
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

TECHNICAL NOTE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 821

ISSN No. 0976-5697

Active Queue Management Design Using Discrete-Event Control in Multiprocessor
Environment

Shirish V. Pattalwar
Electronics and Telecommunication

Prof. Ram Meghe Institute of Tech. & Research, Badnera
 Amravati, India

shirishpattalwar@rediffmail.com

Prof. Dr. Vilas M. Thakare
Deptt. Of Computer Science

SGB Amravati University, Amravati
Amravati, India

vilthakare@yahoo.co.in

Gajanan D Nagoshe
Electronics and Telecommunication

Prof. Ram Meghe Institute of Tech. & Research, Badnera
 Amravati, India
name@xyz.com

Abstract: Recently, control-theoretic approaches in multiprocessor environment have been studied and employed to manage and control the
performance of computing systems. Most of the existing control-theoretic approaches model computing systems as linear systems and apply
feedback control. In this paper, we show discrete event modelling and control techniques can be effectively applied to performance
management and control of computing systems. We use Active Queue Management design for multiprocessor environment. By modelling the
logical processor as a queuing system, we formulate the problem of designing the optimal dropping strategy as an optimal queuing control
problem under discrete-event control framework.

Keywords: QoS, AQM, LP, ECN

I. INTRODUCTION

Performance management has been a core research area in
computer science. As computing systems become more
pervasive and increasingly complex, managing computing
systems by human is becoming more and more unfeasible. The
demand to manage and control computing systems has grown
rapidly. Traditional practices of automated resource
management and control largely rely on ad-hoc techniques. As
a result, changes in workloads and configurations often result
in poor quality of service (QoS) or even instabilities. Recently,
researchers discover AQM that feedback control schemes can
be successfully used in analyzing and designing run-time IT
systems [1], [2], [3]. In order to apply feedback control
framework, nearly all previous work use linear models (or
linearized models) to represent the underlying computing
systems. However, computing systems are usually nonlinear
[4] with respect to the resource allocated. In addition,
workload to computing systems are usually stochastic; its
parameters may change over a wide range of values. Most
computing systems are discrete in nature. During the last
several decades, research has shown that many computing
systems can be modeled well as discrete-event systems (such
as automata, petri nets, or queuing systems). [5] [6]. In
computer system research, however, discrete-event models are
usually used for off-line capacity planning purposes instead of
online performance tuning purposes. In this paper, we explore
the applicability of discrete event control to computing system
applications. Specifically, we investigate the design of optimal
dropping strategies for processor in multiprocessor

environment by focusing on a branch of discrete event control
queuing control. In our approach, we model an each processor
as a single station queue, and formulate the problem of
designing the optimal computing instruction strategy as an
optimal queuing control problem. We then derive the optimal
control strategy through uniformization and value iteration.
Our solution gives the optimal computing strategy.

Based on the controller synthesis, optimal computing
strategies and its parameters are given adaptively in response
to different workloads. Hence it can be used in designing self-
configuring. Active Queue Management (AQM) schemes. Our
work opens a new perspective for studying the active queue
management policies through queuing control. Since many
computing systems can be modeled as discrete event systems,
we believe that discrete-event control approach can be
successfully applied to performance management of many
computing systems.

II. SYNCRONIZATION ALGORITHMS

In a discrete-event simulation, events need be processed in
a non decreasing time stamp order, because an event with a
smaller timestamp has the potential to modify the state of the
system and thereby affect events that happen later. This is
what we call the causality constraint.

Provided that simultaneous events event with the same
time stamps are sorted deterministically and consistently using
certain tie-breaking rules, the causality constraint implies a
total ordering of events. In parallel simulation, the global
event-list in sequential simulation is replaced by a set of event-

Shirish V. Pattalwar et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,821-826

© 2010, IJARCS All Rights Reserved 822

lists; each logical Processor (LP) maintains own simulation
clock and a separate event-list that contains events that can
only affect the state of the corresponding LP. Since each LP
processes events on its own event-list in timestamp ordering a
property also known as the local causality constraint the total
ordering maintained by the original sequential discrete-event
model is replaced by a partial ordering similar to Lamport’s
“happens before” relationship [29]. The fundamental
challenge is therefore associated with the difficulty of
preserving the local causality constraint at each LP without the
use of a global simulation clock.

