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Abstract: This paper provides (to the best of our knowledge) the detailed study of multiple implementation approaches of C-Store systems, 
categorizing the different approaches into three broad categories, and evaluating the tradeoffs between approaches. Here we investigate the 
challenges of building a column-oriented database system by exploring these three approaches in more detail. We implemented each of these three 
approaches and examined their relative performance on a data warehousing benchmark. 
 

I. INTRODUCTION 

In this paper, we have tried to mention the challenges of 
building a column-oriented database system by exploring these 
three approaches in more detail. We implement each of these 
three approaches and examine their relative performance on a 
data warehousing benchmark. Clearly, the more one tailors a 
database system for a particular data layout, the better one 
would expect that system to perform. Thus, we expect the third 
approach to outperform the second approach and the second 
approach to outperform the first approach. For this reason, we 
are more interested in the magnitude of difference between the 
three approaches rather than just the relative ordering. For 
example, if the first approach only slightly underperforms the 
other two approaches, then it would be the desirable solution 
for building a column-store since it can be built using currently 
available database systems without modification.  

Consequently, we carefully investigated the first approach. 
We experiment with multiple schemes for implementing a 
column-store on top of a row-store, including: 
a. Vertically partitioning the tables in the system into a 

collection of two-column tables consisting of (table key, 
attribute) pairs, so that only the necessary columns need 
to be read to answer a query;  

b. Using index-only plans; by creating a collection of indices 
that cover all of the columns used in a query; it is possible 
for the database system to answer a query without ever 
going to the underlying (row-oriented) tables;  

c. Using a collection of materialized views such that there is 
a view with exactly the columns needed to answer every 
query in the benchmark. Though this approach uses a lot 
of space, it is the 'best case' for a row-store, and provides  
 

 
a useful point of comparison to a column-store 
implementation. 

We implement each of these schemes on top of a 
commercial row-store, and compare the schemes with baseline 
performance of the row-store. Overall, the results are 
surprisingly poor - in many cases the baseline row-store 
outperforms the column-store implementations. We analyse 
why this is the case, breaking down the fundamental from the 
implementation specific reasons for the poor performance.  

II. ROW-ORIENTED EXECUTION  

In this section, we discuss several different techniques that 
can be used to implement a column-database design in a 
commercial row-oriented DBMS (since we cannot name the 
system we used due to license restrictions, hereafter we will 
refer to it as System). We look at three different classes of 
physical design: a fully vertically partitioned design, an "index 
only" design, and a materialized view design. In our 
evaluation, we also compare against a "standard" row-store 
design with one physical table per relation [15].Vertical 
Partitioning: The most straightforward way to emulate a 
column-store approach in a row-store is to fully vertically 
partition each relation [12]. In a fully vertically partitioned 
approach, some mechanism is needed to connect fields from 
the same row together (column stores typically match up 
records implicitly by storing columns in the same order, but 
such optimizations are not available in a row store). To 
accomplish this, the simplest approach is to add an integer 
"position" column to every table - this is often preferable to 
using the primary key because primary keys can be large and 
are sometimes composite. This approach creates one physical 
table for each column in the logical schema, where the ith table 
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has two columns, one with values from column i of the logical 
schema and one with the corresponding value in the position 
column. Queries are then rewritten to perform joins on the 
position attribute when fetching multiple columns from the 
same relation. In our implementation, by default, System chose 
to use hash joins for this purpose, which proved to be 
expensive. For that reason, we experimented with adding 
clustered indices on the position column of every table, and 
forced System to use index joins, but this did not improve 
performance - the additional I/Os incurred by index accesses 
made them slower than hash joins.  

A.    Index-only plans:  
The vertical partitioning approach has two problems. First, 

it requires the position attribute to be stored in every column, 
which wastes space and disk bandwidth. Second, most row-
stores store a relatively large header on every tuple, which 
further wastes space (column stores typically - or perhaps even 
by definition - store headers in separate columns to avoid these 
overheads). To ameliorate these concerns, the second approach 
we consider uses index-only plans, where base relations are 
stored using a standard, row-oriented design, but an additional 
unclustered B+Tree index is added on every column of every 
table. Index-only plans - which require special support from 
the database, but are implemented by System- work by 
building lists of (record-id,value) pairs that satisfy predicates 
on each table, and merging these rid-lists in memory when 
there are multiple predicates on the same table. When required 
fields have no predicates, a list of all (record-id, value) pairs 
from the column can be produced. Such plans never access the 
actual tuples on disk. Though indices still explicitly store rids, 
they do not store duplicate column values, and they typically 
have a lower per-tuple overhead than the headers in the vertical 
partitioning approach.  

