
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 335

ISSN No. 0976-

Key And Key Attributes Set, Non-Key Attributes Set with Translation of Block
Schemes

Trinh Dinh Thang*1 and Tran Minh Tuyen2
1Hanoi Pedagogical University No2, 2University Union

Vietnam

thangsp2@yahoo.com

Abstract: The report proposes and demonstrates some properties of key and the sets of primitive, non primitive attributes with the translation of
block scheme. The relationship between the key of block and the key of slice through the translation, the results of key through the translation...
From the properties have been demonstrated, which more clearly shows the key structure of the block scheme in the particular case of data
model for block form.

Keywords: key, non-key, block schemes, attributes

I. DATABASE MODEL OF BLOCK FORM

A. The block, block scheme [1]:

Definition 1.1:
Let R = (id; A1, A2,..., An) be a finite tulle of elements,

in which id is a nonempty finite index set, Ai (i=1..n) is
called attributes. Corresponding to each attribute Ai (i=1..n)
there is a set dom(Ai) called the domain of Ai. The block r
over R, denoted r(R) consists of a finite number of
elements where each element is a family of mappings from
the index set id to the value domain of the attribute Ai
(i=1..n).

t∈ r(R) ⇔ t = { ti : id → dom(Ai)}i=1..n .
The block is denoted r(R) or r(id; A1, A2,..., An),

sometimes without fear of confusion we simply denoted r.

Definition 1.2:
Let R = (id; A1, A2,..., An), r(R) is a block over R. For

each x∈ id we denoted r(Rx) is a block with Rx = ({x};
A1, A2,..., An

 t
) such that:

x∈ r(Rx) ⇔ tx = {ti
x = ti } i=1..n , t∈ r(R), t = { ti : id

→ dom(Ai)}i=1..n .
 x
 where tax(x) = ti(x) , i =1..n.

Then r(Rx

B. Functional Dependencies [1] :

) is called a slice of block on the block r(R)
at point x.

Here, for simplicity we use the notation:
x(i) = (x; Ai) ; id(i) = {x(i) | x ∈ id}.
x(i) (x ∈ id, i = 1..n) is called a index attribute of block

scheme R = (id; A1,A2,...,An

Definition 1.3:

).

Let R = (id; A1,A2,...,An), r(R) is a block over R, X →
Y is a notation of functional dependency. A block r
satisfies X → Y if for any t1, t2 ∈ R such that t1(X) =
t2(X) then t1(Y) = t2

Definition 1.4:
Let block scheme α = (R,F), R = (id; A

(Y).

1, A2,..., An

Then, the closure of F denoted F

), F
is the set of functional dependencies over R.

+

 F
 is defined as follows:

+

 = { X → Y | F ⇒ X → Y } .

If X = {x(m)} ⊆ id(m) , Y = {y(k)} ⊆ id(k) then we

denoted functional dependency X → Y is simply x(m) →
y(k) .

The block satisfies x(m) → y(k) if for any t1, t2 ∈ r
such that t1(x(m)) = t2(x(m)) then t1(y(k)) = t2(y(k)),
 where: t1(x(m)) = t1(x; Am), t2(x(m)) = t2(x;
Am),

 t1(y(k)) = t1(y; Ak), t2(y(k)) = t2(y; Ak

C. Closure of the Index Set Attributes [2] :
).

Definition 1.5:
Let block scheme α = (R,F), R=(id; A1, A2,..., An

n

i

i

1

)(idX
=

⊆

), F
is a set of functional dependencies over R.

For each , we define closure of X for F

denoted X+ as follows:
 X+ = {x(i) , x ∈ id, i = 1..n | X → x(i) ∈ F+ } .

Let R=(id; A1, A2,..., An), we denoted the sets of
functional dependecies over R:

Fh
Ai

ixX
∈

=)(⊆ { X → Y | ,
Bj

jxY
∈

=)(,

BA, ⊆ {1,2,...,n} và x ∈ id } ,

Fhx = Fh
n

i

ix
1

)(

=

 ∩ = { X → Y ∈ Fh

n

i

ix
1

)(

=

 | X, Y ⊆

}.

D. Key of Block Scheme α = (R,F) [2] :

Definition 1.6 :
Let block scheme α = (R,F), R = (id; A1, A2,..., An), F

n

i

i

1

)(id
=

is a set of functional dependencies over R, K ⊆ .

Trinh Dinh Thang et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,335-339

© 2010, IJARCS All Rights Reserved 336

K called a key of block schema α if it satisfies two
conditions:

a) K → x(i) ∈ F+

b) ∀K’ ⊂ K then K’ has no properties a).
 , ∀x ∈ id, i = 1..n.

If K is a key and K ⊆ K’’ then K’’ called a super key of
the block scheme R for F.

