
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 804

ISSN No. 0976-5697

Acumen of Column-Store Architecture Approaches and Challenges
1

Sanil.S.Nair
Assistant Professor (Department of MCA)

Prof. Ram Meghe Institute of Technology &Research,
Badnera- Amravati, India
sanils81@rediffmail.com

2

bgpund@yahoo.com

Bhruthari G. Pund
Assistant Professor (Department of MCA)

Prof. Ram Meghe Institute of Technology &Research,
Badnera- Amravati, India

3

Keywords: Column oriented database, c-store, Query execution plans, and row stores

Prajakta P. Deshmukh
Assistant Professor (Department of MCA)

Prof. Ram Meghe Institute of Technology &Research,
Badnera- Amravati, India

prajakt.deshmukh@gmail.com

Abstract: This paper provides (to the best of our knowledge) the detailed study of multiple implementation approaches of C-Store systems,
categorizing the different approaches into three broad categories, and evaluating the tradeoffs between approaches. Here we investigate the
challenges of building a column-oriented database system by exploring these three approaches in more detail. We implemented each of these three
approaches and examined their relative performance on a data warehousing benchmark.

I. INTRODUCTION

In this paper, we have tried to mention the challenges of
building a column-oriented database system by exploring these
three approaches in more detail. We implement each of these
three approaches and examine their relative performance on a
data warehousing benchmark. Clearly, the more one tailors a
database system for a particular data layout, the better one
would expect that system to perform. Thus, we expect the third
approach to outperform the second approach and the second
approach to outperform the first approach. For this reason, we
are more interested in the magnitude of difference between the
three approaches rather than just the relative ordering. For
example, if the first approach only slightly underperforms the
other two approaches, then it would be the desirable solution
for building a column-store since it can be built using currently
available database systems without modification.

Consequently, we carefully investigated the first approach.
We experiment with multiple schemes for implementing a
column-store on top of a row-store, including:
a. Vertically partitioning the tables in the system into a

collection of two-column tables consisting of (table key,
attribute) pairs, so that only the necessary columns need
to be read to answer a query;

b. Using index-only plans; by creating a collection of indices
that cover all of the columns used in a query; it is possible
for the database system to answer a query without ever
going to the underlying (row-oriented) tables;

c. Using a collection of materialized views such that there is
a view with exactly the columns needed to answer every
query in the benchmark. Though this approach uses a lot
of space, it is the 'best case' for a row-store, and provides

a useful point of comparison to a column-store
implementation.

We implement each of these schemes on top of a
commercial row-store, and compare the schemes with baseline
performance of the row-store. Overall, the results are
surprisingly poor - in many cases the baseline row-store
outperforms the column-store implementations. We analyse
why this is the case, breaking down the fundamental from the
implementation specific reasons for the poor performance.

II. ROW-ORIENTED EXECUTION

In this section, we discuss several different techniques that
can be used to implement a column-database design in a
commercial row-oriented DBMS (since we cannot name the
system we used due to license restrictions, hereafter we will
refer to it as System). We look at three different classes of
physical design: a fully vertically partitioned design, an "index
only" design, and a materialized view design. In our
evaluation, we also compare against a "standard" row-store
design with one physical table per relation [15].Vertical
Partitioning: The most straightforward way to emulate a
column-store approach in a row-store is to fully vertically
partition each relation [12]. In a fully vertically partitioned
approach, some mechanism is needed to connect fields from
the same row together (column stores typically match up
records implicitly by storing columns in the same order, but
such optimizations are not available in a row store). To
accomplish this, the simplest approach is to add an integer
"position" column to every table - this is often preferable to
using the primary key because primary keys can be large and
are sometimes composite. This approach creates one physical
table for each column in the logical schema, where the ith table

Sanil.S.Nair et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,804-809

© 2010, IJARCS All Rights Reserved 805

has two columns, one with values from column i of the logical
schema and one with the corresponding value in the position
column. Queries are then rewritten to perform joins on the
position attribute when fetching multiple columns from the
same relation. In our implementation, by default, System chose
to use hash joins for this purpose, which proved to be
expensive. For that reason, we experimented with adding
clustered indices on the position column of every table, and
forced System to use index joins, but this did not improve
performance - the additional I/Os incurred by index accesses
made them slower than hash joins.