One problem with the index-only approach is that if a 
column has no predicate on it, the index-only approach 
requires the index to be scanned to extract the needed values, 
which can be slower than scanning a heap file (as would occur 
in the vertical partitioning approach.) Hence, an optimization 
to the index-only approach is to create indices with composite 
keys, where the secondary keys are from predicate-less 
columns. For example, consider the query SELECT AVG 
(salary) FROM emp WHERE age>40 - if we have a composite 
index with an (age, salary) key, then we can answer this query 
directly from this index. If we have separate indices on (age) 
and (salary), an index only plan will have to find record-ids 
corresponding to records with satisfying ages and then merge 
this with the complete list of (record-id, salary) pairs extracted 
from the (salary) index, which will be much slower. We use 
this optimization in our implementation by storing the primary 
key of each dimension table as a secondary sort attribute on the 
indices over the attributes of that dimension table. In this way, 
we can efficiently access the primary key values of the 
dimension that need to be joined with the fact table. 

B.     Materialized Views: 
The third approach we consider uses materialized views. In 

this approach, we create an optimal set of materialized views 
for every query flight in the workload, where the optimal view 

for a given flight has only the columns needed to answer 
queries in that flight. We do not pre -join columns from 
different tables in these views. Our objective with this strategy 
is to allow System to access just the data it needs from disk, 
avoiding the overheads of explicitly storing record-id or 
positions, and storing tuple headers just once per tuple. Hence, 
we expect it to perform better than the other two approaches, 
although it does require the query workload to be known in 
advance, making it practical only in limited situations.  

C.     Tuple overheads: 
 As others have observed [12], one of the problems with a 

fully vertically partitioned approach in a row-store is that tuple 
overheads can be quite large. This is further aggravated by the 
requirement that the primary keys of each table be stored with 
each column to allow tuples to be reconstructed. We compared 
the sizes of column-tables in our vertical partitioning approach 
to the sizes of the traditional row store, and found that a single 
column-table from our SSBM scale 10 lineorder table (with 60 
million tuples) requires between 0.7 and 1.1 GBytes of data 
after compression to store - this represents about 8 bytes of 
overhead per row, plus about 4 bytes each for the primary key 
and the column attribute, depending on the column and the 
extent to which compression is effective (16 bytes × 6 × 107 
tuples = 960 MB). In contrast, the entire 17 column line order 
table in the traditional approach occupies about 6 GBytes 
decompressed, or 4 GBytes compressed, meaning that 
scanning just four of the columns in the vertical partitioning 
approach will take as long as scanning the entire fact table in 
the traditional approach [8, 9, 10]. 

D.     Column Joins: 
 Merging two columns from the same table together 

requires a join operation. System favors using hash-joins for 
these operations, which is quite slow. We experimented with 
forcing System  to use index nested loops and merge joins, but 
found that this did not improve performance because index 
accesses had high overhead and System  was unable to skip the 
sort preceding the merge join. 

III. EXPERIMENTS  

Now that we have described the techniques we used to 
implement a column-database design inside System, we 
present our experimental results of the relative performance of 
these techniques [3]. We first begin by describing the 
benchmark we used for these experiments, and then present 
the results.  

All of our experiments were run on a 2.8 GHz single 
processor, dual core Pentium(R) D workstation with 3 GB of 
RAM running RedHat Enterprise Linux 5. The machine has a 
4-disk array, managed as a single logical volume with files 
striped across it. Typical I/O throughput is 40 - 50 
MB/sec/disk, or 160 - 200 MB/sec in aggregate for striped 
files. The numbers we report are the average of several runs, 
and are based on a "warm" bufer pool (in practice, we found 
that this yielded about a 30% performance increase for the 
systems we experiment with; the gain is not particularly 
dramatic because the amount of data read by each query 
exceeds the size of the bufer pool).  
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IV. STAR SCHEMA BENCHMARK  

For these experiments, we use the Star Schema Benchmark 
(SSBM) [13, 14] to compare the performance of of the various 
column-stores.  

