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Abstract: The report proposes and demonstrates some properties of key and the sets of primitive, non primitive attributes with the translation of 
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I. DATABASE MODEL OF BLOCK FORM 

A. The block, block scheme [1]: 

Definition 1.1:  
Let R = (id; A1, A2,..., An )  be a finite tulle of elements,  

in which  id  is a nonempty finite index set, Ai (i=1..n) is 
called attributes. Corresponding to each attribute Ai (i=1..n) 
there is a set  dom(Ai) called the domain of Ai. The block r  
over  R, denoted  r(R) consists of a finite number of 
elements where each element is a family of mappings from 
the index set id to the value domain of  the attribute  Ai 
(i=1..n).  

t∈ r(R) ⇔ t = { ti : id  → dom(Ai)}i=1..n . 
The block is denoted r(R) or r(id; A1, A2,..., An ), 

sometimes without fear of confusion we simply denoted r. 

Definition 1.2:  
Let R = (id; A1, A2,..., An ), r(R)  is a block over  R. For 

each  x∈ id  we denoted  r(Rx) is a block with  Rx = ({x}; 
A1, A2,..., An

 t
 )  such that: 

x∈ r(Rx) ⇔  tx = {ti
x = ti   } i=1..n   ,  t∈ r(R), t = { ti : id 

→ dom(Ai)}i=1..n .                                   
                                                       x 
 where  tax(x) = ti(x) , i =1..n.  

Then  r(Rx

B. Functional Dependencies [1] : 

) is called a slice of block on the block  r(R)  
at point  x. 

Here, for simplicity we use the notation: 
x(i) = (x; Ai ) ;  id(i) = {x(i) | x ∈ id}. 
x(i) (x ∈ id, i = 1..n)  is called a index attribute of block 

scheme R = (id; A1,A2,...,An 

Definition 1.3:  

). 

Let R = (id; A1,A2,...,An ),  r(R)  is a block over  R, X → 
Y is a notation of  functional dependency. A block  r  
satisfies  X → Y  if  for any  t1, t2  ∈ R  such that  t1(X) = 
t2(X)  then  t1(Y) = t2

Definition 1.4:  
Let block scheme  α = (R,F),  R = (id; A

(Y). 

1, A2,..., An

Then, the closure of  F denoted  F

 ),  F  
is the set of functional dependencies over  R. 

+

  F
 is defined as follows: 

+

 
 = { X → Y | F  ⇒  X → Y } . 

 
If  X = {x(m)} ⊆ id(m) ,  Y = {y(k)} ⊆ id(k)   then we 

denoted functional dependency  X → Y is simply  x(m) → 
y(k) .   

The block satisfies  x(m) →  y(k)  if for any  t1, t2 ∈ r  
such that  t1(x(m)) = t2(x(m))  then  t1(y(k)) = t2(y(k)), 
 where:         t1(x(m)) = t1(x; Am),  t2(x(m)) = t2(x; 
Am), 

      t1(y(k)) =  t1(y; Ak ),  t2(y(k)) = t2(y; Ak 

C. Closure of the Index Set Attributes [2] : 
). 

Definition 1.5:  
Let block scheme  α = (R,F),  R=(id; A1, A2,..., An


n

i

i

1

)(idX
=

⊆

 ),  F  
is a set of functional dependencies over  R.  

For each , we define closure of  X  for  F  

denoted   X+  as follows:      
               X+  = {x(i) , x ∈ id, i = 1..n  |  X → x(i) ∈ F+ } . 

Let  R=(id; A1, A2,..., An ),  we denoted the sets of 
functional dependecies over  R: 

Fh 
Ai

ixX
∈

= )( ⊆ { X → Y |  , 
Bj

jxY
∈

= )( , 

BA, ⊆ {1,2,...,n}  và  x ∈ id } , 

Fhx = Fh 
n

i

ix
1

)(

=

 ∩  = { X → Y  ∈ Fh


n

i

ix
1

)(

=

 |  X, Y ⊆  

}. 