A. Index-only plans:
The vertical partitioning approach has two problems. First,

it requires the position attribute to be stored in every column,
which wastes space and disk bandwidth. Second, most row-
stores store a relatively large header on every tuple, which
further wastes space (column stores typically - or perhaps even
by definition - store headers in separate columns to avoid these
overheads). To ameliorate these concerns, the second approach
we consider uses index-only plans, where base relations are
stored using a standard, row-oriented design, but an additional
unclustered B+Tree index is added on every column of every
table. Index-only plans - which require special support from
the database, but are implemented by System- work by
building lists of (record-id,value) pairs that satisfy predicates
on each table, and merging these rid-lists in memory when
there are multiple predicates on the same table. When required
fields have no predicates, a list of all (record-id, value) pairs
from the column can be produced. Such plans never access the
actual tuples on disk. Though indices still explicitly store rids,
they do not store duplicate column values, and they typically
have a lower per-tuple overhead than the headers in the vertical
partitioning approach.

One problem with the index-only approach is that if a
column has no predicate on it, the index-only approach
requires the index to be scanned to extract the needed values,
which can be slower than scanning a heap file (as would occur
in the vertical partitioning approach.) Hence, an optimization
to the index-only approach is to create indices with composite
keys, where the secondary keys are from predicate-less
columns. For example, consider the query SELECT AVG
(salary) FROM emp WHERE age>40 - if we have a composite
index with an (age, salary) key, then we can answer this query
directly from this index. If we have separate indices on (age)
and (salary), an index only plan will have to find record-ids
corresponding to records with satisfying ages and then merge
this with the complete list of (record-id, salary) pairs extracted
from the (salary) index, which will be much slower. We use
this optimization in our implementation by storing the primary
key of each dimension table as a secondary sort attribute on the
indices over the attributes of that dimension table. In this way,
we can efficiently access the primary key values of the
dimension that need to be joined with the fact table.

B. Materialized Views:
The third approach we consider uses materialized views. In

this approach, we create an optimal set of materialized views
for every query flight in the workload, where the optimal view

for a given flight has only the columns needed to answer
queries in that flight. We do not pre -join columns from
different tables in these views. Our objective with this strategy
is to allow System to access just the data it needs from disk,
avoiding the overheads of explicitly storing record-id or
positions, and storing tuple headers just once per tuple. Hence,
we expect it to perform better than the other two approaches,
although it does require the query workload to be known in
advance, making it practical only in limited situations.

C. Tuple overheads:
 As others have observed [12], one of the problems with a

fully vertically partitioned approach in a row-store is that tuple
overheads can be quite large. This is further aggravated by the
requirement that the primary keys of each table be stored with
each column to allow tuples to be reconstructed. We compared
the sizes of column-tables in our vertical partitioning approach
to the sizes of the traditional row store, and found that a single
column-table from our SSBM scale 10 lineorder table (with 60
million tuples) requires between 0.7 and 1.1 GBytes of data
after compression to store - this represents about 8 bytes of
overhead per row, plus about 4 bytes each for the primary key
and the column attribute, depending on the column and the
extent to which compression is effective (16 bytes × 6 × 107
tuples = 960 MB). In contrast, the entire 17 column line order
table in the traditional approach occupies about 6 GBytes
decompressed, or 4 GBytes compressed, meaning that
scanning just four of the columns in the vertical partitioning
approach will take as long as scanning the entire fact table in
the traditional approach [8, 9, 10].

D. Column Joins:
 Merging two columns from the same table together

requires a join operation. System favors using hash-joins for
these operations, which is quite slow. We experimented with
forcing System to use index nested loops and merge joins, but
found that this did not improve performance because index
accesses had high overhead and System was unable to skip the
sort preceding the merge join.

III. EXPERIMENTS

Now that we have described the techniques we used to
implement a column-database design inside System, we
present our experimental results of the relative performance of
these techniques [3]. We first begin by describing the
benchmark we used for these experiments, and then present
the results.