III. ACTIVE QUEUE MANAGEMENT

Recent measurements have shown that the growing
demand for high speed data computation has driven parallel
computing up exponentially. It is important to achieve low
data loss and delay, and optimum utilizations of each
computational unit. Active Queue Management (AQM)
policies are intended to help achieving both optimum
utilizations and low delays. The basic idea behind AQM queue
management scheme is to detect incipient congestion in
instruction handling with delay early and to convey congestion
notification to the event handler processor. Hence event
handler processor will AQM use their transmission rates
before queues in the network overflow and delay occur AQM.
To do this, AQM maintains an exponentially-weighted moving
average of the queue length which it uses to detect congestion.
When the average queue length exceeds a minimum threshold,
instruction are randomly dropped or marked with an explicit
congestion notification (ECN) bit. When the average queue
length exceeds a maximum threshold, all instruction are
dropped or marked. While AQM is certainly an improvement
over traditional drop-tail queues, the performance of the AQM
algorithm depends significantly upon the setting of each of its
parameters, which was shown to be a not easy task [22].

IV. PROBLEM STATEMENT AND
FORMULATION

We assume the event handler processor enforces
instruction-dropping-based. AQM scheme are used to achieve
the performance goals of small delay, low dropping rate, and
high utilization. Let the average arrival rate of incoming
instruction to the processor be b (inst/sec).The processor
enforces some “optimal” instruction dropping strategy by
selecting appropriate instruction dropping probabilities. Let us
use p(t) to denote the processor’s dropping probability at time
t, then the outgoing instruction execution rate is b(1 - p(t)) at
time t.

Different instruction dropping strategies have different
impacts on the performance of a processor, including
instruction delays, number of dropped instructions, and link
utilizations. Generally speaking, under a given AQM scheme,
if a processor drops instructions more aggressively, less
instructions will be admitted and go through the processor,
hence the outgoing link’s utilization may be lower; but in
return, the admitted instructions will experience smaller
delays. On the other hand, if under an AQM scheme which
drops instructions less aggressively, the admitted instructions

may be queued up at the processor, hence the admitted
instructions will experience larger delays. But in this case the
outgoing link’s utilization may be higher, since more
instructions are admitted and transmitted by the processor.

Though the goal of maintaining small instruction delay
usually contradicts to the goal of admitting more requests and
maintaining high link utilizations, a good AQM scheme tries
to make intelligent tradeoffs in an optimal way. For example,
in order to achieve both high link utilizations and low
instruction delays, it is desired that the processor’s service
queue is maintained at a small but steady value [24]. This is
because a small but steady queue ensures small queuing delay;
at the same time, the steadiness of the queue allows that there
are always instructions to be processed in the outgoing link,
hence help to maintain a high link utilization. In the following
section, we formulate the “optimal” dropping strategy as an
optimal queuing control problem.

A. Problem Formation:
In this section, we formally formulate the optimal dropping

strategy problem for an AQM processor. For simplicity, we
assume that the outgoing interface of the processor is an
M/M/1 queue: the incoming instructions to the processor
follows a Poisson arrival with rate b; the service rate of the
processor for the instructions is exponentially distributed with
rate ¹. As it has been discussed above, in order to achieve both
low instruction delay and high link utilization, we would like
the (equilibrium) processor queue to be small but steady. Let
us use S to denote the target queue length of the processor. At
the same time, it is desired for the processor to minimize the
number of dropped instructions.