D. Key of  Block Scheme  α = (R,F) [2] : 

Definition 1.6 : 
Let block scheme α = (R,F), R = (id; A1, A2,..., An ),  F  


n

i

i

1

)(id
=

 

is a set of functional dependencies over  R, K ⊆ .  
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K  called a key of block schema  α  if  it satisfies two 
conditions: 

a) K → x(i) ∈ F+

b) ∀K’ ⊂ K  then   K’  has no properties  a). 
 ,  ∀x ∈ id, i = 1..n. 

If K is a key and K ⊆ K’’ then K’’ called a super key of 
the block scheme R for F. 

 
 

E.     Translation of Block Schemes [3]: 

Definition 1.7:    

Let block schemes  α = (R,F), β = (S,G),  X ⊆ 
n

i

i

1

)(id
=

, 

X ={x(i)

Actions remove the X from scheme α  to scheme β  as 
follows: 

, x∈ id, i ∈ A},  A ⊆ {1,2, ..., n}.  We have that,  
scheme  β  is obtained  from the scheme α  by translation 
follow the set of attributes X, if after removing the attributes 
from  X in the scheme  α  then we are obtained scheme β. 
Then we denoted:   β = α \ X. 

a. Calculate S = R \X, R = (id; A1, A2,..., An ), here we 
remove the attributes Ai

b. For each functional dependencies from M->N in F, 

with M, N ⊆ 

 (i ∈ A) in R, complexity of 
this procedure is  O(nk), where  k is the number of 
elements in A. 


n

i

i

1

)(id
=

 we have to create a new 

functional dependency M\X -> N\X in G. This 
procedure is denoted by G = F \ X and has the 
complexity O (mnk) with m is the number of 
functional dependencies in F. 

We see that, the complexity of translation β = α \ X = 
(R\X, F\X) is O(mnk), so it is linear in the length of the 
input data. 

        After performing the procedure G = F\X then: 
+ If G contains trivial functional dependencies (as 

X->Y, X ⊇ Y) then we remove them from G. 
+ If G contains same functional dependencies then 

we exclude duplicate of this functional dependencies (G 
contains no overlap). 

We have the following comments: 

Reviews 1: 

Let block schemes α = (R,F), β = (S,G), X ⊆ 
n

i

i

1

)(id
=

, 

X ={x(i)

Then, if  id={x} then the block scheme α reduces to the 
relational schema and the translation follow the set of 
attributes X in this case becomes the translation follow the 
set of attributes X in the relational data model.   

, x∈ id, i ∈ A},  A ⊆ {1,2, ..., n}. Scheme β received 
from scheme α by the translation follow the set of attributes 
X:  β = α \ X. 

Reviews 2: 
Let block schemes α = (R, Fh), β = (S, Gh


n

i

i

1

)(id
=

), X ⊆ 

, X ={x(i)

         S = R \ X,  G

, x∈ id, i ∈ A},  A ⊆ {1,2, ..., n}. Then, if 

scheme β received from the scheme α by the translation 
follow the set of attributes X, mean β = α \ X  then: 

h = Fh 
idx

hxF
∈

 \ X = \ X.  

      Since we have:    Ghx = Fhx 
n

i

i

1

)(x
=

\ (X ∩ ),  ∀ x ∈  id. 

Thus, the translation of block scheme in this case was 
transferred to the translation of slice schemes, for each the 
slice scheme then this translation is the translation of 
relational scheme in the relational data model. 

II. RESULTS 

A. Performance of key  by Translation: 
Let block scheme α = (R,Fh), R = (id; A1, A2, ... , An )  

and  X, Uo, UK, UI


n

i

i

1

)(id
=

  are the index sets of attributes  ⊆ 

,  for block scheme  α  we denoted: 

              - Uo 
              - U

 is the set of all non key attributes. 
K

              - U
 is the set of all key attributes. 