All of our experiments were run on a 2.8 GHz single
processor, dual core Pentium(R) D workstation with 3 GB of
RAM running RedHat Enterprise Linux 5. The machine has a
4-disk array, managed as a single logical volume with files
striped across it. Typical I/O throughput is 40 - 50
MB/sec/disk, or 160 - 200 MB/sec in aggregate for striped
files. The numbers we report are the average of several runs,
and are based on a "warm" bufer pool (in practice, we found
that this yielded about a 30% performance increase for the
systems we experiment with; the gain is not particularly
dramatic because the amount of data read by each query
exceeds the size of the bufer pool).

Sanil.S.Nair et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,804-809

© 2010, IJARCS All Rights Reserved 806

IV. STAR SCHEMA BENCHMARK

For these experiments, we use the Star Schema Benchmark
(SSBM) [13, 14] to compare the performance of of the various
column-stores.

The SSBM is a data warehousing benchmark derived from
TPC-H [7]. Unlike TPC-H, it is a pure, textbook star-schema
(the "best practices" data organization for data warehouses). It
also consists of fewer queries than TPC- H and has less
stringent requirements on what forms of tuning are and are not
allowed. We chose it because it is easier to implement than
TPC-H and because we want to compare our results on the
commercial row-store with our various hand-built column-
stores which are unable to run the entire TPC-H benchmark.

A. Schema:
 The benchmark consists of a single fact table, the

LINEORDER table that combines the LINEITEM and
ORDERS table of TPC-H. This is a 17 column table with
information about individual orders, with a composite primary
key consisting of the ORDERKEY and LINENUMBER
attributes. Other attributes in the LINEORDER table include
foreign key references to the CUSTOMER, PART,
SUPPLIER, and DATE tables (for both the order date and
commit date), as well as attributes of each order, including its
priority, quantity, price, discount, and other attributes. The
dimension tables contain information about their respective
entities in the expected way. Figure 1 (adapted from Figure 2
of [14]) shows the schema of the tables. As with TPC-H, there
is a base "scale factor" which can be used to scale the size of
the benchmark. The sizes of each of the tables are defined
relative to this scale factor. In this paper, we use a scale factor
of 10.

B. Queries:
 The SSBM consists of thirteen queries divided into four

categories, or "flights". The four query flights are summarized
here:
a. Flight 1 contains 3 queries. Queries have a restriction on

1 dimension attribute, as well as the DISCOUNT and
QUANTITY columns of the LINEORDER table. Queries
measure the gain in revenue (the product of
EXTENDED- PRICE and DISCOUNT) that would be
achieved if various levels of discount were eliminated for
various order quantities in a given year. The
LINEORDER selectivities (percentage of tuples that pass
all predicates) for the three queries are 1.9 × 10−2, 6.5 ×
10−4, and 7.5 × 10−5, respectively.

b. Flight 2 contains 3 queries. Queries have a restriction on
2 dimension attributes and compute the revenue for
particular product classes in particular regions, grouped
by product class and year. The LINEORDER
selectivity’s for the three queries are 8.0 × 10−3, 1.6 ×
10−3, and 2.0 × 10−4, respectively.

c. Flight 3 consists of 4 queries, with a restriction on 3
dimensions. Queries compute the revenue in a particular
region over a time period, grouped by customer nation,
supplier nation, and year. The LINEORDER selectivity’s
for the four queries are 3.4 × 10−2, 1.4 × 10−3, 5.5 ×

10−5, and 7.6 × 10−7 respectively.
d. Flight 4 consists of three queries. Queries restrict on three

dimension columns, and compute profit (REVENUE -
SUPPLYCOST) grouped by year, nation, and category
for query 1; and for queries 2 and 3, region and category.
The LINEORDER selectivity’s for the three queries are
1.6 × 10−2, 4.5 × 10−3, and 9.1 × 10−5, respectively [6].