E. Translation of Block Schemes [3]:

Definition 1.7:

Let block schemes α = (R,F), β = (S,G), X ⊆
n

i

i

1

)(id
=

,

X ={x(i)

Actions remove the X from scheme α to scheme β as
follows:

, x∈ id, i ∈ A}, A ⊆ {1,2, ..., n}. We have that,
scheme β is obtained from the scheme α by translation
follow the set of attributes X, if after removing the attributes
from X in the scheme α then we are obtained scheme β.
Then we denoted: β = α \ X.

a. Calculate S = R \X, R = (id; A1, A2,..., An), here we
remove the attributes Ai

b. For each functional dependencies from M->N in F,

with M, N ⊆

 (i ∈ A) in R, complexity of
this procedure is O(nk), where k is the number of
elements in A.

n

i

i

1

)(id
=

 we have to create a new

functional dependency M\X -> N\X in G. This
procedure is denoted by G = F \ X and has the
complexity O (mnk) with m is the number of
functional dependencies in F.

We see that, the complexity of translation β = α \ X =
(R\X, F\X) is O(mnk), so it is linear in the length of the
input data.

 After performing the procedure G = F\X then:
+ If G contains trivial functional dependencies (as

X->Y, X ⊇ Y) then we remove them from G.
+ If G contains same functional dependencies then

we exclude duplicate of this functional dependencies (G
contains no overlap).

We have the following comments:

Reviews 1:

Let block schemes α = (R,F), β = (S,G), X ⊆
n

i

i

1

)(id
=

,

X ={x(i)

Then, if id={x} then the block scheme α reduces to the
relational schema and the translation follow the set of
attributes X in this case becomes the translation follow the
set of attributes X in the relational data model.

, x∈ id, i ∈ A}, A ⊆ {1,2, ..., n}. Scheme β received
from scheme α by the translation follow the set of attributes
X: β = α \ X.

Reviews 2:
Let block schemes α = (R, Fh), β = (S, Gh

n

i

i

1

)(id
=

), X ⊆

, X ={x(i)

 S = R \ X, G

, x∈ id, i ∈ A}, A ⊆ {1,2, ..., n}. Then, if

scheme β received from the scheme α by the translation
follow the set of attributes X, mean β = α \ X then:

h = Fh
idx

hxF
∈

 \ X = \ X.

 Since we have: Ghx = Fhx
n

i

i

1

)(x
=

\ (X ∩), ∀ x ∈ id.

Thus, the translation of block scheme in this case was
transferred to the translation of slice schemes, for each the
slice scheme then this translation is the translation of
relational scheme in the relational data model.

II. RESULTS

A. Performance of key by Translation:
Let block scheme α = (R,Fh), R = (id; A1, A2, ... , An)

and X, Uo, UK, UI

n

i

i

1

)(id
=

 are the index sets of attributes ⊆

, for block scheme α we denoted:

 - Uo
 - U

 is the set of all non key attributes.
K

 - U
 is the set of all key attributes.

I

Let block schemes α=(R,F

is the set of all attributes, which is in every
key.

h), R= (id; A1, A2, ... , An

- α

); β
= (S,G), β = α \ X. Then we denoted:

x = (Rx,Fhx) is a slice scheme of α =
(R,Fh

- β
) at point x,

x = (Sx,Gx

Proposition 2.1 (Necessary and Sufficient Condition) :

) is a slice scheme of β
=(S,G) at poimt x.

Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An

n

i

i

1

)(id
=

);

X, K ⊆ , X ={x(i), x∈ id, i ∈ A}, K = {x(i), x∈ id, i

∈ B}; A, B ⊆{1,2, ..., n}, X ∩ K = ∅, X ⊆ UI

a) K is a key of β if only if XK is a key of α.

, β = (S,G),
β = α \ X. Then:

b) K is a key of β if only if Xx Kx is a key of
αx=(Rx,Fhx), Xx= {x(i), i∈A}, Kx= {x(i)

Proof

, i∈B},
x∈ id.

a =>) Suppose K is the key of β => K is the super key of
β => XK, X∩K = ∅ is the super key of α => exists K’ ⊆
K , X∩K’ = ∅ that XK’ is the key of α (because X ⊆ UI

(a) <=) Conversely, suppose XK is a key of α, according
to the properties of key stated in [7] => XK\ X = K is a
key of β.

).
According to the properties of key stated in [7] => XK’ \ X
= K’ is the key of β, vì K’ ⊆ K => K’ = K. Then XK is
the key of α.

(b) =>) Suppose K is a key of β => in the question a)
above we have XK is the key of α , According to the
necessary and sufficient conditions of key in the block

scheme [4] => XK ∩
n

i

i

1

)(x
=

 = Xx Kx is a key of

αx=(Rx,Fhx

b<=) Suppose X
).

x Kx is a key of αx=(Rx,Fhx), Xx= {x(i),

i∈A}, Kx= {x(i)
xK

idx
x X

∈

, i∈B}, x∈ id => = XK is a

key of α (according to the properties of key in the block

Trinh Dinh Thang et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,335-339

© 2010, IJARCS All Rights Reserved 337

scheme [4]) . On the other hand from XK is the key of α,
so the results of question a) => K is a key of β.