I   

Let block schemes  α=(R,F

is the set of all attributes, which is in every 
key. 

h), R= (id; A1, A2, ... , An

- α

 ); β 
= (S,G), β = α \ X.  Then we denoted: 

x = (Rx,Fhx) is a slice scheme of  α = 
(R,Fh

- β
)  at  point  x, 

x = (Sx,Gx

Proposition 2.1 (Necessary and Sufficient Condition) : 

)  is a slice scheme of  β 
=(S,G)  at poimt  x. 

Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An


n

i

i

1

)(id
=

 );  

X, K ⊆ , X ={x(i), x∈ id, i ∈ A}, K = {x(i), x∈ id, i 

∈ B}; A, B ⊆{1,2, ..., n},  X ∩ K = ∅,  X ⊆ UI 

a) K is a key of  β  if only if  XK  is a key of α. 

, β = (S,G), 
β = α \ X.  Then:  

b) K is a key of β if only if  Xx Kx is a key of 
αx=(Rx,Fhx ), Xx= {x(i), i∈A}, Kx= {x(i)

Proof 

, i∈B}, 
x∈ id. 

a =>)  Suppose  K  is the key of  β  => K is the super key of 
β => XK, X∩K = ∅  is the super key of  α => exists  K’ ⊆ 
K , X∩K’ = ∅  that  XK’  is the key of α (because X ⊆ UI

( a) <=)  Conversely, suppose   XK  is a key of  α, according 
to the properties of key stated in [7] =>  XK\ X = K  is a 
key of  β. 

 ). 
According to the properties of key stated in [7] =>  XK’ \ X 
= K’  is the key of  β,  vì  K’ ⊆ K  => K’ = K. Then  XK  is 
the key of α. 

( b) =>)  Suppose  K is a key of  β  => in the question a) 
above we have  XK  is the key of α ,  According to the 
necessary and sufficient conditions of key in the block 

scheme [4] =>  XK ∩ 
n

i

i

1

)(x
=

 = Xx Kx  is a key of  

αx=(Rx,Fhx 

b<=)  Suppose  X
). 

x Kx is a key of  αx=(Rx,Fhx ), Xx= {x(i), 

i∈A}, Kx= {x(i)
xK

idx
x X

∈

, i∈B}, x∈ id   =>  = XK  is a 

key of  α (according to the properties of key in the block 
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scheme [4]) . On the other hand from  XK  is the key of  α,  
so the results of question a)  => K  is a key of  β. 

Conséquences :  
Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An


n

i

i

1

)(id
=

 );  

X, Y, K ⊆ , X ={x(i), x∈ id, i ∈ A}, Y ={x(i), x∈ id, 

i ∈ B}, K ={x(i), x∈ id, i ∈ C};  A, B, C ⊆{1,2, ..., n},   Y ⊆ 
UI , X ⊆ Uo 

a) K is a key of  β  if and only if  YK  is a key of α. 
,  β = (S,G), β = α \ XY.  Then:  

b) K is a key of β if and only if  Yx Kx is a key of  
αx=(Rx,Fhx ), Yx= {x(i), i∈B}, Kx= {x(i)

Proof 

, i∈C}, 
x∈ id. 

a)  We denoted  γ = α \ X,  then  β = α \ XY = (α \ X) \ Y =  
γ  \ Y  ( where  X ∩ Y = ∅  vì   Y ⊆ UI ,  X ⊆ Uo ) . Since, 
because  Y ⊆ UI  and 

On the other hand, because  X ⊆ U

apply proposition 2.1 we have:  K is a 
key of  β  if and only if  YK is a key of  γ. 

o 

Thus:  K is a key of  β  if and only if  YK is a key of  α. 

 and apply 
properties of key when translation the block scheme in [7], 
we have:  YK  is a key of  γ  if and only if  YK  is a key of  α. 