Figure 1. Schema of the SSBM Benchmark

V. IMPLEMENTING A COLUMN-STORE IN A ROW-
STORE

We now describe the performance of the different
configurations of System on the SSBM. We configured
System to partition the lineorder table on orderdate by year
(this means that a different physical partition is created for
tuples from each year in the database). This partitioning
substantially speeds up SSBM queries that involve a predicate
on orderdate. Unfortunately, for the column-oriented
representations, System doesn’t allow us to partition two-
column vertical partitions on orderdate, which means that for
those query flights that restrict on the orderdate column, the
column-oriented approaches look particularly bad.
Nevertheless, A "materialized views" approach with the
optimal collection of materialized views for every query (no
pre-joins were performed in these views).we decided to use
partitioning for the base case because it is in fact the strategy
that a database administrator would use when trying to
improve the performance of these queries on a row-store, so is
important for providing a fair comparison between System and
other column-stores.

Other relevant configuration parameters for System
include: 32 KB disk pages, a 1.5 GB maximum memory for
sorts, joins, intermediate results, and a 500 MB bufer pool. We
enabled compression and sequential scan pre-fetching.

We experimented with six configurations of System on
SSBM:
a. A "traditional" row-oriented representation; here, we

allow System to use bitmaps if its optimizer determines
they are beneficial.

b. A "traditional (bitmap)" approach, similar to traditional,

Sanil.S.Nair et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,804-809

© 2010, IJARCS All Rights Reserved 807

but in this case, we biased plans to use bitmaps,
sometimes causing them to produce inferior plans to the
pure traditional approach.

c. A "vertical partitioning" approach, with each column in
its own relation, along with the primary key of the
original relation.

d. An "index-only" representation, using an unclustered
B+tree on each column in the row-oriented approach,
and then answering queries by reading values directly
from the indexes.

e. A "materialized views" approach with the optimal
collection of materialized views for every query (no
pre-joins were performed in these views).

The average results across all queries are shown in Figure
2, with detailed results broken down by flight in Figure 3.
Materialized views perform best in all cases, because they read
the minimal amount of data required to process a query. After
materialized views [2], the traditional approach or the
traditional approach with bitmap indexing, is usually the best
choice (on average, the traditional approach is about three
times better than the best of our attempts to emulate a column-
oriented approach). This is particularly true of queries that can
exploit partitioning on orderdate, as discussed above. For
query flight 2 (which does not benefit from partitioning), the
vertical partitioning approach is competitive with the
traditional approach; the index-only approach performs poorly
for reasons we discuss below. Before looking at the
performance of individual queries in more detail, we
summarize the two high level issues that limit the approach of
the columnar approaches: tuple overheads, and inefficient
column reconstruction.

Tuple overheads: As others have observed [12], one of the
problems with a fully vertically partitioned approach in a row-
store is that tuple overheads can be quite large. This is further
aggravated by the requirement that the primary keys of each
table be stored with each column to allow tuples to be
reconstructed. We compared the sizes of column-tables in our
vertical partitioning approach to the sizes of the traditional row
store, and found that a single column-table from our SSBM
scale 10 lineorder table (with 60 million tuples) requires
between 0.7 and 1.1 GBytes of data after compression to store
- this represents about 8 bytes of overhead per row, plus about
4 bytes each for the primary key and the column attribute,
depending on the column and the extent to which compression
is effective (16 bytes × 6 × 107 tuples = 960 MB). In contrast,
the entire 17 column lineorder table in the traditional approach
occupies about 6 GBytes decompressed, or 4 GBytes
compressed, meaning that scanning just four of the columns in
the vertical partitioning approach will take as long as scanning
the entire fact table in the traditional approach. Column Joins:
Merging two columns from the same table together requires a
join operation. System favours using hash-joins for these
operations, which is quite slow. We experimented with forcing
System to use index nested loops and merge joins, but found
that this did not improve performance because index accesses
had high overhead and System was unable to skip the sort
preceding the merge join.

VI. DETAILED ROW-STORE PERFORMANCE
BREAKDOWN

In this section, we look at the performance of the row-In
this section we look at the performance of the store approaches,
using the plans generated by System for query 2.1 from the
SSBM as a guide (we chose this query because it is one of the
few that does not benefit from orderdate partitioning, so
provides a more equal comparison between the traditional and
vertical partitioning approach.) [4, 5]. Though we do not
dissect plans for other queries as carefully, their basic structure
is the same. The SQL for this query is:

Figure 2. Average performance numbers across all queries in the SSBM for
different variants of the row-store. Here, T is traditional, T(B) is traditional

(bitmap), MV is materialized views, VP is vertical partitioning, and AI is all
indexes.