The SSBM is a data warehousing benchmark derived from 
TPC-H [7]. Unlike TPC-H, it is a pure, textbook star-schema 
(the "best practices" data organization for data warehouses). It 
also consists of fewer queries than TPC- H and has less 
stringent requirements on what forms of tuning are and are not 
allowed. We chose it because it is easier to implement than 
TPC-H and because we want to compare our results on the 
commercial row-store with our various hand-built column-
stores which are unable to run the entire TPC-H benchmark.  

A.     Schema: 
 The benchmark consists of a single fact table, the 

LINEORDER table that combines the LINEITEM and 
ORDERS table of TPC-H. This is a 17 column table with 
information about individual orders, with a composite primary 
key consisting of the ORDERKEY and LINENUMBER 
attributes. Other attributes in the LINEORDER table include 
foreign key references to the CUSTOMER, PART, 
SUPPLIER, and DATE tables (for both the order date and 
commit date), as well as attributes of each order, including its 
priority, quantity, price, discount, and other attributes. The 
dimension tables contain information about their respective 
entities in the expected way. Figure 1 (adapted from Figure 2 
of [14]) shows the schema of the tables. As with TPC-H, there 
is a base "scale factor" which can be used to scale the size of 
the benchmark. The sizes of each of the tables are defined 
relative to this scale factor. In this paper, we use a scale factor 
of 10. 

B.      Queries: 
 The SSBM consists of thirteen queries divided into four 

categories, or "flights". The four query flights are summarized 
here:  
a. Flight 1 contains 3 queries. Queries have a restriction on 

1 dimension attribute, as well as the DISCOUNT and 
QUANTITY columns of the LINEORDER table. Queries 
measure the gain in revenue (the product of 
EXTENDED- PRICE and DISCOUNT) that would be 
achieved if various levels of discount were eliminated for 
various order quantities in a given year. The 
LINEORDER selectivities (percentage of tuples that pass 
all predicates) for the three queries are 1.9 × 10−2, 6.5 × 
10−4, and 7.5 × 10−5, respectively.  

b. Flight 2 contains 3 queries. Queries have a restriction on 
2 dimension attributes and compute the revenue for 
particular product classes in particular regions, grouped 
by product class and year. The LINEORDER 
selectivity’s for the three queries are 8.0 × 10−3, 1.6 × 
10−3, and 2.0 × 10−4, respectively.  

c. Flight 3 consists of 4 queries, with a restriction on 3 
dimensions. Queries compute the revenue in a particular 
region over a time period, grouped by customer nation, 
supplier nation, and year. The LINEORDER selectivity’s 
for the four queries are 3.4 × 10−2, 1.4 × 10−3, 5.5 × 

10−5, and 7.6 × 10−7 respectively.  
d. Flight 4 consists of three queries. Queries restrict on three 

dimension columns, and compute profit (REVENUE - 
SUPPLYCOST) grouped by year, nation, and category 
for query 1; and for queries 2 and 3, region and category. 
The LINEORDER selectivity’s for the three queries are 
1.6 × 10−2, 4.5 × 10−3, and 9.1 × 10−5, respectively [6].  

 
Figure 1.  Schema of the SSBM Benchmark 

V. IMPLEMENTING A COLUMN-STORE IN A ROW-
STORE  

We now describe the performance of the different 
configurations of System on the SSBM. We configured 
System to partition the lineorder table on orderdate by year 
(this means that a different physical partition is created for 
tuples from each year in the database). This partitioning 
substantially speeds up SSBM queries that involve a predicate 
on orderdate. Unfortunately, for the column-oriented 
representations, System doesn’t allow us to partition two-
column vertical partitions on orderdate, which means that for 
those query flights that restrict on the orderdate column, the 
column-oriented approaches look particularly bad. 
Nevertheless, A "materialized views" approach with the 
optimal collection of materialized views for every query (no 
pre-joins were performed in these views).we decided to use 
partitioning for the base case because it is in fact the strategy 
that a database administrator would use when trying to 
improve the performance of these queries on a row-store, so is 
important for providing a fair comparison between System and 
other column-stores.  