For a specific AQM policy π, let us define the admitting
instructions rate at a specific time t as λπ(t), where
0<=λπ(t)<=b. Then b - λπ(t), represents the dropping rate at
the processor for this policy. Let Sπ(t) denote the queue length
at time t under policy π, so the difference between the current
queue length and the target queue length is Sπ(t) - S. We
define an objective function with respect to policy π as

Where E[.] is the expectation function.
The objective function Vπ represents the average cost for

policy π under infinite time horizon. The first term within the
integration represents the deviation of current queue length
from the target queue length at time t. The second term
represents the total rate of dropped instructions at time t under
policy π. W is a weight of the valuation between these two
terms. It represents the relative cost of dropping instructions.
The sum of these two terms within the integration represents
the total quadratic cost under policy π at time t. It reflects our
desired goal of low instruction delay, high utilization, and low
instruction loss in AQM policy design. In the following
discussion, for the ease of notation, we move the policy
subscript π out from the terms in the square brackets to the
expectation function in Eq. (1) without incurring ambiguity,
that is

Shirish V. Pattalwar et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,821-826

© 2010, IJARCS All Rights Reserved 823

Our design objective is then to find a policy under which
the average cost function is minimized, i.e.

Minπ Vπ
suject to 0<=λπ(t)<=b

This Equation defines an interesting optimal control
problem. The control input to the system is in terms of the rate
of admitted incoming instructions, i.e. λ(t). Note the dynamics
of the system in our formulation are governed by the queuing
system instead of a traditional linear system represented by
differential/difference equations, hence our formulation is not
a typical optimal control problem. In the following section, we
give a solution to this optimal queuing control problem.

V. SOLUTION METHOD VIA VALUE
ITERATION

In this section, we present a method to solve the above
mentioned optimal queuing control problem. First, we note the
queue length S(t) forms a continuous time Markov
chain(CTMC). Let N denote the processor’s maximum buffer
size, then there are N +1 states for this continuous time
Markov chain. State i €{0,…..N} of the Markov chain
corresponds to the case where there are i instructions in the
queue. In our solution method, we first convert the CTMC into
a discrete time Markov chain (DTMC) to facilitate the usage
of value iteration algorithms. This is done through a technique
called uniformization [25].

A. Conversion from CTMC to DTMC:
For a continuous time Markov chain(CTMC), state

transitions are allowed to occur at any time instant. Therefore
CTMC is widely used to model a large number of real-world
stochastic systems. On the other hand, discrete time Markov
chain (DTMC) models are easy to handle. Fortunately, we can
convert a CTMC to a DTMC, making the two chains
stochastically equivalent through uniformization. To this end,
we select a uniform rate γ= µ+ b. The transition probabilities
among states for the stochastically equivalent DTMC are
obtained by dividing the original transition rate in the CTMC
by γ. This procedure is shown in the following equations.

Figure 1

Figure: 2 illustrates the CTMC and the stochastically equivalent DTMC.

The second step is converting the objective function from
CTMC to the equivalent DTMC counterpart. The cost function
governed by the original CTMC is

Therefore correspondingly, the DTMC’s cost function can

be derived as

The corresponding DTMC’s optimal queuing control
problem is as follows
Minπ Vπ

Subject to 0<= λ(i)<= b

In the optimal queuing control problem of DTMC, the
dynamics of the system are governed by the DTMC,

B. Solution to the Optimal Queuing Control Problem
of DTMC:

The optimal queuing control problem for the DTMC can
be solved using the following value iteration algorithm [25].

