
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 769

ISSN No. 0976-5697

Optimizing Performance of Source Code for Real Time System

R A Tiwari
Department of Information Technology

V.Y.W.S. POLYTECHNIC
Badnera,India

softyraja@gmail.com

Miss R R Tuteja
Department of Computer Technology

P.R.M.I.T
Badnera,India

ranu.tuteja@gmail.com

M A Pund
Department of Computer Technology

P.R.M.I.T
Badnera,India

mapund@gmail.com

M R Dhande

Department of Information Technology
V.Y.W.S. POLYTECHNIC

Badnera, India
mrdhande@gmail.com

Abstract: To optimize the performance of a program for real time system does not always mean what we might think. It is not just a matter of
outright speed; sometimes it is about tuning the code and data so that it fits into a small memory footprint. It would be hard-pressed to find a
programmer that does not want to make programs that run faster, regardless of the platform. Embedded programmers are not exception for that some
take an almost fanatical approach to the job of optimizing their code for performance. As hardware becomes faster, cheaper, and more copious, some
argue that performance optimization is less critical--particularly people that try to enforce deadlines on software development. Now a days most
advanced hardware, combined with the latest in compiler optimization technology can not come even close to the performance benefits that can be
attained by fixing some small probes at the beginning of programs or even going with an entirely different and much faster design.

Keywords: performance optimization; real time system; pre compilation; processor time;

I. INTRODUCTION

At the time of programming we have several ideas that can
be applied to programs that will make them to perform better.
By keeping these ideas in mind while writing the C code, we
can expect better and faster programs. When we work to
optimize performance, several different things are arise in
picture which we need to consider. One thing is the absolute
amount of time it takes the software to complete a given task.
To understand imagine a web server where web server serves
the client requests perfectly well, there can be a delay of a few
seconds before the server begins to responding (send the
pages) to the client every time. In such a case, the web server
is failing to perform adequately in terms of the total time
required to complete the task.

Another thing to consider is the amount of processor time
required by a program. First we define what is processor time?
It is a measure of the time spent by the computer's processors
to execute the code. Many programs tend to spend most of
their time waiting for something to happen--input to arrive,
output to be written to disk, etc. While waiting, the processor
will usually be serving other requests and hence the program is
not using processor time. However, some programs may be
primarily processor bound programs and for such programs, a
savings in the amount of processor time required may result in
a substantial savings in absolute time. It is important to note
here that if your program uses a lot of processor time, it can
slow down all the processes on your system. The processor
time can further be separated into system and user time. The
system time is the amount of processor time used by the kernel

on your behalf. This could accrue by calling functions such as
open() and fork(). The user time (i.e., amount of processor
time used by your program) might be used by string
manipulations and arithmetic. A third thing to consider for
performance is the time spent doing I/O. Consider an example
some programs such as network servers, they spend most of
their time on handling I/O. Other programs spend little time
with tasks related to I/O. Thus, I/O optimization can be very
critical with some projects and completely unimportant with
some others.

The performance optimization basically consists of the
following steps

a. Define the performance problem.
b. Identify the bottlenecks and carry out a root cause

analysis.
c. Remove the bottlenecks by appropriate methodologies.
d. Repeat steps 2 and 3 until we have a satisfactory

resolution.
It is important to note here that bottlenecks occur at

various points in a program.
Determining the bottlenecks is a step-bystep procedure of

narrowing down the root causes. Performance optimization is
relatively a complex process that requires correlating many
types of information with source code to locate and analyze
performance problem bottlenecks. When focusing on
performance optimization, a programmer needs certain tools to
measure and monitor the situations as well as to identify the
bottlenecks. On Linux, various tools are available to do this.
gprof and gcov utility is provides a snapshot of the program at
the moment it is being viewed. In next three section we

R A Tiwari et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,769-771

© 2010, IJARCS All Rights Reserved 770

discuss some performance bottlenecks that pin point by GCC
utility and solution on same at precompilation time [1].