Conséquences :
Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An

n

i

i

1

)(id
=

);

X, Y, K ⊆ , X ={x(i), x∈ id, i ∈ A}, Y ={x(i), x∈ id,

i ∈ B}, K ={x(i), x∈ id, i ∈ C}; A, B, C ⊆{1,2, ..., n}, Y ⊆
UI , X ⊆ Uo

a) K is a key of β if and only if YK is a key of α.
, β = (S,G), β = α \ XY. Then:

b) K is a key of β if and only if Yx Kx is a key of
αx=(Rx,Fhx), Yx= {x(i), i∈B}, Kx= {x(i)

Proof

, i∈C},
x∈ id.

a) We denoted γ = α \ X, then β = α \ XY = (α \ X) \ Y =
γ \ Y (where X ∩ Y = ∅ vì Y ⊆ UI , X ⊆ Uo) . Since,
because Y ⊆ UI and

On the other hand, because X ⊆ U

apply proposition 2.1 we have: K is a
key of β if and only if YK is a key of γ.

o

Thus: K is a key of β if and only if YK is a key of α.

 and apply
properties of key when translation the block scheme in [7],
we have: YK is a key of γ if and only if YK is a key of α.

b) Suppose K is a key of β , according to a) we have:
 K is a key of β if and only if YK is a key of α.
(i)

Since apply properties of key for the block scheme in [4]
inferred:
 YK is a key of α if and only if Yx Kx is a key of
αx=(Rx,Fhx), Yx= {x(i), i∈B}, Kx= {x(i)

 From (1) and (2) we have:

, i∈C}, x∈ id.
(ii)

 K is a key of β if and only if Yx Kx is a key of
αx=(Rx,Fhx), Yx= {x(i), i∈B}, Kx= {x(i)

B. The set of Primitive and Non Primitive Attributes:

, i∈C}, x∈ id.

 Let block scheme µ = (R, F), where we denoted:
- LS(F) is the set of attributes appearing in the left side

and RS(F) is the set of attributes appearing in the right
side of functional dependencies in F.

- Attr(F) = LS(F) ∪ RS(F)
 Then we have: Attr(F) ⊆

n

i

i

1

)(id
=

.

Proposition 2.2:
Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An

n

i

i

1

)(id
=

);

X, M ⊆ , X ⊆ M, X ={x(i), x∈ id, i ∈ A}, M = {x(i)

a) X

,

x∈ id, i ∈ B}; A, B ⊆{1,2, ..., n}. Then, following
conditions are equivalent:

x +∩ Mx = Xx

b) X
 , x∈ id

x +∩ (Mx\ Xx

c) M
) = ∅, x∈ id

x\ Xx + = Mx \ Xx

where: X
 , x∈ id

x = {x(i), i ∈ A}, Mx = {x(i)

Proof
, i ∈ B}.

a) => b): We have Xx +∩ Mx = Xx , x∈ id, we need to
prove: Xx +∩ (Mx\ Xx

 Indeed, suppose the opposite exist P ∈ X
) = ∅, x∈ id.

x +∩ (Mx\
Xx) => P ∈ Xx + and P ∈ Mx\ Xx => P ∈ Xx + and P ∈
Mx và P∉ Xx => P ∈ Xx +∩ Mx = Xx và P∉ Xx =>
contradiction. Hence Xx +∩ (Mx\ Xx

b) => c): We have X

) = ∅, x∈ id.

x +∩ (Mx\ Xx) = ∅, x∈ id, we need
to prove: Mx\ Xx + = Mx \ Xx

 Indeed, by X
 , x∈ id.

x ⊆ Xx + => Mx\ Xx + ⊆ Mx \ Xx

 Suppose that P ∈ M

.
(1)

x\ Xx => P ∈ Mx and P∉ Xx , so
P ∉ Xx + because if P ∈ Xx + then we deduce P ∈ Xx +∩
(Mx\ Xx) = ∅ (under the assumption) => contradiction. So
P ∈ Mx\ Xx + => Mx \ Xx ⊆ Mx\ Xx +

 From (1) and (2) we have: M
 (2).

x\ Xx + = Mx \ Xx

c) => a): We have M

 , x∈
id.

x\ Xx + = Mx \ Xx , x∈ id, we need to
prove: Xx +∩ Mx = Xx

 Indeed, under the assumption we have X ⊆ M => X
 , x∈ id.

x ⊆
Mx, on the other hand, under the nature of closure then:
Xx ⊆ Xx + => Xx ⊆ Xx +∩ Mx

 Conversely, suppose P ∈ X
 . (1)
x +∩ Mx => P ∈ Xx + and P

∈ Mx => P∉ Mx\ Xx
If P ∉ X

+
x then P ∈ Mx \ Xx = Mx\ Xx + , so P ∈ Mx and

P ∉ Xx + => conflict => P ∈ Xx . So Xx +∩ Mx ⊆ Xx

 From (1) and (2) we inferred X

 .
(2)

x +∩ Mx = Xx

Proposition 2.3:

 .

Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An

n

i

i

1

)(id
=

);

X, M ⊆ , X ={x(i), x∈ id, i ∈ A}, M = {x(i)

a) X

, x∈ id, i

∈ B}; A, B ⊆{1,2, ..., n}. Then, following conditions are
equivalent:

+

b) X
∩ M = X

+∩ (M
c) M

\ X) = ∅
 \ X + = M

Proof
\ X

Using the necessary and sufficient conditions for the
closure of the index attribute set of block scheme in [4] we
have:
 a) Xx +∩ Mx = Xx , x∈ id <=> X +

 b) X
∩ M = X

x +∩ (Mx\ Xx) = ∅, x∈ id <=> X +∩ (M

 c) M

\
X) = ∅

x\ Xx + = Mx \ Xx , x∈ id <=> M \ X + = M

From these results, we deduce the equivalent of three
equations in the statement of proposition 2.3.

