
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 837

ISSN No. 0976-5697

Formalization &Analysis of Electronics Voting Protocols by using Applied PI Calculus
*Ms. Swati A. Khodke and 2Prof. Jayant S. Deshpande

*II Yr. M.E.[I.T.], PRMIT&R, Badnera and Prof., PRMIT&R, Badnera,
Information Technology Department

PRMIT&R, Badnera
*swatikhodke@gmail.com

Abstract— In this paper we report recent work on analysis of protocols in remote electronics voting protocols. A potentially much more secure
system could be implemented, based on formal protocols that specify the messages sent to electronics voting machines.Protocols which were
thought to be correct for several years have, by means of formal verification techniques, been discovered to have major flaws [1, 2]. Our aim is
to use verification techniques to analyze the protocol. We model it in the applied pi calculus [3], which has the advantages of being based on
well-understood concepts.

I. INTRODUCTION

Electronics voting promises the possibility of a
convenient, efficient, and secure facility for regarding and
tallying votes in a election. It can be used for a variety of
types of elections, from small committees or on-line
communities through to full-scale national elections.
Electronic voting protocols are formal protocols that specify
the messages sent between the voters and administrators.
Such protocols have been studied for several decades. They
offer the possibility of abstract analysis of the voting system
against formally-stated properties. Some properties
commonly sought for voting protocols are the following:
a. Fairness: no early results can be obtained which could

influence the remaining voters.
b. Eligibility: only legitimate voters can vote, and only

once.
c. Privacy: the fact that a particular voted in a particular

way is not revealed to anyone.
d. Individual verifiability: a voter can verify that her vote

was really counted.
e. Universal verifiability: the published outcome really is

the sum of all the votes.
f. Receipt-freeness: a voter cannot prove that she voted

in a certain way
In this paper, we study a protocol commonly known as

the FOO 92 scheme [4], which works with blind signatures.
By informal analysis (e.g., [5]), it has been concluded that
FOO 92 satisfies the first four properties in the list above.

II. PROTOCOL FOO 92

The protocol involves voters, an administrator, verifying
that only eligible voters can cast votes, and a collector,
collecting and publishing the votes. In comparison with
authentication protocols, the protocol also uses some
unusual cryptographic primitives, such as secure bit-
commitment and blind signatures. Moreover, it relies on
anonymous channels.In a first phase, the voter gets a
signature on a commitment to his vote from the
administrator. To ensure privacy, blind signatures [1] are
used, i.e. the administrator does not learn the commitment of
the vote.Voter V selects a vote v and computes the

commitment x = ξ(v,r) using the commitmentscheme ξand a
random key r;
– V computes the message e = χ(x,b) using a blinding
function χand a randomblinding factor b;
– V digitally signs e and sends his signature σV(e) to the
administrator A togetherwith his identity;
– A verifies that V has the right to vote, has not voted yet
and that the signature isvalid; if all these tests hold, A
digitally signs e and sends his signature σA(e) to V ;
– V now unblindsσA(e) and obtains y = σA(x), i.e. a signed
commitment to V ’s vote.The second phase of the protocol is
the actual voting phase.
– V sends y, A’s signature on the commitment to V ’s vote,
to the collector C usingan anonymous channel;
– C checks correctness of the signature y and, if the test
succeeds, enters (ᶩ, x, y)onto a list as an l-th item.

The last phase of the voting protocol starts, once the
collector decides that he receivedall votes, e. g. after a fixed
deadline. In this phase the voters reveal the randomkey r
which allows C to open the votes and publish them.
– C publishes the list (_i, xi, yi) of commitments he
obtained;
– V verifies that his commitment is in the list and sends _, r
to C via an anonymouschannel;
– C opens the _-th ballot using the random r and publishes
the vote v.

III. FORMAL METHODOLOGY USE

The applied pi calculus [6] is a language for describing
and analysing security protocols. The applied pi calculus is a
language for describing concurrent processes and their
interactions. It provides intuitive process syntax for detailing
the actions of the participants in a protocol, emphasizing
their communication. The syntax is coupled with a formal
semantics to allow reasoning about protocols. The language
is based on the pi calculus with the addition of rich term
algebra to enable modelling of the cryptographic operations
used by security protocols. A wide variety of cryptographic
primitives can be abstractly modelled by means of an
equational theory. The calculus allows one to express
several types of security goal, and to analyses whether the
protocol meets its goal or not.