SELECT sum(lo_revenue), d_year, p_brand1
FROM lineorder, dwdate, part, supplier
WHERE lo_orderdate = d_datekey
AND lo_partkey = p_partkey
AND lo_suppkey = s_suppkey
AND p_category = 'MFGR#12'
 AND s_region = 'AMERICA'
GROUP BY d_year, p_brand1 ORDER
 BY d_year, p_brand1
The selectivity of this query is 8.0 × 10−3. Here, the

vertical partitioning approach performs about as well as the
traditional approach (65 seconds versus 43 seconds), but the
index-only approach performs substantially worse (360
seconds). We look at the reasons for this below.

A. Traditional:
 For this query, the traditional approach scans the entire

lineorder table, using four hash joins to join it with the dwdate,
part, and supplier table (in that order). It then performs a sort-
based aggregate to compute the final answer. The cost is
dominated by the time to scan the lineorder table, which in our
system requires about 40 seconds. For this query, bitmap
indices do not help because when we force System to use
bitmaps it chooses to perform the bitmap merges before
restricting on the region and category fields, which slows its
performance considerably. Materialized views take just 15
seconds, because they have to read about 1/3rd of the data as
the traditional approach.

Sanil.S.Nair et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,804-809

© 2010, IJARCS All Rights Reserved 808

B. Vertical partitioning:
The vertical partitioning approach Hash-joins the partkey

column with the filtered part table and the suppkey column
with the filtered supplier table, and then hash-joins these two
resultsets. This yields tuples with the primary key of the fact
table and the p brand1 attribute of the part table that satisfy the
query. System then hash joins this with the dwdate table to
pick up d year, and finally uses an additional hash join to pick
up the lo _revenue column from its column table.

Figure 3. Figure3. Performance numbers for different variants of the row-

store by query flight. Here, T is traditional, T(B) is traditional (bitmap), MV is
materialized views, VP is vertical partitioning, and AI is all indexes.

This approach requires four columns of the lineorder table
to be read in their entirety (sequentially), which, as we said
above, requires about as many bytes to be read from disk as
the traditional approach, and this scan cost dominates the
runtime of this query, yielding comparable performance as
compared to the traditional approach. Hash joins in this case
slow down performance by about 25%; we experimented with
eliminating the hash joins by adding clustered B+trees on the
key columns in each vertical partition, but System still chose
to use hash joins in this case.

VII. CONCLUSIONS

The previous results show that none of our attempts to
emulate a column-store in a row-store are particularly
effective. The vertical partitioning approach can provide
performance that is competitive with or slightly better than a

row-store when selecting just a few columns. When selecting
more than about 1/4 of the columns, however, the wasted
space due to tuple headers and redundant copies of the primary
key yield inferior performance to the traditional approach.
This approach also requires relatively expensive hash joins to
combine columns from the fact table together. It is possible
that System could be tricked into storing the columns on disk
in sorted order and then using a merge join (without a sort) to
combine columns from the fact table but we were unable to
coax this behaviour from the system.

Index-only plans avoid redundantly storing the primary
key, and have a lower per-record overhead, but introduce
another problem - namely, the system is forced to join
columns of the fact table together using expensive hash joins
before filtering the fact table using dimension columns [1]. It
appears that System is unable to defer these joins until later in
the plan (as the vertical partitioning approach does) because it
cannot retain record-ids from the fact table after it has joined
with another table. This giant hash joins lead to extremely
slow performance.

With respect to the traditional plans, materialized views are
an obvious win as they allow System to read just the subset of
the fact table that is relevant, without merging columns
together. Bitmap indices sometimes help - especially when the
selectivity of queries is low - because they allow the system to
skip over some pages of the fact table when scanning it. In
other cases, they slow the system down as merging bitmaps
adds some overhead to plan execution and bitmap scans can be
slower than pure sequential scans. In any case, for the SSBM,
their effect is relatively small, improving performance by at
most about 25% [11].