C. Value iteration algorithm:
Step 0: Set n=0 and V0(0) = 0; Set iteration stop criteria, i.e.

the maximum number of iterations M, and accuracy
tolerance threshold ε>0;

Step 1: Choose a state x (0 <= x <= N) as a baseline
(distinguished) state;

Step 2: Set Vn(i) =
Step 3: Set un+1(i) = Vn(i) - Vn(x);
Step 4: Goto Step 2, until the maximum number of iterations

M is reached for δ= max(iεs) | V(i

= 𝐥𝐥𝐥𝐥𝐥𝐥
𝑻𝑻→∞

𝑬𝑬𝑬𝑬
𝟏𝟏
𝑻𝑻

[�[𝑪𝑪′(𝒊𝒊,
𝑻𝑻

𝟎𝟎

𝝀𝝀)]]

= 𝐥𝐥𝐥𝐥𝐥𝐥
𝑻𝑻→∞

𝑬𝑬𝑬𝑬
𝟏𝟏
𝑻𝑻

[�
𝟏𝟏

(µ + 𝒃𝒃) ((𝑺𝑺(𝒊𝒊) − 𝑺𝑺𝟐𝟐) + 𝑾𝑾. �𝒃𝒃 − 𝝀𝝀(𝒊𝒊)�
𝟐𝟐

)
𝑻𝑻

𝟎𝟎

Shirish V. Pattalwar et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,821-826

© 2010, IJARCS All Rights Reserved 824

Step 5: Output Vn(x) and the stationary policy realizing
 Min | C(I,

It is worth noting that the theoretic solutions given in this
section may not be directly applicable to real-world
applications. This is because: First, modeling the processor
queue as an M/M/1 queue is based on a simplified assumption.
Real world instructions may not follow Poisson arrival, and
the service rate of instructions may not be exponential;
Second, the complexity of value-iteration (and other dynamic-
programming based solution methods) is usually high.
However, for these real-world applications, we can use
techniques such as Q learning[26] and neuro-dynamic
programming [27] to derive near-optimal solutions.

D. Evaluation:
To evaluate the queuing control based approach, we

implemented the uniformization and value iteration algorithm
to get the optimal dropping strategies for the processor under
different set-ups. In this section, we report these results and
discuss the effect of various design parameters. Note the value
iteration algorithm gives the optimal strategy in terms of
admitting instructions rate ¸ with respect to processor’s queue
length. Here we also report the optimal dropping probability of
the processor. The dropping probability is expressed as

Where b is the incoming instructions rate, and i is the

Processor’s current queue length.
In the first set of experiments, the incoming instructions

rate is set to b = 120 (inst/sec); the service rate of the
processor is set to µ= 100 (inst/sec); processor’s buffer size is
set to N = 200,and the target queue length is set to S = 50. Fig.
3–Fig. 5 report the optimal admitting instructions rate and the
optimal dropping probability (p) with respect to the queue
length in the processor. For Fig. 3, the weight W representing
the relative cost of dropping instructions is set to 0:01. For
Fig. 4 and Fig. 5, we set W = 0:1, and W = 1:0 respectively.

Figure. 3 Optimal admitting rate and dropping probability v.s. queue length,

when W = 0.01

Figure. 4. Optimal admitting instructions rate and dropping probability v.s.

queue length, when W = 0.1.

Figure. 5. Optimal admitting instructions rate and dropping probability v.s.

processor’s queue length, when W = 1.0.

We get four observations from the results reported in Fig.
3–Fig. 5.

a. The control law of optimal strategies is event-driven,
since the control action is a function of the number of
instructions in the current processor queue. This
contrasts to the classical time-driven control, where
control action is usually trigger AQM at constant time
intervals.

b. Optimal strategies are closed-loop-based feedback
controls. The feedback measurement for each optimal
controller is the number of instructions in the
processor’s queue.

c. When the weight W (which represents the relative cost
of dropping instructions) changes, the optimal dropping
strategy also changes. The first experiment with W
=0:01 reflects the situation where dropping instructions
incurs negligible cost. When we gradually increase the
value of W, we anticipate the optimal dropping
probability curve to become more flat since a larger W
means larger cost will be incur AQM for the dropped
instructions. This can be clearly observed from Fig. 3 –
5.