II. PROBLEM WITH LOOP, DATA TYPE AND
BLOCK SIZE

Let us first understand the performance problems caused
by loops. Loops magnify the effects of otherwise minor
performance problems. This is because the code within the
loop will get executed several times. Always make sure to
move the code outside the loop that need not be executed each
time (dead code). Also look for minimizing dependency on
loops too whenever it possible.
Let us consider the following code segment (test.c.gcov)
1 : main()
{
int i,k;
int a[50];
52 : for(i=1;
i<=50;
50 : i++)
{
1375: for(k=50;
k>=i;
1275: k--)
{
1275: a[i]=i;
1275: printf("%d",a[i]);
}
50 : printf("\n");
}
1 : }

If we carefully observe this code, we can see that several
things can be possible to apply around the loop. In given
segment we use for loop which is replaced by the combination
of do-while and goto. It makes much sense when we replacing
for loop with its most suitable counterparts. After replacement
of for loop, code segment take 51 less iterations to execute,
saves processors time on iterative line executions in program,
without affecting output. Results are motivating, because test
code is just eleven line long, imagine code of programmers
who bounds several hundreds of code line inside loop, take an
almost fanatical approach to the job.

When we talk about optimizing the performance, we need
to make sure that unless there is an absolute need to use float
variable, we should never try to use floating point data types
such as "float" and "double." This is because of the fact that
they take more space to store and time to calculate than do
their integer counterparts like short. Also, if we have a
function that is called very frequently, it is better to declare it
as "inline". Also, another way to improve the performance is
to increase the block size. As we know, many operations are
done on blocks of data. By increasing the block size, we will
be able to transfer more data at once. This will reduce the
frequency with which we call more time consuming. Then
someone ask question what is the optimal size of block to hold
data?

III. TAKE CARE OF EXPENSIVE CALLS

It is clear that when we are interested in optimizing the
code, we always want to get rid of the expensive operations
(that take more time) with inexpensive calls.

System calls in general are expensive operations. Let us
have a look at some of the expensive system calls:

a. Fork: A fork system call is very useful. It isn't slow,
but if we use it frequently, it can add up. Consider a
scenario where a web server might fork for each new
request. This is not a good practice, and select() can be
used for multiplexing.

b. Exec: This is one used immediately after a fork. This
call can be very expensive as the new program will
have to a lot of initialization such as loading libraries,
etc.

c. System: This invokes a shell to run the specified
command and invoking a shell can be quite expensive.
Therefore, frequently using a system is definitely a bad
idea.

If we come across a code piece such as system
("/tiwary's/proc/memstat"); we can see how expensive this is.
The program first has to fork and execute the shell. The shell
needs to do initialization and then it forks and executes /proc,
definitely not a piece of code to desire.

The first step in getting the system tweaked for both speed
and reliability is to chase down the latest versions of required
device drivers. Another useful key is to understand what the
bottlenecks are and how they can be taken care of. We can
come to know about the various bottlenecks by running
various system monitoring utilities, such as the gprof and gcov
command.

IV. OPTIMIZING DISK ACCESS

It is always worth giving attention to disk access. There are
various techniques that can produce significant improvements
in disk performance.First, read up on the hdparm command
and you will notice that it sets various flags and modes on the
IDE disk driver subsystem. There are two options we need to
look at the -c option can set 32 bit I/O support and the -d
option enables or disables the using_dma flag for the drive. In
most cases, this flag is set to 1, but if yours hasn't, then you are
going to suffer from performance issues. Try changing it by
placing a command like this
hdparm –d 1 /dev/hda
at the end of the /etc/rc.d/rc.local file.
Similarly,
hdparm –c 1 /dev/hda
at the end of /etc/rc.d/rc.local file will set the support for 32 bit
I/O.
hdparm –B
option –B use to set power management to low (aggressive) or
high (better performance)[1,2].

