but 
robustness in the solutions obtained. 

II. MULTICRITERIA OPTIMIZATION THEORY 

A. Multicriteria Decision Making (MCDM): 
In the process of decision making there are a set of tools 

that permit a correct approach to an optimal solution of a 
problem. Many authors have presented significant 
contributions and, in general, the MCDM approach is more of 
a description where possible solutions are defined, including 
the attributes and evaluation of the criteria, but most 
importantly, there is a utility function where the criteria is 
incorporated. This utility function has to be maximized during 
this process and that is how optimal solutions are reached.  

There are several axioms presented by Boysseu (1984) and 
Roy (1985) that are fundamental to MCDM [3]: 1) The 
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decision maker always maximizes, implicitly or explicitly, a 
utility function; 2) An optimal solution exists for every 
situation; 3) No comparable solution exists, it will always 
need to have to choose or sort between a pair of decisions; 4) 
Decision maker’s preferences can depend upon two binary 
relations: preference (P) and indifference (I). 

Yet there are also some limitations to MCDM because 
problems are said to be unrealistic and this makes the theory 
less useful than what it should be. According to Zeleny 
(1992), MCDM is not useful when there is time pressure, 
when the problem is more completely defined, when using a 
strict hierarchical decision system, when there is changing 
environment, when there is limited or partial knowledge of the 
problem and when there is collective decision making in 
businesses; all this because it reduces the number of criteria 
being considered, leaving behind other possible alternatives 
[4]. 

Some authors, like Carlsson and Fuller (1995), agree that 
the traditional assumption used in MCDM, in which the 
criteria are taken as independent, is very limited and ideal to 
be applied to today’s business decision making [5]. Reeves 
and Franz (1985) introduced a multicriteria linear 
programming problem, where they presume the decision 
maker has to determine his preferences in terms of the 
objectives but he must have more than an intuitive 
understanding of the trade-offs he is probably doing with the 
objectives [6]. For this reason, an assumption is made and that 
is, that a decision maker is taken to be a rational thinker and 
with a complete understanding of the whole situation in which 
his preferences have some basis with the use of a utility 
function. 

It has been universally recognized that there is no such 
thing as an optimal solution valid for any multiobjective 
problem. In literature, much has been found in terms of 
different approaches to solving MCDM problems. Delgado, et. 
al. (1999) used, for example, fuzzy sets and possibility theory 
not only to involve MCDM but also, multiobjective 
programming [7]. Also, Felix (1992) worked with fuzzy 
relations between criteria by presenting a novel theory for 
multiple attribute decision making [8]. Carlsson, on the other 
hand, “used fuzzy Pareto optimal set of non-dominated 
alternatives to find the best compromise solution to MCDM 
problems with interdependent criteria”. In order to understand 
more about the interdependencies between criteria, it is 
important to notice the problem defined by Carlsson and 
Fúller in terms of multiple objectives [5]: 
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Definition: Let fi  and fj  be the two objective functions of 
the problem defined above. 

i. fi supports fj on X ( denoted ji ff ↑  ) if 

;,'),()'()()'( Xxxallforxfxfentailsxfxf jjji ∈≥≥  
ii. fi is in conflict with fj  on X (denoted 

ji ff ↓ ) if 
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iii. Otherwise,  fi and fj are independent on X. 

         
     

      
     

         
     

      
     

 

Figure: 1 Conflictive Objective Functions. 

         
     

      
     

         
     

      
     

 
Figure: 2 Supportive Objective Functions. 

In traditional MCDM it has been found that the criteria 
should be independent, yet there are some methods that deal 
with conflictive objectives but do not recognize other 
interdependencies that can be present, which makes the 
problem more unrealistic. Zeleny (1992) recognized that there 
are objectives that might support each other when he shows 
the fallacy with using weights independent from criterion 
performance [4]. 