As a final note, we observe that implementing these plans
in System was quite painful. We were required to rewrite all of
our queries to use the vertical partitioning approaches, and had
to make extensive use of optimizer hints and other trickery to
coax the system into doing what we desired.

In the forthcoming paper we will try to show how column-
stores are designed using alternative approaches are able to
circumvent these limitations.

VIII. REFERENCES

[1]. Peter Boncz, Marcin Zukowski, and Niels Nes.
MonetDB/X100: Hyper-pipelining query execution. In CIDR,
2005.

[2]. Zhiyuan Chen, Johannes Gehrke, and Flip Korn. Query
optimization in compressed database systems. In SIGMOD
’01, pages 271–282, 2001.

[3]. George Copeland and Setrag Khoshafian. A decomposition
storage model. In SIGMOD, pages 268–279, 1985.

[4]. Alan Halverson, Jennifer L. Beckmann, Jeffrey F. Naughton,
and David J. Dewitt. A Comparison of C-Store and Row-
Store in a Common Framework. Technical Report TR1570,
University ofWisconsin-Madison, 2006.

[5]. Stavros Harizopoulos, Velen Liang, Daniel J. Abadi, and
Samuel R. Madden. Performance tradeoffs in readoptimized
databases. In VLDB, pages 487–498, Seoul, Korea, 2006.

Sanil.S.Nair et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,804-809

© 2010, IJARCS All Rights Reserved 809

[6]. Setrag Khoshafian, George Copeland, Thomas Jagodis, Haran
Boral, and Patrick Valduriez. A query processing strategy for
the decomposed storage model. In ICDE, pages 636–643,
1987.

[7]. Carl Olofson. Worldwide RDBMS 2005 vendor shares.
Technical Report 201692, IDC, May 2006.

[8]. Michael Stonebraker, Daniel J. Abadi, Adam Batkin,
Xuedong Chen, Mitch Cherniack, Miguel Ferreira, Edmond

[9]. Lau, Amerson Lin, Samuel R. Madden, Elizabeth J. O’Neil,
Patrick E. O’Neil, Alexander Rasin, Nga Tran, and Stan B.
Zdonik. C-Store: A Column-Oriented DBMS. In VLDB,
pages 553–564, Trondheim, Norway, 2005.

[10]. Michael Stonebraker, Chuck Bear, Ugur Cetintemel, Mitch
Cherniack, Tingjian Ge, Nabil Hachem, Stavros
Harizopoulos, John Lifter, Jennie Rogers, and Stan Zdonik.
One size fits all? - Part 2: Benchmarking results.In
Proceedings of the Third International Conference on
Innovative Data Systems Research (CIDR), January 2007.

[11]. Dan Vesset. Worldwide data warehousing tools 2005 vendor
shares. Technical Report 203229, IDC, August 2006.

[12]. Setrag Khoshafian, George Copeland, Thomas Jagodis, Haran
Boral, and Patrick Valduriez. A query processing strategy for
the decomposed storage model. In ICDE, pages 636-643,
1987.

[13]. Patrick E. O'Neil, Xuedong Chen, and Elizabeth J. O'Neil.
Adjoined Dimension Column Index (ADC Index) to Improve
Star Schema Query Performance. In Proc. of ICDE, 2008.

[14]. Patrick E. O'Neil, Elizabeth J. O'Neil, and Xuedong Chen.
The Star Schema Benchmark (SSB).
http://www.cs.umb.edu/˜poneil/StarSchemaB.PDF.

[15]. Sanil.S.Nair, Bhruthari G. Pund. An Intuition of the
Necessitate of Column-Oriented Database Systems
(SSB).http://www.ijcaonline.org/proceedings/isdmisc/number
4/3468-isdm091

	INTRODUCTION
	ROW-ORIENTED EXECUTION
	A. Index-only plans:
	B. Materialized Views:
	C. Tuple overheads:
	D. Column Joins:

	EXPERIMENTS
	STAR SCHEMA BENCHMARK
	A. Schema:
	B. Queries:

	IMPLEMENTING A COLUMN-STORE IN A ROW-STORE
	DETAILED ROW-STORE PERFORMANCE BREAKDOWN
	Traditional:
	Vertical partitioning:

	CONCLUSIONS
	REFERENCES