Swati A. Khodke et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,837-841

© 2010, IJARCS All Rights Reserved 838

To describe processes in the applied pi calculus, one
starts with a set of names (which are used to name
communication channels or other constants), a set of
variables,and a signature Σwhich consists of the function
symbols which will be used to defineterms.In the applied pi
calculus, one has (plain) processes and extended processes.
Plainprocesses are built up in a similar way to processes in
the pi calculus, except that messagescan contain terms
(rather than just names). Extended processes can also be
activesubstitutions: {M/x} is the substitution that replaces the
variable x with the term M.Active substitutions generalise
“let”. The process νx.({M/x} | P) corresponds exactlyto “let x
= M in P”.

Active substitutions are useful because they allow us to
map an extended process Ato its frame φ(A) by replacing
every plain processes in A with 0. A frame is an
extendedprocess built up from 0 and active substitutions by
parallel composition and restriction.The frame φ(A) can be
viewed as an approximation of A that accounts for the
staticknowledge A exposes to its environment, but not A’s
dynamic behavior.The operational semantics of processes in
the applied pi calculus is defined by structuralrules defining
two relations: structural equivalence, noted ≡, and internal
reduction,noted→. A context C[·] is a process with a hole;
an evaluation context is a context whose hole is not under a
replication, a conditional, an input, or an output. Structural
equivalence is is the smallest equivalence relation on
extended processes that is closed under α-conversion on
names and variables, by application of evaluation contexts,
and satisfying some further basic structural rules such as A |
0 ≡A, associativity and commutativity of |, binding-
operator-like behaviour of ν, and when Σ├M = N the
equivalences:
νx.{M/x} ≡0 {M/x} | A ≡ {M/x} | A{M/x} {M/x} ≡ {N/x}
Internal reduction →is the smallest relation on extended
processes closed under structural equivalence such that
¯a_x_.P| a(x).Q →P | Q and whenever Σ├M = N,
ifM = M then P else Q →P if M = N then P else Q →Q.
Definition 1.Observational equivalence (≈) is the largest
symmetric relation R betweenclosed extended processes with
the same domain such thatA R B implies:
1. ifA ⇓a then B ⇓a.
2. ifA →∗A_ then B →∗B_ and A_ R B_ for some B_.
3. C[A] R C[B] for closing evaluation contexts C.

In cases in which the two processes differ only by the
terms they contain, if they are also observationally
equivalent then ProVerif may be able to prove it directly.
However,ProVerif’s ability to prove observational
equivalence is incomplete, and therefore sometimes one has
to resort to manual methods, whose justifications are
contained in [7]. The method we use in this paper relies on
two further notions: static equivalence(≈s), and labeled
bisimilarity (≈l).

IV. MODELING PROTOCOL IN THE APPLIED
PI CALCULUS

A. Model:
We use the applied pi calculus to model the FOO 92

protocol. Moreover, the verification is not restricted to a
bounded number of sessions and we do not need to
explicitly define the

adversary. We only give the equational theory describing the
intruder theory. Generally, the intruder has access to any
message sent on a public, i.e. unrestricted, channel. These
public channels model the network. Note that all channels
are anonymous in the applied pi calculus. Unless the identity
or something like the IP address is specified explicitly in the
conveyed message, the origin of a message is unknown.
This abstraction of a real network is very appealing, as it
avoids having us to model explicitly an anonymous service.

B. Signature and equational theory:
The signature and equational theory are represented in

Process 1. The functions and equations that handle public
keys and hostnames shouldbe clear. Digital signatures are
modeled as being signatures with message recovery, i.e. the
signature itself contains the signed message which can be
extracted using the checksignfunction. To model blind
signatures we add a pair of functions blind and unblind.
These functions are again similar to perfect symmetric key
encryption and bit commitment. However, we add a second
equation which permits us to extract a signature out of a
blinded signature, when the blinding factor is known. We
also consider the functionsfstand sndto extract the first,
respectively second element of a pair. Note that because of
the
propertyunblind(sign(blind(m,r),sk),r)=sign(unblind(blind(m
,r),r),sk)= sign(m,sk),
Process 1.signature and equational theory(* Signature *)
funcommit /2 (* bit commitment *)
funopen /2 (* open bit commitment *)
funsign /2 (* digital signature *)
funchecksign /2 (* open digital signature *)
funpk /1 (* get public key from private key *)
funhost /1 (* get host from public key *)
fungetpk /1 (* get public key from host *)
funb l i n d /2 (* blinding *)
fununblind /2 (* undo blinding *)
(* Equational theory *)
equation open (commit (m, r) , r) = m
equationgetpk (host (pubkey))= pubkey
equationchecksign (sign (m, sk) , pk (sk)) = m
equationunblind (b l i n d (m, r) , r) = m
equation unblind (sign (b l i n d (m, r) , sk) , r) = sign (m,
sk)