\ X

Proposition 2.4:
Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An

n

i

i

1

)(id
=

);

X ⊆ , X ={x(i), x∈ id, i ∈ A}; A ⊆{1,2, ..., n}, Fh

a)

is a sufficient set of functional dependencies over R . Then
we have:

n

i

i

1

)(x
=

 \ Attr(Fhx) ⊆ UIx

b) If X

 , x∈ id

x ⊆ UIx then Xx + ∩ UKx = Xx
Proof

, x∈ id

a) We denoted Mx = RS(Fhx)\ LS(Fhx), then we

have: UIx
n

i

i

1

)(x
=

= \ Mx , moreover we have:

Trinh Dinh Thang et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,335-339

© 2010, IJARCS All Rights Reserved 338

 Mx ⊆ Attr(Fhx
n

i

i

1

)(x
=

) => \ Attr(Fhx

n

i

i

1

)(x
=

)

⊆ \ Mx = UIx

b) Assume that {K

.

1, K2, …, Kt} is the set of keys
on the slice scheme αx = (Rx, Fhx), Xx ⊆ UIx

If X

then the nature of keys we have:

x ⊆ UIx then Xx ⊆ UIx ⊆ Kix =>
Xx +∩ Kix = Xx

 Vậy: X
 , i=1..t .

x +∩ UK = Xx

Consequence :

 , x∈ id .

Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An

n

i

i

1

)(id
=

);

X ⊆ , X ={x(i), x∈ id, i ∈ A}; A ⊆{1,2, ..., n}, Fh

a)

is a sufficient set of functional dependencies over R . Then
we have:

n

i

i

1

)(id
=

 \ Attr(Fh) ⊆ UI

b) If X ⊆ U

I then X +∩ UK = X
Proof

a) From a) in the proposition 2.4 we have:

n

i

i

1

)(x
=

\ Attr(Fhx ⊆ UIx

Thus, when we take the union of the left side and union
of the right side respectively then the nature of implies not
change, so:

 , x∈ id

n

i

i

1

)(id
=

 \ Attr(Fh) ⊆ UI

b) Prove by the method as in question a).

Proposition 2.5:
Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An

n

i

i

1

)(id
=

);

X, Y ⊆ , X ={x(i), x∈ id, i ∈ A}, Y={x(i), x∈ id, i ∈

B}; A, B ⊆{1,2, ..., n}, Fh

 If x

 is a sufficient set of functional
dependencies over R. Then:

(i) ∉ LS(Fhx) and Fhx => Xx->Yx then Fhx => Xx\
x(i) ->Yx \ x(i)

wherei X
 , i=1..n,

x = {x(i), i ∈ A}, Yx = {x(i)

Proof
, i ∈ B}.

We consider the slice scheme αx = (Rx, Fhx), from
assuming Fhx => Xx->Yx inferred Yx ⊆ Xx

+. Based on the
algorithm search closure of Xx then existing a range of
functional dependencies L1 -> R1 , L2 -> R2 , … ,Lk -> Rk

 L

such that:

1 ⊆ X , L2 ⊆ XR1 , L3 ⊆ XR1R2 , …, Lk ⊆
XR1R2 …Rk-1

 Y ⊆ XR
 ,

1R2 …Rk-1 Rk = X+

Because x
. (1)

(i) ∉ LS(Fhx) => x(i)

 L

 does not appear in the left
side of F so we have:

1 ⊆ X\ x(i) , L2 ⊆ (X\x(i)) R1 , L3 ⊆ (X\x(i)) R1R2

 L
 , …,

k ⊆ (X\x(i)) R1R2 …Rk-1 , Y ⊆ (X\x(i)) R1R2 …Rk-1
Rk = (X\x(i)) +

From (1) and (2) we have:
. (2)

 (X\x(i)) += (X\x(i)) R1R2 …Rk-1 Rk = XR1R2 …Rk-1

R

k\ x(i) ⊇ Y\ x
So: F

(i)
hx => X\x(i) -> Y\ x(i)

Conséquence ;

.

Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An

n

i

i

1

)(x
=

);

X, Y ⊆ . Then, if x(i) ∉ LS(Fh) and Fh => X ->Y

then Fh => X\ x(i) ->Y \ x(i)

Proposition 2.6:

 , i=1..n, x ∈ id.

Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An

n

i

i

1

)(id
=

);

X ⊆ , X ={x(i), x∈ id, i ∈ A}; A ⊆ {1,2, ..., n}, Fh

 a) U

is a sufficient set of functional dependencies over R. Then:
ox

+= Uox

 b) X
 , x∈ id

x ⊆ Uox <=> Uox -> Xx <=> Uox -> Xx
+ <=>

Xx
+⊆ Uox

 c) If ∅ -> X
, x∈ id

x then Xx
+⊆ Uox

 d) RS(F
 , x∈ id

h) \ LS(Fh) ⊆ Uox

 where X
, x∈ id

x = {x(i), i ∈ A}, Uox = {x(i) | x(i) ∈ Uo
Proof

}, x∈ id.

 a) Follow the definition of closure we have: Uox ⊆
Uox

+, so to prove Uox
+= Uox we need to prove Uox

+ ⊆
Uox

 Indeed, assume that P is a key attribute and P∈ U
.

ox
+,

Kx is the key contained P in αx = (Rx, Fhx). Then: Uox ->
P, put Y=Kx\P => YP=Kx

We have: YU
.

o -> YP, where YP = Kx is a key =>
YUo is a superkey in αx , according to the nature of the
superkey then: YUo \ Uo = Y is a superkey. This contradicts
with the assumption Y is actually part of the key Kx. So we
have: Uox

+ ⊆ Uox
b) To demonstrate the sequence above, we will prove the
circle diagramn:

.

Indeed, from Xx ⊆ Uox => Uox -> Xx => Uox -> Xx
+ =>

Xx
+⊆ Uox

+, according to a) we have: Uox
+ = Uox.

Therefore: Xx
+⊆ Uox => Xx

 ⊆ Uox

c) We have: U
 .

ox -> ∅, which ∅ -> Xx inferred: Uox ->
Xx. According to b) has been proved, then Xx

+⊆ Uox

d) We prove: RS(F
 .

h) \ LS(Fh) ⊆ Uox
Assume that F

, x∈ id, indeed:
h = {L1->R1, L2->R2, ..., Lk->Rk} then

by the nature of the additive functional dependencies, we
have: L1L2...Lk -> R1R2...Rk that is: LS(F) -> RS(F). To
prove RS(Fh) \ LS(Fh) ⊆ Uox

Assume that conversely, we have key attribute P∈
RS(F) \ LS(F) and K

, we prove by feedback
method.

x is the key contains P. Then: Kx -
>Ux , P∈ RS(F), P ∉ LS(F) => Kx\P -> Ux\P. Because P ∉
LS(F) => LS(F) ⊆ Ux \ P => Ux \ P -> LS(F),where LS(F) ->
RS(F), RS(F) -> P. Then Kx\P -> P => contradict with the
assumption Kx

RS(F
 is the key. Then we have:

h) \ LS(Fh) ⊆ Uox

III. CONCLUSION

, x∈ id.

The results for the keys, the primitive and non primitive
attribute sets with the tranlation of block scheme in the
database model of block form studied above are only the
initial results. In the case of blocks degenerate into relations
then these results to coincide with the results given by many

Trinh Dinh Thang et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,335-339

© 2010, IJARCS All Rights Reserved 339

authors for relations in the relational data model. Some
results are considered in the particular case of the F set of
functional dependencies in the block scheme as Fh

IV. REFERENCES

, set of
functional dependecies full... On the basis of these results
we can deploy to process normalization and vaguely
normalization using the translation on the block scheme...
contribute to more complete the design theory of database
model of block form.

[1]. Nguyen Xuan Huy, Trinh Dinh Thang , Database model of
block form , Jounal of Informatics and Cybernetics, T.14,

S.3 (52-60), 1998.

[2]. Trinh Dinh Thang, A some results on the closure, key and
functional dependencies in the database model of block
forms, Proceedings of the National Conference on the 4th
“ A some the selected issues of Information Technology”,
(245-251), Hai Phong 05-07/06/2001.

[3]. Trinh Dinh Thang, Tran Minh Tuyen, The translation of
block scheme and the present problem of the closure, key in
the database model of block forms, Proceedings of the
National Conference XIII “A some the selected issues of
Information Technology and Communication”, (276-286),
Hung Yen, 19-20/08/2010.

	Key And Key Attributes Set, Non-Key Attributes Set with Translation of Block Schemes
	Keywords: key, non-key, block schemes, attributes
	Definition 1.3:
	Let R = (id; AR1R,AR2R,...,ARn R), r(R) is a block over R, X (Y is a notation of functional dependency. A block r satisfies X (Y if for any tR1R, tR2R (R such that tR1R(X) = tR2R(X) then tR1R(Y) = tR2R(Y).

