
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

REVIEW ARTICAL

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 483

ISSN No. 0976-5697

A Comparative Study On Software Architectural Styles For Network Based Applications
Dipanwita Thakur*

Department of Computer science
Banasthali University Tonk, India

dipanwita.thakur@gmail.com

G.N Purohit
Department of Computer Science
Banasthali university Tonk, India

gn_purohitjaipur@yahoo.co.in

Abstract: Software architecture defines the components and the interaction in between the components of a system. It also defines how the
components are interacting with each other, the dependency in between the components and the interface protocols used for communication. For a
network-based application, system performance is based on network communication. Therefore, selection of the appropriate architectural style(s) for
use in designing the software architecture can make the difference between success and failure in the deployment of a network-based application.
There are so many architectural styles available to represent different network-based application. According to the behaviour of the application we
have to choose the appropriate architectural style.
In this paper we have surveyed different architectural styles for Network-based application.

Keywords: Software architecture, software architectural style, network-based application

I. INTRODUCTION

Software architecture has been a focal point for software
engineering research in the 1990s. Architecture has emerged
as a crucial part of the design process. Choosing a right
architectural style for a network based application needs the
knowledge of communication and the type of the
application.

A. Software Architecture:
Software architecture gives us the significant decision

about the organization of a software system. Software
system architecture is a system of computational
components and interactions among those components.
Components are such things as clients and servers,
databases, filters, and layers in a hierarchical system.
Interactions among components at this level of design can
be simple and familiar, e.g. procedure call and shared
variable access.

The architecture not only define the structure and
topology of the system, but it also gives the interaction in
between the system requirements and elements of the
constructed system, thereby providing some rational for the
design decisions. At the architectural level, relevant system-
level issues typically include properties, e.g. capacity,
throughput, consistency, and component compatibility.

Software architecture is the set {Elements, Form, and
Rationale}. Thus software architecture is a set of
architectural elements that have a particular form. There are
three different classes of architectural elements: processing
elements, data elements and connecting elements. The
processing elements are those components that supply the
transformation on the data elements; the data elements are
those that contain the information that is used and
transformed; the connecting elements are the glue that holds
the different pieces of the architecture together. For
example, procedure calls, shared data, and messages are

different examples of connecting elements that serve to
“glue” architectural elements together, [1].

Architecture is the fundamental organization of a system,
embodying in its components, their relationships to each
other and the environment, and the principles governing its
design and evolution.
The software architecture of deployed software is
determined by those aspects which are the hardest to
change.

a. Component:
A software component is an architectural entity that (i)

encapsulates a subset of the system’s functionality and/or
data, (ii) restricts access to that subset via an explicitly
defined interface, and (iii) has explicitly defined
dependencies on its required execution context.

b. Connector:
A software connector is an architectural element,

effecting and regulating interactions among components.

c. Configuration:
An architectural configuration is a set of specific

associations between the components and connectors of a
software system’s architecture.

B. Architectural Styles:
A style defines a family of architectures that satisfy the

constraints. Styles allow one to apply specialized design
knowledge to a particular class of systems and to support
that class of system design with style-specific tools,
analysis, and implementations.

C. Network-based Application:
A distributed system is one that looks to its users like an

ordinary centralized system, but runs on multiple,
independent CPUs. In contrast, network-based systems are

Dipanwita Thakur et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,483-487

© 2010, IJARCS All Rights Reserved 484

those capable of operation across a network, but not
necessarily in a fashion that is transparent to the user, [2].

II. ARCHITECTURAL STYLES FOR NETWORK-
BASED APPLICATIONS

A. Pipe & Filter (PF):
In this style each component has a set of inputs and a set

of outputs. A component known as filter reads data steams as
its inputs and produces data streams as its outputs. This is
usually accomplished by applying a local transformation to
the input streams and computing incrementally, so the output
begins before input is consumed, [3]. The filters are totally
independent entities and do not share state with other filters.

The advantages of the pipe and filter style are as follows.
First, they allow the designer to understand the overall
input/output behavior of a system as a simple composition of
the behaviors of the individual filters. Second, they support
reuse: any two filters can be hooked together, provided they
agree on the data which is being transmitted between them.
Third, systems are easy to maintain and enhance: new filters
can be added to existing systems and old filters can be
replaced by improved once. Fourth, they permit certain kind
of specialized analysis, such as throughput and deadlock
analysis. Finally, they naturally support concurrent
execution. Each filter can be implemented for a separate task
and can be potentially executed in parallel with other filters,
[3].

