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Abstract: Current developments in computer-aided drug design (CADD) reduces the time and cost of drug discovery process. Using various 
computational techniques, large number of compounds in the chemical database are analyzed and screened. Virtual screening can be classified into 
structure based and ligand based methods. The amount of information required for structure based virtual screening is too high when compared to 
ligand based method. In ligand based methods, classification of active and inactive drugs can be done using Hidden Markov Model, Support Vector 
Machine (SVM), Clustering etc. SVM is widely used nowadays. Classification using SVM and graph kernel function is introduced recently and 
shows good accuracy over the other existing methods. Different graph kernel functions are used for finding similarity measure in SVM.  Here, we 
propose a new method for finding the similarity based on the functional groups present in the molecules.  The accuracy is compared with that of 
existing graph kernel methods using standard data sets (PTC and MUTAG). 
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I. INTRODUCTION  

Computational techniques are used in the early stages of 
drug discovery.  Computational techniques reduce the time 
and cost of drug discovery process. Mainly it is applicable in 
combinatorial chemistry, virtual screening, quantitative 
structure-activity relationship 

 

(QSAR) and drug lead 
optimization. Natural extracts are the main source of drugs. 
Efficient drugs for each disease are the correct combination 
of these natural extracts. Combinatorial chemistry produces 
millions of compounds. Inactive compounds from this pool 
of compounds are filtered using virtual screening [1]-[4]. 
Efficient virtual screening reduces the number of 
compounds for the clinical test.   

Virtual screening methods are classified into two 
categories- structure based and ligand based. Structural 
based virtual screening is based on the ligand-target 
molecule binding. It requires information about both the 
target and ligand. Ligand based virtual screening is based on 
the structural similarity of the ligand molecules. In the initial 
stage of drug discovery, ligand based methods are 
commonly used because of lack of information about target. 
In ligand based methods, filtering is mainly based on the 
absorption, distribution, metabolism, excretion and toxicity 
(ADMET) properties of the molecule [5]. In drug discovery, 
50-60% failure is because of the poor ADMET properties of 
the drug molecule. ADMET properties of the molecule can 
be analyzed based on topological and structural similarity 
[2]-[4].  

Ligand based virtual screening techniques are mainly 
classified into five - small molecule similarity, 
pharmacophore based search, descriptor based search, 
recursive partitioning, and graph based similarity search [6] 
among which graph based similarity methods are widely  

used because graphs can store information about atoms in 
the molecule and the connections between these atoms [7].  
Graph based virtual screening is based on the structural 
activity relationships. The characteristics of molecules will 
be similar if their structures are similar [8].  Graph 
comparison requires comparison of nodes and edges 
connecting these nodes. Two graphs are similar if their 
substructures are similar. Different substructures used for 
the graph comparison are walks, paths, cycles, sub-trees and 
subgraphs [9]-[15]. In machine learning, classification of 
molecules is based on the molecular similarity 
measurement; molecular similarity can be measured in 
different ways [7]-[18]. Methods for similarity measurement 
are different for numerical and structured data. Structured 
data requires preprocessing for finding the similarity [7].  In 
graph kernel, substructures are the features for the 
comparison. Based on the substructures used, graph kernels 
can be classified into walk kernel, marginalized kernel, 
shortest path kernel, sub- tree kernel etc [11]. Sub-tree 
kernels use non linear features for comparison and walk 
kernels use linear features for comparison [11]. 

In this paper, we propose sub-tree kernels for finding the 
similarity based on the functional groups present in the 
molecules.  In [5] and [7], authors show that most of the 
ADMET properties are based on the presence of functional 
groups in that molecule. Reminder of this paper is organized 
as follows: In section II, different types of molecular graphs 
are recalled; SVM and graph kernel based classification is 
explained in section III; sub-tree kernels for functional 
group similarity is presented in section IV;  results and the 
comparison of sub-tree  kernels is explained  in section V. 
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II. REPRESNTATION OF MOLECULE 

Chemical compounds are represented in different ways 
based on the availability of information and requirements for 
each application. One dimensional (ID) representation of the 
molecule gives information about the composition.  Two 
dimensional (2D) representations give the structure of the 
molecules. In most of the pattern recognition methods, 2D 
representation of the molecules is used.  Three dimensional 
(3D) representation of the molecule gives the shape of the 
molecule.  Ligand based virtual screening requires ID and 2D 
representation while structure based virtual screening 
requires 3D representation. 