B. Multiobjective Optimization Problems: 
When problems have more than one objective, they are 

said to be multicriteria-based or multiobjective. It is important 
to understand the theory that they have considered to solve 
these types of problems. The multicriteria optimization theory 
takes basically a set of priorities established by the decision 
maker and provides the best solution under their preferences. 
T’Kindt and Billaut (2006) show a mathematical definition of 
the multicriteria optimization problems expressing them as a 
special case of vector optimization problems where the 
solution space is S and the criteria space, Z(S), are vectorial 
euclidian spaces of finite dimension, Q and K respectively [3]. 

 

[ ]

[ ]{ }
.,1)(..

0)();...;(/

)();...;()()(

1

1

∞<≤ℜ⊂ℜ⊂

≤=

∈

=

KQwithSZandSei
xgxgxS

Sx
toSubject

xZxZxZwithxZMin

KQ

T
M

T
K

 

Definition of Optimality [3]: Let  QS ℜ⊂  be a set of 
solutions and  KSZ ℜ⊂)(  the image in the criteria space of 

S by K criteria Zi.  Kyx ℜ∈∀ ,  : 



Libardo Segundo Gómez-Vizcaíno et al, International Journal of Advanced Research in Computer Science, 3 (4), July–August, 2012,140-148 

© 2010, IJARCS All Rights Reserved                                                                                                                                                        142 

Kiyxyx
Kiyxyx

ii

ii

,...,1,
,...,1,

=∀=⇔=
=∀≤⇔≤

 
This is valid for K > 2, because for single criterion 

problems (K=1), there is no way to compare between two 
solutions, for which the optimal solution is given right away. 
In the case of multiple objectives, this is no longer the case 
because there will be various solutions that minimize several 
criteria and they need to be compared. To approach it, Pareto 
Optima, a general definition of optimality, is used. Figure 3 
shows the graphical representation of Pareto Optima. 
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Figure: 3 Graphical representation of Pareto Optima. 

C. MCDM Theory to solve multi-objective problems: 
When reaching for Pareto optima, the decision maker has 

to look for the “best trade-off” solutions between conflicting 
criteria, and it is assumed to be done by optimizing a utility 
function. When searching for the solution, the decision maker 
must choose for an algorithm or heuristic that can determine 
the whole Pareto optima set. The decision maker provides 
weights to the different criteria being analyzed in order to 
determine the priorities. In literature many ways have been 
used to determine Pareto optima, it is just a matter of choosing 
the correct one depending on the quality of the calculable 
solutions and the ease of the application [3]. 

MCDM presents various methods to generate Pareto 
Optima solutions, such as Convex Combination of Criteria, 
Parametric Analysis, Means of the ϵ-constraint approach, 
Tchebycheff Metric, Goal-Attainment Approach and Use of 
Lexicographical Order. This paper references the method that 
uses Convex Combination of Criteria and solutions generated 
were compared with the metaheuristic GBO proposed. 

Convex Combination of Criteria [9]: Let S be the convex 
set of solutions and K criteria Zi convex on S. x0 is a proper 
Pareto optimum if and only if, 
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The above theorem, Geoffrion’s Theorem, the parameters 

αi  cannot be equal to zero because, otherwise, not all the 
results found will correspond to proper Pareto optima. So 

another condition is needed to determine a weak Pareto 
optima: 

Let S be the convex set of solutions and K criteria Zi 
convex on S. x0 is a set of weak Pareto optimum if and only 
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Such that  x0 is an optimal solution of the problem ( Pα ): 
T’Kindt and Billaut introduce how graphical 

representations of the different optimization problems can be 
done by using level curves. For minimizing the convex 
combination of criteria, problem (Pα) can be represented by 
defining first the set of level curves in the decision space, 
using the conditions for this specific approach:  
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By writing   ))_(()( aXZaL ==  in order to construct the 

curves in the graphs, the curve of minimal value g* is found, 
where the line *)(gL= is tangent to Z in the criteria space. See 
figure 4 for a geometric representation of the problem 
described above. 
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Figure: 4 Geometric Interpretation of the Convex Combination of Criteria. 