Disadvantages of the PF style are as follows. First, pipe-
and-filter systems often lead to batch organization of
processing. Although filters can process data incrementally,
they are inherently independent, so the designer must think
of each filter as providing a complete transformation of input
data to output data. In particular, because of their
transformational character pipe-and-filter systems are
typically not good at handling interactive applications.
Second, they may be hampered by having to maintain
correspondence between two separate but related streams.
Third, depending on the implementation, they may force a
lowest common denominator on data transmission, resulting
in added work for each filter to parse and unparsed its data.
This, in turn, can lead both to loss of performance and to
increase in complexity in writing the filters themselves.

a. Uniform Pipe-and Filter:
An improved version of the pipe-filter style is obtained

by adding the constraint that all filters must have the same
interface. The Unix operating system is the primary example
of this style. In the Unix operating system, filter processes
have an interface consisting of one input data stream of
characters and two output data streams of characters. A new
application can be formed by independently developed
filters which allows restricted interface. It is very simple to
understand the working of a filter.

The disadvantage of the uniform interface is that it may
reduce network performance if the data needs to be
converted to or from its natural format.

B. Client-Server (CS):
It is very popular architecture for network-based

applications. There is one server component which performs
all the tasks requested by the client component by a
connector. The server can reject the request and sends a
response back to the client. A client is a triggering process
and a server is a reactive process. A client component makes
request and waits for a response from the server. The server
waits for a request and after receiving the request it responds
to that request. Server is a non-terminating process and may
serve more than one client, [4].
So many constraints can be added with this client –server to
produce a simple server component to make it scalable.

a. Layered System (LS) and Layered-Client-Server (LCS)

A layered system is organized hierarchically, each layer
provids service to the layer above it and serving as a client
to the layer below it. [3].

Layered systems have several desirable properties. First,
they support design based on increasing levels of abstraction,
by which a implementer can partition a complex problem
into a sequence of incremental steps.

Second, they support enhancement and finally, they

support reuse.
On the contrary there are so many disadvantages with the

layered system. First, not all systems are easily structured in
a layered fashion. Second, it is quite difficult to find right
levels of abstraction.

Layered-Client-Server adds proxy and gateway
component with the client-server style. Proxy server is
nothing but a shared server for one or more than one client,
which accepting the request and forwards them to the server
component. A gateway component is a normal server to the
client or proxy component which can forward the services to
its inner-layer server.

Architecture based on layered-client-server are referred
to as two-tiered, three-tiered, or multi-tiered architecture in
the information systems literature, [5].

LCS is also a solution for managing identity in a large
scale distributed system, where complete knowledge of all
servers would be prohibitively expensive. Instead, servers are
organized in layers in such a manner that rarely used services
are handled by intermediaries rather then directly by each
client, [4].

b. Client-Stateless-Server (CSS):
It is one of the variants of client-server style. After

adding the constraint of no session state on server component
in the client-server style, it becomes the Client-Stateless-
Server style. Whenever client wants to request the server the
client component has to provide all the necessary information
to the server component to execute the request. No
information is stored in the server component.

These improve the quality like visibility, scalability and
reliability. But it increases the per-instance overhead.

c. Client-Cache-Stateless-Server (C$SS):

Dipanwita Thakur et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,483-487

© 2010, IJARCS All Rights Reserved 485

It is the variant of the Client-stateless-server and cache
style by adding the cache components. In this a cache is
inserted in between the server component and client
Component. Request is received by the cache component
first. It improves the efficiency and performance.

This style is used in Sun Microsystems’ NFS, [6].

d. Layered -Client-Cache-Stateless-Server (LC$SS):
It is another variant of the layered-client-server style and

client-cache-stateless-server style obtained by adding the
proxy and/or gateway component. Its advantages and
disadvantages are derived from the advantages and
disadvantages of its parent styles.

This style is used in Internet domain name system i.e.,
DNS and the Hypertext transfer protocol i.e. HTTP.

e. Remote Session:
It is one of the verities of the client-server style. In this

style, one session is created in between the client and the
server by which the use of client component should
minimize compare to server component. In other words it
minimizes the complexity or reuse of client component
compare to server component.