b)  Suppose   K  is a key of  β ,  according to a)  we have: 
     K is a key of  β  if and only if   YK is a key of  α.                         
(i) 

Since apply properties of key for the block scheme in [4] 
inferred: 
     YK  is a key of  α  if and only if  Yx Kx  is a key of  
αx=(Rx,Fhx ), Yx= {x(i), i∈B}, Kx= {x(i)

     From  (1) and (2)  we have:  

, i∈C}, x∈ id.                                                          
(ii) 

     K is a key of  β  if and only if  Yx Kx  is a key of 
αx=(Rx,Fhx ), Yx= {x(i), i∈B}, Kx= {x(i)

B. The set of Primitive and Non Primitive Attributes: 

, i∈C}, x∈ id.   

       Let block scheme  µ = (R, F), where we denoted: 
- LS(F)  is the set of attributes appearing in the left side 

and  RS(F) is the set of attributes appearing in the right 
side of functional dependencies in F.  

- Attr(F) = LS(F) ∪ RS(F) 
     Then we have:   Attr(F) ⊆ 

n

i

i

1

)(id
=

. 

Proposition 2.2: 
Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An


n

i

i

1

)(id
=

 );  

X, M ⊆ , X ⊆ M, X ={x(i), x∈ id, i ∈ A}, M = {x(i)

a) X

, 

x∈ id, i ∈ B}; A, B ⊆{1,2, ..., n}.  Then, following 
conditions are equivalent:  

x +∩ Mx  =  Xx

b) X
 , x∈ id 

x +∩ (Mx\ Xx

c) M
 )  = ∅,  x∈ id 

x\ Xx + = Mx \ Xx

where:  X
 , x∈ id 

x = {x(i), i ∈ A},  Mx = {x(i)

Proof 
, i ∈ B}. 

a) => b):  We have  Xx +∩ Mx  =  Xx , x∈ id,  we need to 
prove:   Xx +∩ (Mx\ Xx

        Indeed,  suppose  the opposite exist  P ∈  X
 )  = ∅,  x∈ id.  

x +∩ (Mx\ 
Xx ) => P ∈  Xx + and  P ∈ Mx\ Xx  => P ∈  Xx + and  P ∈ 
Mx   và  P∉ Xx  =>  P ∈  Xx +∩ Mx  = Xx   và  P∉ Xx  => 
contradiction. Hence  Xx +∩ (Mx\ Xx

b) => c):  We have  X

 )  = ∅,  x∈ id. 

x +∩ (Mx\ Xx )  = ∅,  x∈ id, we need 
to prove:  Mx\ Xx + = Mx \ Xx

     Indeed, by  X
 , x∈ id. 

x ⊆ Xx + => Mx\ Xx + ⊆  Mx \ Xx

     Suppose that  P ∈ M

.             
(1) 

x\ Xx  => P ∈ Mx   and  P∉ Xx ,  so  
P ∉ Xx +  because if  P ∈ Xx + then we deduce  P ∈ Xx +∩ 
(Mx\ Xx )  = ∅  (under the assumption) => contradiction. So  
P ∈  Mx\ Xx +  =>  Mx \ Xx   ⊆    Mx\ Xx +

        From  (1) and (2)  we have:  M
      (2). 

x\ Xx + = Mx \ Xx

c) => a):  We have  M

 , x∈ 
id. 

x\ Xx + = Mx \ Xx , x∈ id, we need to 
prove:  Xx +∩ Mx  =  Xx

     Indeed, under the assumption we have  X ⊆ M  => X
 , x∈ id. 

x ⊆ 
Mx,  on the other hand, under the nature of closure then:   
Xx ⊆ Xx +  => Xx ⊆ Xx +∩ Mx

     Conversely, suppose  P ∈ X
 .         (1) 
x +∩ Mx => P ∈ Xx +  and  P 

∈ Mx => P∉ Mx\ Xx 
If  P ∉ X

+ 
x  then  P ∈ Mx \ Xx = Mx\ Xx + , so  P ∈ Mx  and  

P ∉ Xx + => conflict =>  P ∈ Xx .  So  Xx +∩ Mx ⊆ Xx

         From (1) and (2)  we inferred  X

 .                  
(2) 

x +∩ Mx = Xx

Proposition 2.3: 

 . 

Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An


n

i

i

1

)(id
=

 );  

X, M ⊆ , X ={x(i), x∈ id, i ∈ A}, M = {x(i)

a) X 

, x∈ id, i 

∈ B}; A, B ⊆{1,2, ..., n}.  Then, following conditions are 
equivalent:   

+

b) X 
∩ M  =  X  

+∩ (M 
c) M

\ X )  = ∅ 
 \ X + = M 

Proof 
\ X  

Using the necessary and sufficient conditions for the 
closure of the index attribute set of block scheme in  [4]  we 
have:   
        a)   Xx +∩  Mx  =  Xx , x∈ id          <=>    X +

        b)   X
∩ M  =  X  

x +∩ (Mx\ Xx )  = ∅,  x∈ id   <=>    X +∩ (M 

        c)   M

\ 
X )  = ∅ 

x\ Xx + = Mx \ Xx , x∈ id        <=>    M \ X + = M 

From these results, we deduce the equivalent of three 
equations in the statement of proposition 2.3. 

\ X 

Proposition 2.4: 
Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An


n

i

i

1

)(id
=

 );  

X ⊆ , X ={x(i), x∈ id, i ∈ A}; A ⊆{1,2, ..., n},  Fh

a) 

 

is a sufficient set of functional dependencies over  R .  Then 
we have:  


n

i

i

1

)(x
=

 \ Attr(Fhx )   ⊆  UIx

b) If  X

 , x∈ id 

x ⊆  UIx  then   Xx + ∩ UKx = Xx 
Proof 

,  x∈ id 

a) We denoted Mx = RS(Fhx)\ LS(Fhx),  then we 

have:  UIx 
n

i

i

1

)(x
=

= \ Mx , moreover we have:   
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                Mx ⊆ Attr(Fhx 
n

i

i

1

)(x
=

)  =>   \ Attr(Fhx 


n

i

i

1

)(x
=

)   

⊆ \ Mx = UIx

b) Assume that  {K

. 

1, K2, …, Kt} is the set of keys 
on the slice scheme   αx = (Rx, Fhx), Xx  ⊆  UIx

If   X

  
then  the nature of keys we have: 

x  ⊆  UIx  then   Xx  ⊆  UIx  ⊆ Kix   =>  
Xx +∩ Kix = Xx

   Vậy:   X
 , i=1..t . 

x +∩ UK = Xx

Consequence : 

 , x∈ id . 

Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An


n

i

i

1

)(id
=

 );  

X ⊆ , X ={x(i), x∈ id, i ∈ A}; A ⊆{1,2, ..., n},  Fh

a) 

 

is a sufficient set of functional dependencies over  R .  Then 
we have:  


n

i

i

1

)(id
=

 \ Attr(Fh ) ⊆  UI

b) If  X ⊆  U

  

I  then  X +∩ UK = X
Proof 

  

a) From a) in the proposition 2.4 we have: 


n

i

i

1

)(x
=

\ Attr(Fhx  ⊆ UIx

Thus, when we take the union of the left side and union 
of the right side respectively then the nature of implies not 
change, so: 

 , x∈ id 

                                  
n

i

i

1

)(id
=

 \ Attr(Fh ) ⊆  UI

b) Prove by the method as in question a).   