III. THE USE OF METAHEURSITICS TO SOLVE 
MULTI-OBJECTIVE PROBLEMS  

A. A Review on Metaheuristics [10]: 
Metaheuristic algorithms have been developed over the 

last three decades and most of them have been nature-inspired. 
Today they have become a very powerful tool in solving 
global optimization problems. In metaheuristic algorithms, 
meta- means ‘beyond’ or ‘higher level’, and they generally 
perform better than simple heuristics. All metaheuristic 
algorithms use certain tradeoff of local search and global 
exploration. Most solutions are often realized via 
randomization because it provides a good way to move away 
from local search to the search on the global scale. Among the 
most applied metaheuristics are the genetic algorithms (GA), 
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simulated annealing (SA), tabu search and ant colony 
optimization (ACO). 

Metaheuristics can be an efficient way to obtain acceptable 
solutions through experimentation to complex problems in 
reasonable practical time. Depending on the type of problem 
and its complexity, will it be feasible to generate all possible 
solutions and from those select the best one. Yet, for many 
problems there is no significant improvement in a solution that 
deserves an exhaustive search, which at the end will be 
penalized by large execution times and significant 
computational effort in obtaining them. When using 
metaheuristics, there is no guarantee that the best solutions 
will be found, more if for that type of problem the optimal has 
not been found yet.  

The main components of any metaheuristic algorithms are: 
intensification and diversification (Blum and Roli, 2003). 
Diversification is defined as generating diverse solutions so as 
to explore the search space on the global scale. Intensification 
focuses on the search on a local region and exploits it, given 
that a good solution was obtained there. The selection of the 
best solution ensures the solutions will converge to optimality. 
Yet, the use of randomization to increase the diversity of the 
solution avoids solutions being trapped at local optima. A 
combination of both components will usually ensure that 
global optimality is achievable.  

Metaheuristics have been classified as population-based 
and trajectory-based. GA, for example, are population-based, 
whereas SA is trajectory-based. 

Throughout history, the main approach to problem solving 
has been through a heuristic or metaheuristic. In the 1960’s 
and 1970’s, evolutionary algorithms were introduced, started 
by a study made by John Holland in 1962. A GA is a search 
method based on the abstraction of Darwinian evolution and 
natural selection of biological systems and representing them 
in the mathematical operators: crossover or recombination, 
mutation, fitness and selection of the fittest. In the early 
1960’s, Lawerence J. Fogel intended to use simulated 
evolution as a learning process, as a tool to study artificial 
intelligence. Then, in 1966, L.J. Fogel, A.J. Owen and M.J. 
Walsh developed an evolutionary programming technique by 
representing solutions as finite-state machines and randomly 
mutating one of these machines (Fogel, et al, 1966). In 1983, 
the optimization technique known today as simulated 
annealing (SA), was introduced by S. Kirkpatrick, C.D. Gellat 
and M.P. Vecchi, inspired by the annealing process of metals. 
It is a trayectory-based search algorithm starting with an initial 
guess solution at a high temperature and gradually cooling 
down the system (Kirkpatrick, et.al, 1983). 

Yet, the first step to the use of memory in modern 
metaheuristics was due to Fred Glover’s tabu search in 1968 
(Glover and Luguna, 1997). Then, in 1989, through the work 
of P. Moscato, the memetic algorithm was developed. This 
was, more than a metaheuristic, a a hyper-heuristic algorithm 
(Moscato, 1989). 

At the beginning of the 1990’s, ACO algorithm was 
developed by Marco Dorigo (Dorigo, 1992), a search 
technique inspired on the swarm intelligence of social ants 
using pheromone as a chemical messenger. Then, in 1992, 
John Koza published work on genetic programming, which 

laid the foundation to a whole new concept on machine 
learning (Koza, 1992) and in 1986 another interesting concept 
known as the artificial immune system was developed (Farmer 
et.al., 1986) based on the use of memory and learning as a 
novel solution approach. 

In 1995, the PSO algorithm was developed by James 
Kennedy and Russell Eberbart. This metaheuristic was 
inspired on swarm intelligence of fish and birds and even by 
human behavior, where multiple agents, called particles, 
swarm around the search space, starting from some initial 
random solution and communicating the current best found 
through the swarm. Since the development of PSO, many 
variants have been developed and applied to many areas of 
tough optimization problems. Around 1996, Storn and Price 
developed the vector-based evolutionary algorithms known as 
differential evolution (DE) and this algorithm proves to be 
better than GA in numerous applications. 