Graph kernel requires 2D representation of molecules. 
Different types of molecular graphs are used for finding the 
similarity - unlabelled and labeled, directed and undirected, 
weighted and unweighted etc. Fig. 1 is an example of labeled 
undirected molecular graph. 

 

 
Figure 1. Labeled undirected molecular graph 

A. Molecular Graph: 
Molecular graph ( , )G V E=  consist of finite sequence 

of vertices (atoms) and edges (bonds between atoms).  
( )VL G   is the set of vertex labels and ( )EL G  is the set of 

edge labels. Adjacency matrix ( )A G  gives information 
about the connectivity. 
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III. METHODS 

A. SVM  for Virtual Screening: 
In virtual screening, non drug molecules are filtered from 

the pool of compounds.  SVM [19] is used to classify active 
(drug molecule) and inactive (non drug molecule) 
compounds. In binary classification, training data is of the 
form ( , ) 1, ...x y i mi i = where m is the number of training 

data. xi  is the feature vector and yi  is the corresponding 

output. In binary classification, { }1, 1yi ∈ − + . Finding the 
coefficient for the classifier is a convex optimization 

problem. Soft margin SVM finds the classifier by solving the 
following convex optimization problem  

  min
, , 12
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   where  C  is the controlling parameter. 
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is the set of support vectors. 

The decision function for new data is  
           ( ) ( , )

SV
f x sign u y x xi i ii

= ∑
∈

      (2) 

where ,x xi  is the linear kernel function or similarity 

between x and xi . 
Non-linearly separable data kernel function is       

.( ), ( ) ,and is for linearly seperable datax x x xi iφ φ  

B. Graph Kernel: 
Finding similarity between structured data (eg. molecular 

grap hs) requires substructures as features.  Different 
substructures of graphs are walks, paths, subtrees, subgraphs 
etc. [11].   Walks and paths are the linear features. Subtrees 
are non linear features and these include information about 
the functional groups present in the molecule.  

Graph kernel between two graphs 1 2G and G is defined 
as  

1
1

2
2

( , ) ( , )k G G k substruct substructi ji substruct j substruct
= ∑ ∑
∈ ∈

                       (3) 
where 1 2substruct and substruct are the set of 

substructures of graph 1 2G and G . 

In [11], the authors introduced subtree kernels for virtual 
screening in drug discovery.  The authors proposed a subtree 
kernel for avoiding the limitation of linear features like walk 
and path and proposed that linear features cannot include full 
information about functional units. These features give only 
partial information about the functional units.    In [20], the 
authors made modifications for avoiding tottering effect and 
used atom label enrichment by using Morgan indexing for 
vertex labels. In [21], the authors proposed fast computation 
subtree kernels. The authors proposed methods for reducing 
the kernel computing complexity upto ( )O mh  where m  is 
the number of nodes and  h  is the height of the tree.  
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Subtree kernel is defined as     

1

1 2

2( , ) ( , )i j
i st j st

k G G k st st
∈ ∈

= ∑ ∑                  (4)                                       

where 1 2st and st are the sets of subtrees of graphs 

1 2G and G . 

In this paper, we propose efficient subtree kernels for 
finding the similarity between molecular graphs. We 
compare all the possible subtrees of depth two.   These 
subtrees give information about the functional groups. In 
[11] and [20], the authors considered subtrees with different 
depths.    

Subtree decomposition is done by using adjacency matrix 
( A ).  thi  row ( , 1....A j nij = ) in the adjacency matrix 

represents   thi atom and its neighbors.  It represents subtree 
with parent as thi atom and children as its neighbors.  

Similarity between molecular graphs 1 2G and G  

1 2 1 1
( , ) ( , )

i j

n m
k G G k st sti jsubtree = =

= ∑ ∑      (5) 

where ist  is the subtree from graph 1G and jst is the 

sub-tree  from graph 2G  . m and n are the numbers of 

atoms in graph 1 2G and G . 

Similarity between subtrees (Fig. 2) ist and jst is 
calculated by  
a. Comparing the labels of subtrees  
b. Comparison based on the number of branches of 

subtree 
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Figure 2. Subtree comparison 

Normalization of the kernel is done by using  
1 2

1 2
2 21 1

( , )' ( , ) =   
( , ) * ( , )

k G Gsubtreek G Gsubtree k G G k G Gsubtree subtree
      (7) 

IV. RESULTS AND DISCUSSION 

In this section, we illustrate the performance of subtree 
kernel for finding the similarity between molecular graphs 
based on the presence of functional group.  Accuracy of the 
method is tested with Predictive Toxicology Challenge 
(PTC) and MUTAG data sets. PTC data set contain 344 
compounds and its activity is tested in four types of animals, 
female mouse(FM), female rat(FR), male mouse(MM) and 
male rat(MR). Active molecules are in +1 class and others in 
-1 class. MUTAG is another standard dataset consisting of 
188 compounds classified as mutagens or non-mutagens.  
Mutagens   are denoted as +1 class and non mutagens are 
denoted as -1 class. Information about the data is given in 
Table 1.       