	Definition 1.7:
	Let block schemes (= (R,F), (= (S,G), X (, X ={xP(i)P, x(id, i (A}, A ({1,2, ..., n}. We have that, scheme (is obtained from the scheme (by translation follow the set of attributes X, if after removing the attributes from X in the s...
	Actions remove the X from scheme (to scheme (as follows:
	Calculate S = R \X, R = (id; AR1R, AR2R,..., ARnR), here we remove the attributes ARiR (i (A) in R, complexity of this procedure is O(nk), where k is the number of elements in A.
	For each functional dependencies from M->N in F, with M, N (we have to create a new functional dependency M\X -> N\X in G. This procedure is denoted by G = F \ X and has the complexity O (mnk) with m is the number of functional dependencies in F.
	We see that, the complexity of translation (= (\ X = (R\X, F\X) is O(mnk), so it is linear in the length of the input data.
	After performing the procedure G = F\X then:
	+ If G contains trivial functional dependencies (as X->Y, X (Y) then we remove them from G.
	+ If G contains same functional dependencies then we exclude duplicate of this functional dependencies (G contains no overlap).
	We have the following comments:
	Reviews 1:
	Let block schemes (= (R,F), (= (S,G), X (, X ={xP(i)P, x(id, i (A}, A ({1,2, ..., n}. Scheme (received from scheme (by the translation follow the set of attributes X: (= (\ X.
	Then, if id={x} then the block scheme (reduces to the relational schema and the translation follow the set of attributes X in this case becomes the translation follow the set of attributes X in the relational data model.
	Reviews 2:
	Let block schemes (= (R, FRhR), (= (S, GRhR), X (, X ={xP(i)P, x(id, i (A}, A ({1,2, ..., n}. Then, if scheme (received from the scheme (by the translation follow the set of attributes X, mean (= (\ X then:
	S = R \ X, GRhR = FRhR \ X = \ X.
	Since we have: GRhxR = FRhx R\ (X (), (x (id.
	Thus, the translation of block scheme in this case was transferred to the translation of slice schemes, for each the slice scheme then this translation is the translation of relational scheme in the relational data model.
	Let block scheme (= (R,FRhR), R = (id; AR1R, AR2R, ... , ARnR) and X, URoR, URKR, URIR are the index sets of attributes (, for block scheme (we denoted:
	- URo R is the set of all non key attributes.
	- URKR is the set of all key attributes.
	- URI Ris the set of all attributes, which is in every key.
	Let block schemes (=(R,FRhR), R= (id; AR1R, AR2R, ... , ARnR); (= (S,G), (= (\ X. Then we denoted:
	(RxR = (RRxR,FRhxR) is a slice scheme of (= (R,FRhR) at point x,
	(Rx R= (SRxR,GRxR) is a slice scheme of (=(S,G) at poimt x.
	Proposition 2.1 (Necessary and Sufficient Condition) :
	Let block scheme (= (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR); X, K (, X ={xP(i)P, x(id, i (A}, K = {xP(i)P, x(id, i (B}; A, B ({1,2, ..., n}, X (K = (, X (URI R, (= (S,G), (= (\ X. Then:
	K is a key of (if only if XK is a key of (.
	K is a key of (if only if XRx RKRxR is a key of (RxR=(RRxR,FRhx R), XRxR= {xP(i)P, i(A}, KRxR= {xP(i)P, i(B}, x(id.
	Proof
	a =>) Suppose K is the key of (=> K is the super key of (=> XK, X(K = (is the super key of (=> exists K’ (K , X(K’ = (that XK’ is the key of ((because X (URIR). According to the properties of key stated in [7] => XK’ \ X = K’ is ...
	(a) <=) Conversely, suppose XK is a key of (, according to the properties of key stated in [7] => XK\ X = K is a key of (.
	(b) =>) Suppose K is a key of (=> in the question a) above we have XK is the key of (, According to the necessary and sufficient conditions of key in the block scheme [4] => XK (= XRxR KRxR is a key of (RxR=(RRxR,FRhx R).
	b<=) Suppose XRxR KRxR is a key of (RxR=(RRxR,FRhx R), XRxR= {xP(i)P, i(A}, KRxR= {xP(i)P, i(B}, x(id => = XK is a key of ((according to the properties of key in the block scheme [4]) . On the other hand from XK is the key of (, so the ...
	Conséquences :
	Let block scheme (= (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR); X, Y, K (, X ={xP(i)P, x(id, i (A}, Y ={xP(i)P, x(id, i (B}, K ={xP(i)P, x(id, i (C}; A, B, C ({1,2, ..., n}, Y (URI R, X (URo R, (= (S,G), (= (\ XY. Then:
	K is a key of (if and only if YK is a key of (.
	K is a key of (if and only if YRx RKRxR is a key of (RxR=(RRxR,FRhx R), YRxR= {xP(i)P, i(B}, KRxR= {xP(i)P, i(C}, x(id.
	Proof
	a) We denoted (= (\ X, then (= (\ XY = ((\ X) \ Y = (\ Y (where X (Y = (vì Y (URI R, X (URo R) . Since, because Y (URI RandR Rapply proposition 2.1 we have: K is a key of (if and only if YK is a key of (.
	On the other hand, because X (URo R and apply properties of key when translation the block scheme in [7], we have: YK is a key of (if and only if YK is a key of (.
	Thus: K is a key of (if and only if YK is a key of (.
	b) Suppose K is a key of (, according to a) we have:
	K is a key of (if and only if YK is a key of (. (i)
	Since apply properties of key for the block scheme in [4] inferred:
	YK is a key of (if and only if YRx RKRxR is a key of (RxR=(RRxR,FRhx R), YRxR= {xP(i)P, i(B}, KRxR= {xP(i)P, i(C}, x(id. (ii)
	From (1) and (2) we have:
	K is a key of (if and only if YRx RKRxR is a key of (RxR=(RRxR,FRhx R), YRxR= {xP(i)P, i(B}, KRxR= {xP(i)P, i(C}, x(id.
	Let block scheme (= (R, F), where we denoted:
	LS(F) is the set of attributes appearing in the left side and RS(F) is the set of attributes appearing in the right side of functional dependencies in F.
	Attr(F) = LS(F) (RS(F)
	Then we have: Attr(F) (.
	Proposition 2.2:
	Let block scheme (= (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR); X, M (, X (M, X ={xP(i)P, x(id, i (A}, M = {xP(i)P, x(id, i (B}; A, B ({1,2, ..., n}. Then, following conditions are equivalent:
	XRxR P+P(MRxR = XRxR , x(id
	XRxR P+P((MRxR\ XRxR) = (, x(id
	MRxR\ XRxR P+P = MRx R\ XRxR , x(id
	where: XRxR = {xP(i)P, i (A}, MRxR = {xP(i)P, i (B}.
	Proof
	a) => b): We have XRxR P+P(MRxR = XRxR , x(id, we need to prove: XRxR P+P((MRxR\ XRxR) = (, x(id.
	Indeed, suppose the opposite exist P (XRxR P+P((MRxR\ XRxR) => P (XRxR P+P and P (MRxR\ XRxR => P (XRxR P+P and P (MRx Rvà P(XRxR => P (XRxR P+P(MRx R = XRx R và P(XRxR => contradiction. Hence XRxR P+P((MRxR\ XRx...
	b) => c): We have XRxR P+P((MRxR\ XRxR) = (, x(id, we need to prove: MRxR\ XRxR P+P = MRx R\ XRxR , x(id.
	Indeed, by XRxR (XRxR P+P => MRxR\ XRxR P+P (MRx R\ XRxR. (1)
	Suppose that P (MRxR\ XRxR => P (MRx Rand P(XRxR , so P (XRxR P+P because if P (XRxR P+P then we deduce P (XRxR P+P((MRxR\ XRxR) = ((under the assumption) => contradiction. So P (MRxR\ XRxR P+P => MRx R\ XRx R(R RMRx...
	From (1) and (2) we have: MRxR\ XRxR P+P = MRx R\ XRxR , x(id.
	c) => a): We have MRxR\ XRxR P+P = MRx R\ XRxR , x(id, we need to prove: XRxR P+P(MRxR = XRxR , x(id.
	Indeed, under the assumption we have X (M => XRxR (MRxR, on the other hand, under the nature of closure then: XRxR (XRxR P+PR R => XRxR (XRxR P+P(MRxR . (1)
	Conversely, suppose P (XRxR P+P(MRxR => P (XRxR P+P and P (MRxR => P(MRxR\ XRxR P+
	If P (XRxR then P (MRx R\ XRxR = MRxR\ XRxR P+P , so P (MRxR and P (XRxR P+P => conflict => P (XRxR . So XRxR P+P(MRxR (XRxR . (2)
	From (1) and (2) we inferred XRxR P+P(MRxR = XRxR .
	Proposition 2.3:
	Let block scheme (= (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR); X, M (, X ={xP(i)P, x(id, i (A}, M = {xP(i)P, x(id, i (B}; A, B ({1,2, ..., n}. Then, following conditions are equivalent:
	X P+P(M = X
	X P+P((MR R\ X) = (
	MR R\ X P+P = MR R\ X
	Proof
	Using the necessary and sufficient conditions for the closure of the index attribute set of block scheme in [4] we have:
	a) XRxR P+P(MRxR = XRxR , x(id <=> X P+P(M = X
	b) XRxR P+P((MRxR\ XRxR) = (, x(id <=> X P+P((MR R\ X) = (
	c) MRxR\ XRxR P+P = MRx R\ XRxR , x(id <=> MR R\ X P+P = MR R\ X
	From these results, we deduce the equivalent of three equations in the statement of proposition 2.3.
	Proposition 2.4:
	Let block scheme (= (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR); X (, X ={xP(i)P, x(id, i (A}; A ({1,2, ..., n}, FRhR is a sufficient set of functional dependencies over R . Then we have:
	\P PAttr(FRhx R) (URIxR , x(id
	If XRxR (URIx R then XRxR P+ P(URKxR = XRx R, x(id
	Proof
	We denoted MRxR = RS(FRhxR)\ LS(FRhxR), then we have: URIx R= \ MRxR , moreover we have:
	MRxR (Attr(FRhx R) => \P PAttr(FRhx R) (\ MRxR = URIxR.