This style is used in TELNET or FTP.

f. Remote Data Access (RDA):
The remote data access style, [5] is one of the varieties

of the client-server style. It is used in database query. In this
a client sends a database request in SQL format to a remote
server. The remote server gives response to the query in a
large data set which is further used by the client to perform
any other operation, like joining of tables and then retrieving
the result.

In this style, a huge amount of data size can be reduced
on the server side without transmitting it across the network.
It improves the efficiency and visibility. Client should know
the same manipulation scheme of data as server. It decreases
scalability and reliability.

C. Mobile Code:
It enables code to be transmitted to a remote host for

interpretation. This may be due to lack of local computing
power, lack of resources, or due to large data set remotely
located. In this code is treated as data, [7].

a. Virtual Machine (VM):
A virtual machine, sometimes called an abstract machine,

is a collection of modules that together provide a cohesive set
of services that other modules can use without knowing how
those services are implemented. It increases portability.

b. Remote Evaluation (REV):
In remote evaluation, a component on the source host

has the know-how but not the resources needed for
performing a service. The component is transferred to the
destination host, where it is executed using the available
resources. The result of the execution is returned to the
source host. In remote evaluation a software component is:

a) Redeployed at run time from a source host to a
destination host.

b) Installed on the destination host, ensuring that the
software system’s architectural configuration and any
architectural constraints are preserved.

c) Activated.
d) Executed to provide the desired service.
e) Possibly de-activated and de-installed.

c. Code-on-Demand (COD):
In code-on -demand, the needed resources are available

locally, but the know-how is not. The local subsystem thus
requests the components providing the know-how from the
appropriate remote hosts.

From a software architectural perspective, code-on-
demand requires the same steps as remote evaluation; the
only difference is that the roles of the target and destination
hosts are reversed.

d. Mobile Agent (MA):
If a component on a given host (i) has the know-how for

providing some service, (ii) has some execution state, and
(iii) has access to some, though not all, of the resources
needed to provide that service, the component, along with its
state and local resources, may migrate to the destination
host, which may have the remaining resources needed for
providing service. The component, along with its state, will
be installed on the destination host and will access all of the
needed resources to provide the service. Mobile agents are
stateful software components.

D. Replication:

a. Replicated Repository:
In this style more than one process provides the same

service which improves the accessibility and scalability. It
improves the performance. The client has the illusion that
there is only one server which provides the centralized
service. Distributed file system is the example of this.

b. Cache ($):
It is another variety of the replicated repository. Cache is

easy to implement. It improves the efficiency of the system.

E. Event-based Integration (EBI):
The event-based style is characterized by independent

components communicating solely by sending events
through event-bus connectors. Components emit events to
the event-bus, which then transmits them to every other
component.

The event-based style is highly suited to strongly
decoupled concurrent components, where at any given
moment a component either may be creating information of
potential interest to others or may be consuming information.

F. Some other Styles:

a. C2:
C2 style is the resulting style of layered & event based

styles. It is originally developed to support graphical user
interface applications, was found to be beneficial in a wide
variety of applications-indeed more so outside the domain of
GUIs that within. C2’s primary role in this presentation is

Dipanwita Thakur et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,483-487

© 2010, IJARCS All Rights Reserved 486

showing how elements of many styles may be judiciously
combined to meet variety of needs.

The advantages of C2 style are as follows: (i) Substrate
independent: ease in modifying the application to work with
new platforms. (ii) Accommodating heterogeneity: enabling
an application to be composed of components written in
diverse programming languages and running on multiple,
varying hardware platforms, communicating across a
network. (iii) Support for product lines: ease of substituting
one component for another to achieve similar but difficult
applications. (iv) Ability to design in the model-view-
controller style: but with very strong separation between the
model and the user interface elements. (v) Support for
network-distributed applications: wherein communication
protocol details are kept out of the components and confined
to connectors.

The contribution of C2 is combining selected simple
styles into a coherent comprehensive approach.

b. Distributed Objects (DO):
The distributed objects style represents a combination

and adaptation of several simple styles. This style is
augmented with the client-server style to provide the notion
of distributed objects, with access to those objects from,
potentially, different processes executing on different
computers. In this style, application functionality broken up
into objects that can run on heterogeneous hosts and can be
written in heterogeneous programming languages. Objects
provide services to other objects through well-defined
provide interfaces. Objects invoke methods across host,
process, and language boundaries via remote procedure calls
(RPCs), generally facilitated by middleware.