  

Proposition 2.5: 
Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An


n

i

i

1

)(id
=

 );  

X, Y ⊆ , X ={x(i), x∈ id, i ∈ A}, Y={x(i), x∈ id, i ∈ 

B}; A, B ⊆{1,2, ..., n},  Fh

     If  x

 is a sufficient set of functional 
dependencies over R.  Then:  

(i) ∉ LS(Fhx )  and  Fhx => Xx->Yx then  Fhx => Xx\ 
x(i) ->Yx \ x(i)

wherei  X
 , i=1..n, 

x = {x(i), i ∈ A},  Yx = {x(i)

Proof 
, i ∈ B}. 

We consider the slice scheme  αx = (Rx, Fhx ), from 
assuming  Fhx => Xx->Yx inferred  Yx ⊆ Xx

+.  Based on the 
algorithm search closure of  Xx then  existing a range of 
functional dependencies  L1 -> R1 , L2 -> R2 , … ,Lk -> Rk  

      L

 
such that: 

1 ⊆ X , L2 ⊆ XR1 , L3 ⊆ XR1R2 , …, Lk ⊆ 
XR1R2 …Rk-1

      Y  ⊆ XR
 ,  

1R2 …Rk-1 Rk = X+

Because   x
.  (1) 

(i) ∉ LS(Fhx ) => x(i) 

      L

 does not appear in the left 
side of  F so we have: 

1 ⊆ X\ x(i) ,  L2 ⊆ (X\x(i)) R1 ,  L3 ⊆ (X\x(i)) R1R2

      L
 , …,   

k ⊆ (X\x(i)) R1R2 …Rk-1 ,   Y  ⊆ (X\x(i)) R1R2 …Rk-1 
Rk = (X\x(i)) +

From  (1) and (2) we have:   
.   (2) 

             (X\x(i)) += (X\x(i)) R1R2 …Rk-1 Rk = XR1R2 …Rk-1

R

 

k\ x(i)  ⊇ Y\ x
So:      F

(i) 
hx =>  X\x(i)  -> Y\ x(i)

Conséquence ; 

.  

Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An


n

i

i

1

)(x
=

 );  

X, Y ⊆ .  Then, if  x(i) ∉ LS(Fh ) and  Fh => X ->Y  

then  Fh => X\ x(i) ->Y \ x(i)

Proposition 2.6: 

 , i=1..n, x ∈ id. 

Let block scheme α = (R, Fh), R = (id; A1, A2, ... , An


n

i

i

1

)(id
=

 );  

X ⊆ , X ={x(i), x∈ id, i ∈ A}; A ⊆ {1,2, ..., n},  Fh

      a) U

 

is a sufficient set of functional dependencies over R.  Then:  
ox

+= Uox

      b) X
 , x∈ id 

x ⊆  Uox  <=> Uox -> Xx  <=> Uox -> Xx
+ <=>  

Xx
+⊆  Uox

      c) If  ∅ -> X
,  x∈ id 

x  then   Xx
+⊆  Uox

     d)  RS(F
 ,  x∈ id 

h) \ LS(Fh)  ⊆  Uox

 where  X
,  x∈ id 

x = {x(i), i ∈ A},  Uox = {x(i) | x(i) ∈  Uo
Proof 

},  x∈ id. 

      a)  Follow the definition of closure we have:  Uox ⊆  
Uox

+, so to prove Uox
+= Uox  we need to prove   Uox

+ ⊆  
Uox

      Indeed, assume that  P is a key attribute and  P∈ U
. 

ox
+, 

Kx  is the key contained  P  in αx = (Rx, Fhx). Then:  Uox -> 
P, put  Y=Kx\P => YP=Kx

We have:   YU
. 

o -> YP, where  YP = Kx  is a key => 
YUo  is a superkey in  αx , according to the nature of the 
superkey then:  YUo \ Uo = Y is a superkey. This contradicts 
with the assumption  Y  is actually part of the key Kx. So we 
have:  Uox

+ ⊆  Uox
b) To demonstrate the sequence above, we will prove the 
circle diagramn: 

. 