	Assume that {KR1R, KR2R, …, KRtR} is the set of keys on the slice scheme (RxR = (RRxR, FRhxR), XRxR (URIxR then the nature of keys we have:
	If XRxR (URIxR then XRxR (URIxR (KRixR => XRxR P+P(KRixR = XRxR , i=1..t .
	Vậy: XRxR P+P(URKR = XRxR , x(id .
	Consequence :
	Let block scheme (= (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR); X (, X ={xP(i)P, x(id, i (A}; A ({1,2, ..., n}, FRhR is a sufficient set of functional dependencies over R . Then we have:
	\P PAttr(FRh R) (URIR
	If X (URI R then X P+P(URKR = XR
	Proof
	From a) in the proposition 2.4 we have: \P PAttr(FRhx R (URIxR , x(id
	Thus, when we take the union of the left side and union of the right side respectively then the nature of implies not change, so:
	\P PAttr(FRh R) (URIR
	Prove by the method as in question a).
	Proposition 2.5:
	Let block scheme (= (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR); X, Y (, X ={xP(i)P, x(id, i (A}, Y={xP(i)P, x(id, i (B}; A, B ({1,2, ..., n}, FRhR is a sufficient set of functional dependencies over R. Then:
	If xP(i) P(LS(FRhx R) and FRhxR => XRxR->YRxR then FRhxR => XRxR\ xP(i)P ->YRxR \ xP(i)P , i=1..n,
	wherei XRxR = {xP(i)P, i (A}, YRxR = {xP(i)P, i (B}.
	Proof
	We consider the slice scheme (RxR = (RRxR, FRhx R), from assuming FRhxR => XRxR->YRxR inferred YRxR (XRxRP+P. Based on the algorithm search closure of XRxR then existing a range of functional dependencies LR1R -> RR1 R, LR2R -> RR2 R, … ,LRkR ...
	LR1R (X , LR2R (XRR1R , LR3R (XRR1RRR2R , …, LRkR (XRR1RRR2R …RRk-1R ,
	Y (XRR1RRR2R …RRk-1R RRkR = XP+P. (1)
	Because xP(i) P(LS(FRhx R) => xP(i) P does not appear in the left side of F so we have:
	LR1R (X\ xP(i) P, LR2R ((X\xP(i)P)P PRR1R , LR3R ((X\xP(i)P)P PRR1RRR2R , …,
	LRkR ((X\xP(i)P)P PRR1RRR2R …RRk-1R , Y ((X\xP(i)P)P PRR1RRR2R …RRk-1R RRkR = (X\xP(i)P)P +P. (2)
	From (1) and (2) we have:
	(X\xP(i)P)P +P= (X\xP(i)P)P PRR1RRR2R …RRk-1R RRkR = XRR1RRR2R …RRk-1R RRkR\ xP(i) P (Y\ xP(i)
	So: FRhxR => R RX\xP(i) P-> Y\ xP(i)P.
	Conséquence ;
	Let block scheme (= (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR); X, Y (. Then, if xP(i) P(LS(FRh R) and FRhR => XR R->YR R then FRhR => X\ xP(i)P ->Y \ xP(i)P , i=1..n, x (id.
	Proposition 2.6:
	Let block scheme (= (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR); X (, X ={xP(i)P, x(id, i (A}; A ({1,2, ..., n}, FRhR is a sufficient set of functional dependencies over R. Then:
	a) URoxRP+P= URoxR , x(id
	b) XRxR (URoxR <=> URoxR -> XRxR <=> URoxR -> XRxRP+P <=> XRxRP+P(URoxR, x(id
	c) If (-> XRxR then XRxRP+P(URoxR , x(id
	d) RS(FRhR) \ LS(FRhR) (URoxR, x(id
	where XRxR = {xP(i)P, i (A}, URoxR = {xP(i) P| xP(i) P(URoR}, x(id.
	Proof
	a) Follow the definition of closure we have: URoxR (URoxRP+P, so to prove URoxRP+P= URoxR we need to prove URoxRP+P (URoxR.
	Indeed, assume that P is a key attribute and P(URoxRP+P, KRxR is the key contained P in (RxR = (RRxR, FRhxR). Then: URoxR -> P, put Y=KRxR\P => YP=KRxR.
	We have: YURoR -> YP, where YP = KRxR is a key => YURoR is a superkey in (RxR , according to the nature of the superkey then: YURoR \ URoR = Y is a superkey. This contradicts with the assumption Y is actually part of the key KRxR. So we have:...
	b) To demonstrate the sequence above, we will prove the circle diagramn:
	Indeed, from XRxR (URoxR => URoxR -> XRxR => URoxR -> XRxRP+P => XRxRP+P(URoxRP+P, according to a) we have: URoxRP+P = URoxR. Therefore: XRxRP+P(URoxR => XRxRP P(URoxR .
	We have: URoxR -> (, which (-> XRxR inferred: URoxR -> XRxR. According to b) has been proved, then XRxRP+P(URoxR .
	d) We prove: RS(FRhR) \ LS(FRhR) (URoxR, x(id, indeed:
	Assume that FRhR = {LR1R->RR1R, LR2R->RR2R, ..., LRkR->RRkR} then by the nature of the additive functional dependencies, we have: LR1RLR2R...LRkR -> RR1RRR2R...RRkR that is: LS(F) -> RS(F). To prove RS(FRhR) \ LS(FRhR) (URoxR, we prove by ...
	Assume that conversely, we have key attribute P(RS(F) \ LS(F) and KRxR is the key contains P. Then: KRxR ->URxR , P(RS(F), P (LS(F) => KRxR\P -> URxR\P. Because P (LS(F) => LS(F) (URx R\ P => URx R\ P -> LS(F),where LS(F) -> RS(F), RS(F) -> P....
	RS(FRhR) \ LS(FRhR) (URoxR, x(id.