At the turn of the 21st century, many other metaheuristics 
were developed: the harmony search (HS) algorithm (Geem, 
et.al, 2001); bacterial foraging optimization (Passino, 2002), 
which was inspired by social foraging behavior of certain 
bacteria such as the Escherichia coli; the novel bee algorithm 
(Pham, et.al, 2005); the artificial bee colony (ABC) 
(Karaboga, 2005); the glowworm algorithm (Krishnan and 
Ghose, 2005); honey-bees mating optimization algorithm 
(2006); monkey search algorithm (Mucherino and Seraf, 
2008); firefly algorithm (FA) (Yang, 2008; Yang, 2009; Yang, 
2010); efficient cuckoo search (CS) algorithm; bat-inspired for 
continuous optimization (2010). In 2011, a unified view of 
metaheuristics was implemented in a generalized evolutionary 
walk algorithm (GEWA) [10]. 

B. Global Bacteria Optimization (GBO) Algorithm: 
GBO is a population-based metaheuristic that combines 

both diversification and intensification concepts that 
characterize today’s metaheuristics. It was developed as a 
result of a graduate thesis [11] which was directly applied to a 
scheduling problem whose results improve MOEA algorithm 
[12]. After observing the behavior of Bacteria phototaxis and 
the different processes that bacteria incur naturally, this 
metaheuristic was developed based on this processes, which 
was converted into a mathematical function that works as a 
process within the algorithm. The algorithm is described as 
follows:  

START 
Generate Valid Bacteria Colony: C  
Assign Size of population: Tam   
Assign Bacterial Loop Size: A 
DO WHILE (A >= 1) 
   {NewTam = 0; 
   REPEAT integer i=1:Tam times 
     { IF C[i].energy > rotation-and-race-wear THEN 
   {DO Bacteria Rotation for C[i] 
   Save directions sets in D[i] 
            Race to Light C[i] Random Select of the Best 
            Light Direction in D[i] 
C[i].energy=C[i].energy – rotation-and-race-wear} 
     } 
END REPEAT  
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REPEAT integer i=1:Tam times 
     {  IF C[i].energy > binary-fission-wear THEN  
{ Create CT set with the Bacteria separated;        
        CT[NewTam] = C[i] 
        C[i].energy = C[i].energy – binary-fission-wear 
       NewTam = NewTam + 1;} 
} 
END REPEAT  
REPEAT i=1:Tam times 
     { IF C[i].energy > Spontaneous-Mutation-wear THEN  { 
           IF random > Spontaneous-Mutation-Probability 

THEN 
       {Save C*[i] = C[i] 
         Mutate C[i] to feasible solution. 
         C[i].energy = C[i].energy – Spontaneous- 
                               Mutation-wear} 
 } 
         IF random > Reverse-Mutation-Probability THEN 
    {IF C[i].energy > Reverse-Mutation-wear THEN 
   {IF C[i] was not better than C*[i] THEN 
       { Apply reverse mutation C[i] = C*[i]  
C[i].energy = C[i].energy – Reverse-Mutation-wear } 
     } 
} 
IF C[i].energy > 0 THEN  
{Add energy to C[i] with GLS  
  CT[NewTam] = C[i]; 
  NewTam = NewTam + 1;} 
  }  
END REPEAT 
A = A - 1 
} 
END WHILE 

    Select NO-Dominated 
END 
The main functions that are described in this algorithm are 

the following: 
a. Generation of Initial Bacteria Colonies: Initial 

bacteria colonies are generated as feasible solutions 
to the problem. 

b. Bacteria Rotation: refers to a function (GLS) that is 
created to measure the amount of energy the bacteria 
is able to release in a rotation, in which the search 
directions are based on by the program. The 
following equation refers to this function. 
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c. Race to light: a function that is known for each 
bacteria colony in order to move from one location to 
another where the light is more intense. The intensity 
of the light is determined randomly among the four 
mayor intensities in order to get a more diverse 
search space. 