Indeed, from  Xx ⊆  Uox => Uox -> Xx => Uox -> Xx
+ => 

Xx
+⊆  Uox

+, according to  a)  we have:  Uox
+ =  Uox. 

Therefore: Xx
+⊆  Uox => Xx

 ⊆  Uox

c) We have:  U
 . 

ox -> ∅, which  ∅ -> Xx  inferred:  Uox -> 
Xx. According to b) has been proved, then  Xx

+⊆  Uox

d) We prove:  RS(F
 . 

h) \ LS(Fh)  ⊆  Uox
Assume that  F

,  x∈ id, indeed: 
h = {L1->R1, L2->R2, ..., Lk->Rk}  then 

by the nature of the additive functional dependencies, we 
have:  L1L2...Lk -> R1R2...Rk  that is:  LS(F) -> RS(F).  To 
prove  RS(Fh) \ LS(Fh)  ⊆  Uox

Assume that conversely, we have key attribute  P∈ 
RS(F) \ LS(F) and K

,  we prove by  feedback 
method. 

x is the key contains  P. Then: Kx -
>Ux , P∈ RS(F), P ∉ LS(F) => Kx\P -> Ux\P. Because  P ∉ 
LS(F) => LS(F) ⊆ Ux \ P => Ux \ P -> LS(F),where LS(F) -> 
RS(F), RS(F) -> P. Then  Kx\P -> P => contradict with the 
assumption  Kx

RS(F
 is the key.  Then we have: 

h) \ LS(Fh)  ⊆  Uox

III. CONCLUSION 

,  x∈ id. 