Shirish V. Pattalwar et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,821-826

© 2010, IJARCS All Rights Reserved 825

d. The optimal control strategies derived in this paper give
similar results to other AQM schemes including
Random Early Detection (AQM) and its variants
[28],[22]. Our approach is based on solid theoretical
designand synthesis through queuing systems control.
As a result, it gives a natural way to calculate the
controller parameters (i.e. AQM parameters). Unlike
previous control-theoretical approach [23] which uses
linearized fluid-approximation of the system as the
plant model, Our control design is based on the
nonlinear queuing model.

A predetermined set of AQM parameters under a
“typical” workload may not render good performance under
a different workload. For example, it has been shown in [22]
that the effectiveness of AQM depends, to a large extent, on
the appropriate parameterization of the AQM queue when
load changes. A good control policy should adapt its
parameters in response to workload dynamics.

Figure. 6. Optimal admitting instructions rate and dropping probability v.s.

processor’s queue length, when b = 60 (inst/sec).

Fig. 6 show the optimal admitting instructions rate (λ),
and optimal dropping probability (p) with respect to the
queue length in the processor when incoming instructions’s
intensity changes. In these experiments, the service rate of
the Processor is µ = 100 (ints/sec), total buffer size is N =
200, target

From the results shown in Fig. 6 , we see as the workload
intensity increases, the corresponding optimal policies begin
dropping instruction more aggressively. For ex- ample, when
λ = 60(inst/sec), the optimal policy does not begin dropping
packets until the processor’s queue length reaches 95 (Fig.
6); but when under high workload of λ = 180(inst/sec),
the optimal policy begins dropping instructions when
processor’s queue length reaches only 27 (Fig. 8). In this
setup, when the processor’s queue length reaches 82, all
incoming instructions are dropped under the optimal policy,
as compatible AQM to the value of 106 for the case when λ
= 60(inst/sec).

VI. CONCLUSIONS AND FUTURE WORK

The rapid development and pervasive deployment of in
information technology(IT) has created a need to enforce
service and resource management policies automatically.

In this paper we have described how queuing control
techniques can be effectively applied to computing system’s
performance control and management. Specifically, we study
how to design optimal dropping strategies for multiprocessor
using this approach. We formulate the problem of designing
the optimal dropping strategy as an optimal queuing con-
troll problem. We then derive the optimal controller using
uniformization and value iteration. Through numerical
evaluation, we also discussed the effect of various design
parameters and workload characteristics on the optimal
dropping strategies.

Since many computing systems can be modeled as
discrete-event systems, we believe that discrete-event con-
tro l approach has its own advantages over many classical
control-theoretic approaches for these systems. We hope this
work can bring new ideas and tools to feedback control of
computing systems.

VII. REFERENCES

[1]. T. F. Abdelzaher and C. Lu, “Modeling and performance
control of internet servers,” in 39th IEEE Conference on
Decision and Control2000.

[2]. C. Lu, T. Abdelzaher, J. Stankovic, and S. Son, “A feedback
control approach for guaranteeing relative delays in web
servers,” in IEEE Real-Time Technology and Applications
Symposium, 2001.

[3]. Y. Diao, J. Hellerstein, and S. Parekh, “Using fuzzy control
to maximize profits in service level management,” IBM
Syst. J., vol. 41, no. 3, pp. 403-420, 2002., 2002.

[4]. L. Kleinrock, Queuing Systems, Vol. 2, Applications.
John Wiley, 1976.

[5]. P. J. Ramadge and W. M. Wonham, “Supervisory control of a
class of discrete event processes,” SIAM Journal of Control
and Optimization, vol. 25, no. 1, pp. 206–230,

[6]. C. G. Cassandras and S. Lafortune, Introduction to
Discrete Event Systems. KLUWER ACADEMIC
PUBLISHERS, 1999.

[7]. J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury,
FeedbackControl of Computing Systems. Wiley-IEEE Press,
2004.