C. The environment process:
The main process is specified in Process 2. Here we

model the environment and specify how the other processes
are combined. First, fresh secret keys for the voters and the
administrator are generated using the restriction operator.
For simplicity, all legitimate voters share the same secret
key in our model (and therefore the same public key). The
public keys and hostnames corresponding to the secret keys
are then sent on a public channels, i.e. they are made
available to the intruder. The list of legitimate voters is
modeled by sending the public key of the voters to the
administrator on a private communication channel. We also
register the intruder as being a legitimate voter by sending
his public key pk(ski) where ski is a free variable: this
enables the intruder to introduce votes of his choice and
models that some voters may be corrupted. Then we
combine an unbounded number of each of the processes
(voter, administrator and collector). An unbounded number
of administrators and collectors models that these processes

Swati A. Khodke et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,837-841

© 2010, IJARCS All Rights Reserved 839

are servers, creating a separate instance of the server process
(e.g. by “forking”) for each client.
Process 2.environment process
process
νska . νskv . (* private keys *)
νprivCh . (* channel for registering legimitate voters *)
l e t pka=pk (ska) in
l e t hosta = host (pka) in
l e t pkv=pk (skv) in
l e t hostv=host (pkv) in
(* publish host names and public keys *)
out(ch , pka) . out(ch , hosta) .
out(ch , pkv) . out(ch , hostv) .
(* register legimitate voters *)
((out (privCh , pkv) . out (privCh , pk (s k i))) |
(!processV) | (!processA) | (! processC))

D. The voter process:
The voter process given in Process 3 models the role of a

voter. At the beginning two fresh random numbers are
generated for blinding, respectively bit commitment of
thevote. Note that the vote is not modeled as a fresh nonce.
This is because generally the domain of values of the votes
is known. For instance this domain could be {yes, no}, a
finite number of candidates, etc. Hence, vulnerability to
guessing attacks is an importanttopic. We will discuss this
issue in more detail in section 5. The remainder of the
specification follows directly the informal description given
in section 2. The command in(ch,(l,=s)) means the process
inputs not any pair but a pair whose second argument is s.
Note that we use phase separation commands, introduced by
the ProVerif tool as global synchronization commands. The
process first executes all instructions of a given phase before
moving to the next phase. The separation of the protocol in
phases is useful when analyzing fairness and the
synchronization is even crucial for privacy to hold.
Process 3.voter process
letprocessV =
νbl i n d e r . νr .
letblindedcommitedvote=blind (commit(v ,r) ,blinder)in
out (ch , (hostv , sign (blindedcommitedvote , skv)))
in(ch ,m2) .
letblindedcommitedvote0=checksign (m2, pka) in
i f blindedcommitedvote0=blindedcommitedvotethen
l e t signedcommitedvote=unblind (m2, b l i n d e r) in
phase 1 .
out(ch , signedcommitedvote) .
in(ch , (l ,= signedcommitedvote)) .
phase 2 .
out(ch , (l , r))

E. The administrator process:
The administrator is modeled by the process represented

in Process 4. In order to verify that a voter is a legitimate
voter, the administrator first receives a public key on a
private channel. Legitimate voters have been registered on
this private channel in the environment process described
above. The received public key has to match the voter who
is trying to get a signed ballot from the administrator. If the
public key indeed matches, then the administrator signs the
received message which he supposes to be a blinded ballot.
Process 4.administrator process
l e t processA =
in(privCh , pubkv).(*register legimitate voters *)

in(ch ,m1) .
l e t (hv , sig)=m1 in
l e t pubkeyv=getpk (hv) in
i f pubkeyv = pubkvthen
out (ch , sign (checksign (sig , pubkeyv) , ska))

F. The collector process:
In Process 5 we model the collector. When the collector

receives a committed vote, he associates a fresh label ’l’
with this vote. Publishing the list of votes and labels is
modeled by sending those values on a public channel. Then
the voter can send back the random number which served as
a key in the commitment scheme together with the label.
The collector receives the key matching the label and opens
the vote which he then publishes. Note that in this model the
collector immediately publishes the vote without waiting
that all voters have committed to their vote. In order to
verify in section 5 that no early votes can be revealed we
simply omit the last steps in the voter and collector process
corresponding to the opening and publishing of the results.
Process 5.collector process
l e t processC =
phase 1 .
in(ch ,m3) .
νl . out(ch , (l ,m3)) .
phase 2 .
in(ch , (= l , rand)) .
l e t voteV=open (checksign (m3, pka) , rand) in
out(ch , voteV)