d. Binary Fission: a process that undergoes bacteria 
when it is duplicated, generating a new bacteria with 
the initial intensity and position as the mother 
bacteria. 

e. Spontaneous mutation: a function where bacteria 
change its structure and its position with respect to 
the light, which can improve a solution or make it 
worse. This mutation is only done to some bacteria 
chosen randomly, but subject to the energy they have 
to divide. 

f. Mutation by reversion: this process is done on a 
percentage of mutated bacteria, given that some 
bacteria were made worse during mutation process. 

g. Bacteria selected for death: Some bacteria do not 
have sufficient energy to rotate, so they will no 
longer continue in the colony. These bacteria are 
selected for death, while the rest undergo binary 
fission.  

h. Photosynthesis: bacteria are fed by energy, according 
to the natural process of photosynthesis, expressed in 
ATP. This function assigns an ATP to each bacteria 
according to the following function: 
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ATPi represents the energy for each bacteria I, which is 
given in terms of the objective functions to be optimized. 

IV. MATHEMATICAL FORMULATION AND 
ANALYSIS OF PARETO OPTIMA OF THE MULTI-

OBJECTIVE PROBLEMS  

A. Example 1: Two supportive functions: 
In this example, two supportive functions were considered: 

 

 

 
As shown in figure 5, the functions are graphed in a 

coordinate graph where, f1 is traced in blue, f2 is traced in pink 
and the sum of both is traced in green. 

 

 
Figure: 5 Graphical representation of Example 1. 
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For each function an analysis of derivatives was 
formulated in order to obtain the equation that optimizes the 
function and generate a Pareto Front: 
Finding the derivative of the first function with respect to x: 

 

 

 
 

Finding the derivative of the 1st with respect to y: 

 

 

 
 

So the optimal point for the first function is [0.0] 
Now, finding derivative of the second function with 

respect to x: 

 

 

 

 
Finding derivative of the second function with respect to y: 

 

 

 

 
So the optimal point for the first function is [2.2]. 
By unifying both points, the line obtained, which 

minimizes each of the functions, is . Through this 
equation and by permitting a spacing of 0.25 between each 
point, the Pareto Optima is obtained, which is shown in figure 
6. 

 

 
Figure: 6 Pareto Front generated by partial derivatives for example 1. 

B. Example 2: Two conflictive functions: 
This example considered two conflictive functions: 

 
 

 
 
As shown in figure 7, the functions are graphed in a 

coordinate graph where, f1 is traced in blue and f2 is traced in 
red. 

Figure 7. Graphical representation of example 2 
 

 
Figure: 7 Graphical representation of Example 2. 

For each function an analysis of derivatives was 
formulated in order to obtain the equation that optimizes the 
function and generate a Pareto Front. After doing the same 
process as in example 1, the equation obtained, which 
minimizes each of the functions, is . Through this 
equation and by permitting a spacing of 0.25 between each 
point, the Pareto Optima is obtained, which is shown in figure 
8. 

Figure viii. Pareto Front generated by equation generated 
through partial derivatives in example 2 

 

 
Figure: 8 Pareto Front generated by partial derivatives for example 2. 
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V. GENERATION OF RESULTS THROUGH MCDM 
AND GBO 

In order to demonstrate the efficiency of GBO, these same 
problems were approached with GBO and with the MCDM 
technique known as Convex Combination of Criteria.  

A. Example 1: Two supportive functions: 
In this example, Figure 9 shows the Pareto Front generated 

by the MCDM approach, Figure 10 shows the Pareto Front 
generated by GBO and Figure 11 shows the combined Pareto 
Front with the different approaches, including the derivative. 

 

 
Figure: 9 Pareto Front generated by MCDM approach for example 1. 

 
Figure: 10 Pareto Front generated by GBO approach for example 1. 

 
Figure: 11 Pareto Fronts compared in example 1. 