Distributed Objects is not an ideal style for every
application. Drawbacks include for example, that
components in a distributed objects style are required to
explicitly specify provided interfaces, but not to specify
required interfaces. Dependencies between objects may thus
be deeply ingrained.

G. Representational State Transfer (REST):
REST describes the architectural style used to guide the

development of the standard protocols that constitute the
WWW architecture. REST, as a set of design choices, drew
from a rich heritage of architectural principles and styles.

There are six REST principles, or RPs:
RP1: The key abstraction of information is a resource,

named by an URL. Any information that can be named can
be a resource presentation

RP2: The representation of a resource is a sequence of
bytes, plus representation metadata to describe those bytes.
The particular form of the representation can be negotiated
between REST components.

RP3: All interactions are context-free-each interaction
contains all of the information necessary to understand the
request, independent of any requests that may have preceded
it.

RP4: Components perform only a small set of well-
defined methods on a resource producing a representation to
capture the current or intended state of that resource and

transfer that representation between components. These
methods are global to the specific architectural instantiation
of REST; for instance, all resources exposed via HTTP are
expected to support each operation identically.

RP5: Idempotent operations and representation meta-data
are encouraged in support of caching and representation
reuse.

RP6: The presence of intermediaries is promoted.
Filtering or redirection intermediaries may also use both the
meta-data and the representations within request or responses
to augment, restrict, or modify requests and responses in a
manner that is transparent to both the user agent and the
origin server, [8].

Derivation of REST tree is as follows in “Fig. 1”.

Figure 1. Derivation of REST Tree

III. CONCLUSIONS

In this paper, we presented different architectural styles
for network based applications. All the basic architectural
styles and the derivative architectural styles from the basic
one are discussed here. We compared all the architectural
styles and discussed there advantages and disadvantages as
well.

IV. REFERENCES

[1]. D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. ACM SIGSOFT Software
Engineering Notes, 17(4), Oct. 1992, pp. 40-52

[2]. A. S. Tanenbaum and R. van Renesse. Distributed
Operating Systems. ACM Computing Surveys, 17(4), Dec.
1985, pp. 419-470.

[3]. D. Garlan and M. Shaw. An introduction to software
architecture. Ambriola & Tortola (eds.), Advances in
Software Engineering & Knowledge Engineering, vol. II,
World

[4]. G. Andrews. Paradigms for process interaction in
distributed programs. ACM Computing Surveys, 23(1),
Mar. 1991, pp. 49-90.

[5]. A. Umar. Object-Oriented Client/Server Internet
Environments. Prentice Hall PTR, 1997.

Dipanwita Thakur et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,483-487

© 2010, IJARCS All Rights Reserved 487

[6]. R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B.
Lyon. Design and implementation of the Sun network
filesystem. In Proceedings of the Usenix Conference, June
1985, pp. 119-130.

[7]. A. Fuggetta, G. P. Picco, and G. Vigna. Understanding
code mobility. IEEE Transactions on Software
Engineering, 24(5), May 1998, pp. 342-361.

[8]. Roy Thomas. Fielding Architectural Styles and the Design
of Networked-based Software Architectures. Ph.D.
dissertation, Information and Computer Science, University
of California-Irvine, Irvine, CA. 2000.

	INTRODUCTION
	A. Software Architecture:
	Component:
	Connector:

	c. Configuration:
	B. Architectural Styles:
	C. Network-based Application:

	ARCHITECTURAL STYLES FOR NETWORK-BASED APPLICATIONS
	Pipe & Filter (PF):
	Uniform Pipe-and Filter:

	Client-Server (CS):
	a. Layered System (LS) and Layered-Client-Server (LCS)
	b. Client-Stateless-Server (CSS):
	c. Client-Cache-Stateless-Server (C$SS):
	d. Layered -Client-Cache-Stateless-Server (LC$SS):
	e. Remote Session:
	f. Remote Data Access (RDA):

	Mobile Code:
	Virtual Machine (VM):
	Remote Evaluation (REV):
	Code-on-Demand (COD):
	Mobile Agent (MA):

	Replication:
	Replicated Repository:
	Cache ($):

	Event-based Integration (EBI):
	Some other Styles:
	C2:
	Distributed Objects (DO):

	Representational State Transfer (REST):

	CONCLUSIONS
	REFERENCES