V. GNU PROFILER (GPROF)

After we have taken enough measures in optimizing our
code, the compiler can be helpful with optimization as well.
Two tools that we can use to analyze program's execution is

R A Tiwari et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,769-771

© 2010, IJARCS All Rights Reserved 771

the GNU profiler (gprof) and coverage (gcov). With these, we
can come to know where the program is spending most of its
processors time. With profile information we can determine
which pieces of program are slower than expected. These
sections are definitely good candidates for to be rewritten so
that program can execute faster. The profiler collects data
during the execution of a program. Profiling can be considered
as another way to learn the source code.

The following are the requirements to profile a program
using gprof

a. Profiling must be enabled when compiling and
linking the program.

b. A profiling data file is generated when the program is
executed.

c. Profiling data needs to be analyzed.
For you to use this gprof utility, the package must be

installed on your system. In order to analyze the program with
gprof, we need to compile the program with a special option.
Assuming that we have a program test.c, the following can be
used to compile it
$ gcc –Wall -c –pg test.c
$ gcc –Wall –pg test.o
To link, linker with input file.
$ gprof -b a.out

About command use to display flat profile. Note here that
–pg option enables the basic profiling support in gcc. The
program will run somewhat slower when profiling is enabled.
This is because of the fact that it needs to spend time in
collecting data as well. The profiling support in the program
creates a file named gmon.out in the current directory. This
file is later used by gprof to analyze the code.

We can run the following command to get the output
(which we have redirected to a file):$ gprof a.out gprof is
useful not only to determine how much time is spent in
various routines, but it also tells you which routines invoke
other routines. By using gprof, we will be able to know which
sections of our code are causing the largest delays. Analyzing
the source code with gprof is considered as an efficient way
determining which function is using a large percentage of the
overall time spent in executing the program.

Another one, gcov is a test coverage program. Use it in
concert with GCC to analyse your programs to help create
more efficient, faster running code and to discover untested
parts of your program.You can use gcov as a profiling tool to
help discover where your optimization efforts will best affect
your code. Profiling tools help you analyse your code's
performance. Using a profiler such as gcov or gprof, you can
find out some basic performance statistics, such as:

a. How often each line of code executes
b. What lines of code are actually executed
c. How much computing time each section of code uses

Once you know these things about how your code works
when compiled, you can look at each module to see which
modules should be optimized. gcov helps you determine
where to work on optimization. It use your source code and
create graph (*.gcno) and data (*.gcda) files for analysis. Use
$gcov test.c then $cat test.c.gcov One can use gcov along
with, gprof, to assess which parts of your code use the greatest
amount of computing time [1,3,4].

VI. CONCLUSION

Efficient analysis and optimization methods are needed
and can be developed for the implementation of embedded
programming. Program optimization for embedded system
demands uses more effective optimization techniques. Off
course Compilers will increase the efficiency of these
applications and will solve major bottlenecks regarding
memory reference and speed in real time systems. But hot
spots in program identified and properly handle by
programmer at code development stage than its impact seen as
dramatic change in the performance of application. In this
paper we introduce a straight forward approach which helps to
programmer to highlight major culprits of best performance in
program. This can be easily done by utilizing existing GNU
compiler collection on Linux. Until now, we are applied
different profiling options to spot bottle necks in C program.
The next step is to implement front end using GCC that
provide optimal optimization levels to program.

Typical compiler present a variety of optimization level to
program where each level represent some fixed sequence of
optimization's that compiler applies to the program. We tried
several sequences in different phases that prevent in reduced
sequence of proposed front end.

VII. REFERENCES

[1]. Philip G. Ezolt, “Optimizing Linux Performance: A Hands-
On Guide to Linux performance tools”, Prentice Hall PTR
GNU Manual

[2]. http://www.gnu.org/software/binutils/ manual/ Linux Tools
http://www.yolinux.com/TUTORIALS/LinuxTutorialOptimiz
ation.html

[3]. GNU Compiler Collection
http://gcc.gnu.org/onlinedocs/gcc/Gcov.html

	INTRODUCTION
	PROBLEM WITH LOOP, DATA TYPE AND BLOCK SIZE
	TAKE CARE OF EXPENSIVE CALLS
	OPTIMIZING DISK ACCESS
	GNU PROFILER (GPROF)
	CONCLUSION