Other relevant configuration parameters for System 
include: 32 KB disk pages, a 1.5 GB maximum memory for 
sorts, joins, intermediate results, and a 500 MB bufer pool. We 
enabled compression and sequential scan pre-fetching. 

We experimented with six configurations of System on 
SSBM: 
a. A "traditional" row-oriented representation; here, we 

allow System to use bitmaps if its optimizer determines 
they are beneficial.  

b. A "traditional (bitmap)" approach, similar to traditional, 
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but in this case, we biased plans to use bitmaps, 
sometimes causing them to produce inferior plans to the 
pure traditional approach.  

c. A "vertical partitioning" approach, with each column in 
its own relation, along with the primary key of the 
original relation. 

d. An "index-only" representation, using an unclustered 
B+tree on each column in the row-oriented approach, 
and then answering queries by reading values directly 
from the indexes. 

e. A "materialized views" approach with the optimal 
collection of materialized views for every query (no 
pre-joins were performed in these views). 

The average results across all queries are shown in Figure 
2, with detailed results broken down by flight in Figure 3. 
Materialized views perform best in all cases, because they read 
the minimal amount of data required to process a query. After 
materialized views [2], the traditional approach or the 
traditional approach with bitmap indexing, is usually the best 
choice (on average, the traditional approach is about three 
times better than the best of our attempts to emulate a column-
oriented approach). This is particularly true of queries that can 
exploit partitioning on orderdate, as discussed above. For 
query flight 2 (which does not benefit from partitioning), the 
vertical partitioning approach is competitive with the 
traditional approach; the index-only approach performs poorly 
for reasons we discuss below. Before looking at the 
performance of individual queries in more detail, we 
summarize the two high level issues that limit the approach of 
the columnar approaches: tuple overheads, and inefficient 
column reconstruction. 

Tuple overheads: As others have observed [12], one of the 
problems with a fully vertically partitioned approach in a row-
store is that tuple overheads can be quite large. This is further 
aggravated by the requirement that the primary keys of each 
table be stored with each column to allow tuples to be 
reconstructed. We compared the sizes of column-tables in our 
vertical partitioning approach to the sizes of the traditional row 
store, and found that a single column-table from our SSBM 
scale 10 lineorder table (with 60 million tuples) requires 
between 0.7 and 1.1 GBytes of data after compression to store 
- this represents about 8 bytes of overhead per row, plus about 
4 bytes each for the primary key and the column attribute, 
depending on the column and the extent to which compression 
is effective (16 bytes × 6 × 107 tuples = 960 MB). In contrast, 
the entire 17 column lineorder table in the traditional approach 
occupies about 6 GBytes decompressed, or 4 GBytes 
compressed, meaning that scanning just four of the columns in 
the vertical partitioning approach will take as long as scanning 
the entire fact table in the traditional approach. Column Joins: 
Merging two columns from the same table together requires a 
join operation. System favours using hash-joins for these 
operations, which is quite slow. We experimented with forcing 
System  to use index nested loops and merge joins, but found 
that this did not improve performance because index accesses 
had high overhead and System was unable to skip the sort 
preceding the merge join.  

VI. DETAILED ROW-STORE PERFORMANCE 
BREAKDOWN  

In this section, we look at the performance of the row-In 
this section we look at the performance of the store approaches, 
using the plans generated by System for query 2.1 from the 
SSBM as a guide (we chose this query because it is one of the 
few that does not benefit from orderdate partitioning, so 
provides a more equal comparison between the traditional and 
vertical partitioning approach.) [4, 5]. Though we do not 
dissect plans for other queries as carefully, their basic structure 
is the same. The SQL for this query is:  

 
Figure 2.  Average performance numbers across all queries in the SSBM for 
different variants of the row-store. Here, T is traditional, T(B) is traditional 

(bitmap),    MV is materialized views, VP is vertical partitioning, and AI is all 
indexes. 