V. ANALYSIS

We have analysed three major properties of electronic
voting protocols: fairness, eligibility, privacy, receipt
freeness, and coercion resistance. The first two of these can
be directly verified using ProVerif. The tool allows us to
verify standard secrecy properties as well as resistance
against guessing attacks, defined in terms of equivalences.
But for privacy, receipt-freeness and coercion-resistance, we
need to rely on the hand-proof techniques introduced in [8].
In the case of the last of our properties, we had to extend the
applied pi calculus with a new notion which we call adaptive
equivalence.

A. Fairness:
Fairness is the property that ensures that no early results

can be obtained and influence the vote. people revealing
their vote when asked. We model fairness as a secrecy
property: it should be impossible for an attacker to learn a
vote before the opening phase, i.e. before the beginning of
phase 2.

a. Standard secrecy: Checking standard secrecy, i.e.
secrecy based on reach ability, is the most basic
property ProVerif can check. We request ProVerif to
check that the private free variable v representing the
vote cannot be deduced by the attacker. ProVerif
directly succeeds to prove this result.

b. Strong secrecy: We also verified strong secrecy in
the sense of [9]. Intuitively, strong secrecy is verified
if the intruder cannot distinguish between two
processes where the secret changes. For the precise
definition, we refer the reader to [9]. The main
difference with guessing attacks is that strong secrecy
relies on observational equivalence rather than static

Swati A. Khodke et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,837-841

© 2010, IJARCS All Rights Reserved 840

equivalence. ProVerif directly succeeds to prove
strong secrecy.

c. Corrupt administrator: We have also verified
standard secrecy, resistance against guessing attacks
and strong secrecy in the presence of a corrupt
administrator. A corrupt administrator is modeled by
outputting the administrator’s secret key on a public
channel. Hence, the intruder can perform any actions
the administrator could have done. Again, the result
is positive: the administrator cannot learn the votes of
a honest voter, before the committed votes are
opened. Note that we do not need to model a corrupt
collector, as the collector never uses his secret key,
i.e. the collector could anyway be replaced by the
attacker.

B. Eligibility:
Eligibility is the property verifying that only legitimate

voters can vote, and only once. The way we verify the first
part of this property is by giving the attacker a
challengevote. We modify the processes in two ways: (i) the
attacker is not registered as a legitimate voter; (ii) the
collector tests whether the received vote is the challenge
vote and outputs the restricted name attack if the test
succeeds. The modified collector process is given in Process
6. Verifying eligibility is now reduced to secrecy of the
name attack. ProVerif succeeds in proving that attack cannot
be deduced by the attacker.

C. Privacy:
As ProVerif takes as input processes in the applied pi

calculus, we can rely on hand proof techniques to show
privacy. The processes modeling the two voters are shown
in Process 8. The main process is adapted accordingly to
publish public keys and host names.
Proposition 1.The FOO 92 protocol respects privacy, i.e.
P[vote1/v1, vote2/v2] ≈
P[vote2/v1, vote1/v2], where P is given in Process 9.
The proof can be sketched as follows. First note that the
only difference between
P[vote1/v1, vote2/v2] and P[vote2/v1, vote1/v2] lies in the
two voter processes. We therefore first show that
(processV1|processV 2)[vote1/v1, vote2/v2] ≈
(processV1|processV 2)[vote2/v1, vote1/v2].
Process 8.two voters for checking the privacy property
(* Voter1 *)
l e t processV1 =
νblinder1 . νr1 .
l e t blindedcommitedvote1=b l i n d (commit (v1 , r1) ,
blinder1) in
out (ch , (hostv1 , sign (blindedcommitedvote1 , skv1))) .
in(ch ,m21) .
l e t blindedcommitedvote01=checksign (m21, pka) in
i f blindedcommitedvote01=blindedcommitedvote1 then
l e t signedcommitedvote1=unblind (m21, blinder1) in
phase 1 .
out(ch , signedcommitedvote1) .
in(ch , (l1 ,= signedcommitedvote1)) .
phase 2 .
out(ch , (l1 , r1))
(* Voter2 *)
l e t processV2 =
νblinder2 . νr2 .