Table : 1 Dataset for  classification 

 FM FR MM MR MUTAG 

+1class 143 121 129 152 125 

-1 class 206 230 207 192 63 

max G
 

109 109 109 109 40 

avg G
 

25 25.2 26.1 26.1 31.4 

 
In Table I, first row gives number of +1 class data points, 

active compounds in PTC dataset and mutagens in MUTAG 
dataset. Second row gives number of inactive compounds in 
PTC dataset and non mutagens in MUTAG dataset. max G  
in the third row gives  maximum number of atoms in a 
molecule and  avg G  in the fourth row is the average 
number of atoms in a molecule.  Third and fourth row gives 
information about the size of graphs we need to classify and 
time complexity for the comparison.   

Performance evaluation of the proposed method is done 
based on the following criteria.  

Specificity= 100
TN

TN FP
×

+
 

100
TP

Sensitivity
TP FN

= ×
+

 

100
TP TN

Accuracy
TP TN FP FN

+
= ×

+ + +
 

Where TP and TN, true positive and true negative 
respectively, represent correctly classified compounds. FN 
and FP, false negative and false positive, represent 
misclassified compounds. Sensitivity is the correct 
classification rate of +1 class and specificity is the correct 
classification rate of -1 class. 

We evaluate the method using 10-fold cross validation. 
This allows the maximum use of available dataset. Result of 
the proposed method is given in Table II and III. Table II 
gives information about the training phase and Table III 
shows the accuracy of our model in the testing phase. Table I 
shows PTC dataset contain more number of -1  class 
molecules while MUTAG dataset contains more number of 
+1class molecules.   Eighth and ninth rows in Table II shows  
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PTC dataset specificity is high compared to sensitivity 
because more number of  -1 class data points for the training 
while in MUTAG specificity is low compared to  sensitivity 
due to the less number of -1 class data for the training.  The 
accuracy of the proposed method is good compared to other 
existing method .In this model similarity is based on the 
comparison of subtrees of depth two. Result shows using 
subtrees of depth two we can include most of the information 
about functional groups.  

Table:2 Training Results 

 FM FR MM MR MUTAG 
Best  C  0.56 0.62 0.59 0.57 0.96 
Number of 
support 
Vectors 

 
163 

 
178 

 
148 

 
189 

 
93 

True Positive 140 115 120 141 123 
True  
Negative 

 
200 

 
220 

 
200 

 
185 

 
60 

False 
Positive 

 
3 

 
6 

 
9 

 
11 

 
2 

False 
Negative 

 
6 

 
10 

 
7 

 
7 

 
3 

Specificity 98 97.34 95.6 95.3 96.71 
Sensitivity  95.6 92 94.48 95.33 97.6 
Error 2.5 4.5 4.78 4.6 2.6 
Accuracy 97.42 95.45 95.23 95.34 97.34 

Table: 3 Test Results 
 FM FR MM MR MUTAG 
Best  C  0.56 0.62 0.59 0.57 0.96 
Number of 
support 
Vectors 

 
163 

 
178 

 
148 

 
189 

 
93 

True Positive 63 59 65 85 109 
True  
Negative 

 
173 

 
169 

 
151 

 
142 

 
39 

False 
Positive 

 
33 

 
61 

 
56 

 
50 

 
24 

False 
Negative 

 
80 

 
62 

 
64 

 
72 

 
16 

Specificity 83.98 73.47 72.94 73.95 61.90 
Sensitivity  44.05 48.76 50.38 54.14 87.2 
Error 32.37 35.05 35.72 34.96 21.27 
Accuracy 67.63 64.95 64.28 65.04 78.73 

V. CONCLUSION 

In this paper, we proposed new subtree kernel for virtual 
screening. Results show that nonlinear feature gives more 
accurate prediction than linear features like random walk.  
Subtree kernel with depth two capture most of the 
information about functional groups. Most of the drug like 
properties is because of the presence of specific functional 
group.  This kernel can be useful in other applications in 
information technology. 
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