SELECT sum(lo_revenue), d_year, p_brand1  
FROM lineorder, dwdate, part, supplier  
WHERE lo_orderdate = d_datekey  
AND lo_partkey = p_partkey  
AND lo_suppkey = s_suppkey  
AND p_category = 'MFGR#12' 
 AND s_region = 'AMERICA'  
GROUP BY d_year, p_brand1 ORDER 
 BY d_year, p_brand1  
The selectivity of this query is 8.0 × 10−3. Here, the 

vertical partitioning approach performs about as well as the 
traditional approach (65 seconds versus 43 seconds), but the 
index-only approach performs substantially worse (360 
seconds). We look at the reasons for this below. 

A. Traditional: 
 For this query, the traditional approach scans the entire 

lineorder table, using four hash joins to join it with the dwdate, 
part, and supplier table (in that order). It then performs a sort-
based aggregate to compute the final answer. The cost is 
dominated by the time to scan the lineorder table, which in our 
system requires about 40 seconds. For this query, bitmap 
indices do not help because when we force System to use 
bitmaps it chooses to perform the bitmap merges before 
restricting on the region and category fields, which slows its 
performance considerably. Materialized views take just 15 
seconds, because they have to read about 1/3rd of the data as 
the traditional approach.  
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B. Vertical partitioning:  
The vertical partitioning approach Hash-joins the partkey 

column with the filtered part table and the suppkey column 
with the filtered supplier table, and then hash-joins these two 
resultsets. This yields tuples with the primary key of the fact 
table and the p brand1 attribute of the part table that satisfy the 
query. System then hash joins this with the dwdate table to 
pick up d year, and finally uses an additional hash join to pick 
up the lo _revenue column from its column table. 

 
Figure 3.  Figure3. Performance numbers for different variants of the row-

store by query flight. Here, T is traditional, T(B) is  traditional (bitmap), MV is 
materialized views, VP is vertical partitioning, and AI is all indexes.  

This approach requires four columns of the lineorder table 
to be read in their entirety (sequentially), which, as we said 
above, requires about as many bytes to be read from disk as 
the traditional approach, and this scan cost dominates the 
runtime of this query, yielding comparable performance as 
compared to the traditional approach. Hash joins in this case 
slow down performance by about 25%; we experimented with 
eliminating the hash joins by adding clustered B+trees on the 
key columns in each vertical partition, but System  still chose 
to use hash joins in this case.  

VII. CONCLUSIONS 

The previous results show that none of our attempts to 
emulate a column-store in a row-store are particularly 
effective. The vertical partitioning approach can provide 
performance that is competitive with or slightly better than a 

row-store when selecting just a few columns. When selecting 
more than about 1/4 of the columns, however, the wasted 
space due to tuple headers and redundant copies of the primary 
key yield inferior performance to the traditional approach. 
This approach also requires relatively expensive hash joins to 
combine columns from the fact table together. It is possible 
that System could be tricked into storing the columns on disk 
in sorted order and then using a merge join (without a sort) to 
combine columns from the fact table but we were unable to 
coax this behaviour from the system.  

Index-only plans avoid redundantly storing the primary 
key, and have a lower per-record overhead, but introduce 
another problem - namely, the system is forced to join 
columns of the fact table together using expensive hash joins 
before filtering the fact table using dimension columns [1]. It 
appears that System is unable to defer these joins until later in 
the plan (as the vertical partitioning approach does) because it 
cannot retain record-ids from the fact table after it has joined 
with another table. This giant hash joins lead to extremely 
slow performance.  

With respect to the traditional plans, materialized views are 
an obvious win as they allow System to read just the subset of 
the fact table that is relevant, without merging columns 
together. Bitmap indices sometimes help - especially when the 
selectivity of queries is low - because they allow the system to 
skip over some pages of the fact table when scanning it. In 
other cases, they slow the system down as merging bitmaps 
adds some overhead to plan execution and bitmap scans can be 
slower than pure sequential scans. In any case, for the SSBM, 
their effect is relatively small, improving performance by at 
most about 25% [11]. 

As a final note, we observe that implementing these plans 
in System was quite painful. We were required to rewrite all of 
our queries to use the vertical partitioning approaches, and had 
to make extensive use of optimizer hints and other trickery to 
coax the system into doing what we desired.  

In the forthcoming paper we will try to show how column-
stores are designed using alternative approaches are able to 
circumvent these limitations.  
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