l e t blindedcommitedvote2=b l i n d (commit (v2 , r2) ,
blinder2) in
out (ch , (hostv2 , sign (blindedcommitedvote2 , skv2))) .
in(ch ,m22) .
l e t blindedcommitedvote02=checksign (m22, pka) in
i f blindedcommitedvote02=blindedcommitedvote2 then
l e t signedcommitedvote2=unblind (m22, blinder2) in
phase 1 .
out(ch , signedcommitedvote2) .
in(ch , (l2 ,= signedcommitedvote2)) .
phase 2 .
out(ch , (l2 , r2))
Process 9.main process with two voters
process
νska . νskv1 . νskv2 . (* private keys *)
νprivCh . (* channel for registratinglegimitate voters *)
l e t pka=pk (ska) in
l e t hosta = host (pka) in
l e t pkv1=pk (skv1) in
l e t hostv1=host (pkv1) in
l e t pkv2=pk (skv2) in
l e t hostv2=host (pkv2) in
(* publish host names and public keys *)
out(ch , pka) . out(ch , hosta) .
out(ch , pkv1) . out(ch , hostv1) .
out(ch , pkv2) . out(ch , hostv2) .
l e t v1=choice [vote1 , vote2] in
l e t v2=choice [vote2 , vote1] in
((out (privCh , pkv1) . out (privCh , pkv2) . out (privCh
, pk (s k i))) |
(processV1) | (processV2) | (! processA) | (! processC)
)

After the synchronization at phase 1, the remaining of
the voter processes are structurally equivalent: the remaining
of the first voter’s process of P1 is equivalent to the
remaining of the second voter’s process of P2 and vice-
versa. Due to this structural equivalence, P2 can always
simulate P1 (and vice-versa). Moreover static equivalence
will be ensured: with respect to frames φ1 and φ2 no other
difference will be introduced and the blinding factors are
never divulged.

VI. CONCLUSION

The paper describes our recent efforts to formally
specify and verify electronic voting protocols in the applied
pi calculus. Properties such as fairness and eligibility benefit
from automated proofs. For more sophisticated anonymity
properties, even specifying the properties is challenging, in
particular receipt-freeness and coercion-resistance. In these
cases we rely on hand proofs and reuse existent proof
techniques from the applied pi calculus.

VII. REFERENCES

[1]. RohitChadha, Steve Kremer, and Andre Scedrov.Formal
analysis of multi-party contract signing. In Riccardo
Focardi, editor, 17th IEEE Computer Security Foundations
Workshop, pages 266–279, Asilomar, CA, USA, June
2004. IEEE Computer Society Press.

[2]. David Chaum. Blind signatures for untraceable payments.
In Advances in Cryptology, Proceedings of CRYPTO’82,
pages 199–203. Plenum Press, 1983.

Swati A. Khodke et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,837-841

© 2010, IJARCS All Rights Reserved 841

[3]. Ricardo Corin, JeroenDoumen, and SandroEtalle.
Analysing password protocol security against off-line
dictionary attacks. In 2nd International Workshop on
Security Issueswith Petri Nets and other Computational
Models (WISP’04), Electronic Notes in Theoretical
Computer Science.Elsevier, 2004.To appear.

[4]. Atsushi Fujioka, Tatsuaki Okamoto, and KazuiOhta.A
practical secret voting scheme for large scale elections. In
J. Seberry and Y. Zheng, editors, Advances in
Cryptology— AUSCRYPT ’92, volume 718 of Lecture
Notes in Computer Science, pages 244–251. Springer,
1992.

[5]. ZuzanaRjaskova. Electronic voting schemes.Master’s
thesis, Comenius University, 2002. www.tcs.hut.fi/
helger/crypto/link/protocols/voting.html.

[6]. Martin Abadi and Cedric Fournet. Mobile values, new
names, and secure communication. In Proc. 28th ACM
Symposium on Principles of Programming Languages
(POPL'01), pages 104{115, London, UK, 2001.ACM.

[7]. Mart ı́nAbadi and C´edricFournet. Mobile values, new
names, and secure communication. In Hanne Riis Nielson,
editor, Proceedings of the 28th ACM Symposium on
Principles ofProgramming Languages, pages 104–115,
London, UK, January 2001. ACM.

[8]. MartnAbadi and Cedric Fournet. Mobile values, new
names, and secure communication. In Proc. 28th ACM
Symposium on Principles of Programming Languages
(POPL'01), pages 104{115, London, UK, 2001.ACM.

[9]. Bruno Blanchet. Automatic Proof of Strong Secrecy for
Security Protocols. In IEEE Symposium on Security and
Privacy, pages 86–100, Oakland, California, May 2004.