[8]. N. Gandhi, S. Parekh, J. Hellerstein, and D. Tilbury,
“Feedback control of a lotus notes server: Modeling and
control design,” in American Control Conference, 2001

[9]. Y. Diao, N. Gandhi, J. L. Hellerstein, S. Parekh, and D. M.
Tilbury, “Mimo control of an apache web server: Modeling
and controller design,” in American Control Conference,
2002.

[10]. Y. Lu, A. Saxena, and T. F. Abdelzaher, “Differentiated
caching services: A control-theoretical approach,” in
International Conference on Distributed Computing Systems,

Shirish V. Pattalwar et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,821-826

© 2010, IJARCS All Rights Reserved 826

2001.

[11]. X. Liu, J. Heo, L. Sha, and X. Zhu, “Adaptive control of
multi-tieAQM web application using queuing pAQMictor,” in
10th IEEE/IFIP Network Operations and Management
Symposium (NOMS 2006), Vancouver, Canada, 2006

[12]. M. Karlsson, C. Karamanolis, and X. Zhu, “Triage:
Performance isolation and differentiation for storage
systems,” in The Twelfth IEEE International Workshop on
Quality of Service (IWQoS 2004), 2004.

[13]. Y. Lu, C. Lu, T. Abdelzaher, and G. Tao, “An adaptive
control framework for qos guarantees and its application
to differentiated caching services,” in IWQoS, 2002.

[14]. B. Li and K. Nahrstedt, “A control-based middleware
framework for quality-of-service adaptations,” IEEE Journal
on Selected Areas in Communications, vol. 17, no. 9, pp.
1632–1650, 1999.

[15]. R. Zhang, C. Lu, T. F. Abdelzaher, and J. A.
Stankovic, “Control- ware: A middleware architecture for
feedback control of software performance,” in International
Conference on Distributed Computing Systems, 2002.

[16]. S. Parekh, N. Gandhi, J. L. Hellerstein, D. Tilbury, T. S.
Jayram, and J. Bigus, “Using control theory to achieve
service level objectives in performance management,” Real
Time Systems Journal, vol. 23, no 1 -2 ,2001

[17]. B. A. Brandin, “The real-time supervisory control of an
experimental manufacturing cell,” IEEE Transactions on
Robotics and Automation, vol. 12, no. 1, pp. 1–14, 1996.

[18]. Y. Wang, T. Kelly, and S. Lafortune, “Discrete control for
safe execution of it automationworkflows,” in Eurosys

2007, 2007.

[19]. R. Jain, The Art of Computer Systems Performance
Analysis. John Wiley and Sons, 1991.

[20]. L. Sha, X. Liu, Y. Lu, and T. Abdelzaher, “Queuing model
based network server performance control,” in 23rd IEEE
Real-Time Systems Symposium (RTSS02). IEEE Computer
Society, 2002, p. 81.

[21]. S. Floyd and V. Jacobson, “Random early detection
gateways for con- gestion avoidance,” IEEE/ACM
Transactions on Networking, vol. 1, no. 4, pp. 397–413,
1993.

[22]. W.-C. Feng, D. D. Kandlur, D. Saha, and K. G. Shin, “A
self- configuring AQM gateway,” in IEEE INFOCOM 99,
1999, pp. 1320–1328.

[23]. C. V. Hollot, V. Misra, D. F. Towsley, and W. Gong, “A
control theoretic analysis of AQM,” in IEEE Infocom,
2001, pp. 1510–1519.

[24]. S. Athuraliya, V. H. Li, S. H. Low, and Q. Yin, “REM:
Active queue management,” IEEE Network, vol. 15, no. 3,
pp. 48–53, 2001.

[25]. V. Kulkarni, Modeling and Analysis of Stochastic Systems.
Chapman and Hall, 1996.

[26]. T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.

[27]. D. P. Bertsekas and J. Tsitsiklis, Neuro-Dynamic
Programming. Athena Scientific, 1996.

[28]. S. Floyd, R. Gummadi, and S. Shenker, “Adaptive AQM:
An algorithm for increasing the robustness of AQM’s active
queue management,” 2001