In the previous figure, the green dots represent the Pareto 
Front generated by partial derivatives, the red dots represent 
the MCDM approach and the blue dots represent GBO 
approach. 

B. Example 2: Two conflictive functions: 
In this example, Figure 12 shows the Pareto Front 

generated by the MCDM approach, Figure 13 shows the 
Pareto Front generated by GBO and Figure 14 shows the 
combined Pareto Front with the different approaches, 
including the derivative. 
 

 
Figure: 12 Pareto Front generated by MCDM approach for example 2. 

 
Figure: 13 Pareto Front generated by GBO approach for example 2. 

 
Figure: 14 Pareto Fronts compared in example 2. 
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In the previous figure, the blue dots represent the Pareto 
Front generated by partial derivatives, the green dots represent 
the MCDM approach and the red dots represent GBO 
approach. 

VI. COMPARISON OF RESULTS 

As mentioned at the beginning, the efficiency of the GBO 
approach was demonstrated by just observing how the Pareto 
Front generated by GBO cover all the points generated by the 
exact methodologies, reaching Pareto Optima. Yet the metrics 
calculated below and shown in tables 1 and 2, which are 
spacing and extreme points, detail on how efficient and robust 
is the Pareto Front generated by the GBO algorithm. 

Table I.  Comparison of results for extreme points metric 
Examples Results for Extreme Points 

Derivatives MCDM GBO 
Example 1       

Min F1 [f1,f2] [0,32] [0,31.99] [0,32] 

Min F2 [f1,f2] [32,0] [32,0] [32,0] 

Example 2    

Min F1 [f1,f2] [0,6.4] [0,7.489] [0,7.05] 

Min F2 [f1,f2] [7.5625,0.006] [7.11, 0] [7.11,0] 

Table II.  Comparison of results for spacing  metric 
Examples Results for Spacing 

Derivatives MCDM GBO 

Example 1 0,83721 2,66612 0,25767 

Example 2 0,20404 0,45734 0,06899 

 
When comparing the extreme points metric, it can be 

observed that GBO reaches the Pareto Optima solutions for the 
three out of four cases, the fourth case (which was the extreme 
point that minimizes the first function in the second example) 
was 10% higher, but the MCDM approach was 17% higher. 
The latter is due to the fact that the second example was 
composed by conflictive functions and the definition for Pareto 
Optima in the MCDM technique didn’t cover this type of 
functions. 

On the other hand, the comparison for spacing shows that 
robustness that is achieved in the solutions generated by the 
GBO approach, given that this one outperforms the other 
approaches. For the first example spacing was reduced with 
respect to the MCDM in 69% and with respect to the derivative 
approach in 90%. For the second example, it reduced with 
respect to the MCDM in 66% and with respect to the derivative 
approach in 85%. 

VII. CONCLUSIONS AND FURTHER RESEARCH 

Through this research paper, Global Bacteria Optimization 
(GBO) was introduced as a population-based metaheuristic 
that combines both diversification and intensification concepts 
that characterize today’s metaheuristics. 

Work performed on this metaheuristic [2,11], including 
results generated in this paper, demonstrate how GBO is a 
solution approach to multi-objective optimization problems, 
obtaining Pareto Optima solutions that are both efficient and 
robust. In this paper, different types of mathematical functions 
were compared, all of them, searching for their minimum, 
simultaneously. Pareto Fronts generated by GBO clearly 
outperform results generated by MCDM approach and have 
shown to reach Pareto Optima, as compared to the exact 
solutions generated by the equation derived from both 
functions. Both extreme points and spacing metrics 
demonstrate the efficiency of this methodology as a multi-
objective solution approach.  

Future work on this area is needed, especially by 
approaching NP-Hard problems, since this are to be 
considered and compared to other metaheuristics as already 
done by Gomez-Vizcaino [2]. This research group is already 
working on an application to the Resource Constrained Project 
Scheduling problem (RCPSP) [13], clearly an NP-Hard 
problem. Other work in combinatorial optimization problems 
is greatly encouraged. GBO is a new metaheuristic that has 
shown to produce excellent results and it can be easily 
implemented to any type of problems. 
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