The results for the keys, the primitive and non primitive 
attribute sets with the tranlation of block scheme in the 
database model of block form studied above are only the 
initial results. In the case of blocks degenerate into relations 
then these results to coincide with the results given by many 
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authors for relations in the relational data model. Some 
results are considered in the particular case of the F set of 
functional dependencies in the block scheme as Fh
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	We have the following comments:
	Reviews 1:
	Let block schemes ( = (R,F), ( = (S,G), X (  , X ={xP(i)P, x( id, i ( A},  A ( {1,2, ..., n}. Scheme ( received from scheme ( by the translation follow the set of attributes X:  ( = ( \ X.
	Then, if  id={x} then the block scheme ( reduces to the relational schema and the translation follow the set of attributes X in this case becomes the translation follow the set of attributes X in the relational data model.
	Reviews 2:
	Let block schemes ( = (R, FRhR), ( = (S, GRhR), X (  , X ={xP(i)P, x( id, i ( A},  A ( {1,2, ..., n}. Then, if scheme ( received from the scheme ( by the translation follow the set of attributes X, mean ( = ( \ X  then:
	S = R \ X,  GRhR = FRhR \ X = \ X.
	Since we have:    GRhxR = FRhx R\ (X (  ),  ( x (  id.
	Thus, the translation of block scheme in this case was transferred to the translation of slice schemes, for each the slice scheme then this translation is the translation of relational scheme in the relational data model.
	Let block scheme ( = (R,FRhR), R = (id; AR1R, AR2R, ... , ARnR )  and  X, URoR, URKR, URIR  are the index sets of attributes  (  ,  for block scheme  (  we denoted:
	- URo R is the set of all non key attributes.
	- URKR is the set of all key attributes.
	- URI   Ris the set of all attributes, which is in every key.
	Let block schemes  (=(R,FRhR), R= (id; AR1R, AR2R, ... , ARnR ); ( = (S,G), ( = ( \ X.  Then we denoted:
	(RxR = (RRxR,FRhxR) is a slice scheme of  ( = (R,FRhR)  at  point  x,
	(Rx R= (SRxR,GRxR)  is a slice scheme of  ( =(S,G)  at poimt  x.
	Proposition 2.1 (Necessary and Sufficient Condition) :
	Let block scheme ( = (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR );  X, K (  , X ={xP(i)P, x( id, i ( A}, K = {xP(i)P, x( id, i ( B}; A, B ({1,2, ..., n},  X ( K = (,  X ( URI R, ( = (S,G), ( = ( \ X.  Then:
	K is a key of  (  if only if  XK  is a key of (.
	K is a key of ( if only if  XRx RKRxR is a key of (RxR=(RRxR,FRhx R), XRxR= {xP(i)P, i(A}, KRxR= {xP(i)P, i(B}, x( id.
	Proof
	a =>)  Suppose  K  is the key of  (  => K is the super key of ( => XK, X(K = (  is the super key of  ( => exists  K’ ( K , X(K’ = (  that  XK’  is the key of ( (because X ( URIR ). According to the properties of key stated in [7] =>  XK’ \ X = K’  is ...
	( a) <=)  Conversely, suppose   XK  is a key of  (, according to the properties of key stated in [7] =>  XK\ X = K  is a key of  (.
	( b) =>)  Suppose  K is a key of  (  => in the question a) above we have  XK  is the key of ( ,  According to the necessary and sufficient conditions of key in the block scheme [4] =>  XK (   = XRxR KRxR  is a key of  (RxR=(RRxR,FRhx R).
	b<=)  Suppose  XRxR KRxR is a key of  (RxR=(RRxR,FRhx R), XRxR= {xP(i)P, i(A}, KRxR= {xP(i)P, i(B}, x( id   =>   = XK  is a key of  ( (according to the properties of key in the block scheme [4]) . On the other hand from  XK  is the key of  (,  so the ...
	Conséquences :
	Let block scheme ( = (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR );  X, Y, K (  , X ={xP(i)P, x( id, i ( A}, Y ={xP(i)P, x( id, i ( B}, K ={xP(i)P, x( id, i ( C};  A, B, C ({1,2, ..., n},   Y ( URI R, X ( URo R,  ( = (S,G), ( = ( \ XY.  Then:
	K is a key of  (  if and only if  YK  is a key of (.
	K is a key of ( if and only if  YRx RKRxR is a key of  (RxR=(RRxR,FRhx R), YRxR= {xP(i)P, i(B}, KRxR= {xP(i)P, i(C}, x( id.
	Proof
	a)  We denoted  ( = ( \ X,  then  ( = ( \ XY = (( \ X) \ Y =  (  \ Y  ( where  X ( Y = (  vì   Y ( URI R,  X ( URo R) . Since, because  Y ( URI  RandR Rapply proposition 2.1 we have:  K is a key of  (  if and only if  YK is a key of  (.
	On the other hand, because  X ( URo R and apply properties of key when translation the block scheme in [7], we have:  YK  is a key of  (  if and only if  YK  is a key of  (.
	Thus:  K is a key of  (  if and only if  YK is a key of  (.
	b)  Suppose   K  is a key of  ( ,  according to a)  we have:
	K is a key of  (  if and only if   YK is a key of  (.                         (i)
	Since apply properties of key for the block scheme in [4] inferred:
	YK  is a key of  (  if and only if  YRx RKRxR  is a key of  (RxR=(RRxR,FRhx R), YRxR= {xP(i)P, i(B}, KRxR= {xP(i)P, i(C}, x( id.                                                          (ii)
	From  (1) and (2)  we have:
	K is a key of  (  if and only if  YRx RKRxR  is a key of (RxR=(RRxR,FRhx R), YRxR= {xP(i)P, i(B}, KRxR= {xP(i)P, i(C}, x( id.
	Let block scheme  ( = (R, F), where we denoted:
	LS(F)  is the set of attributes appearing in the left side and  RS(F) is the set of attributes appearing in the right side of functional dependencies in F.
	Attr(F) = LS(F) ( RS(F)
	Then we have:   Attr(F) (  .
	Proposition 2.2:
	Let block scheme ( = (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR );  X, M (  , X ( M, X ={xP(i)P, x( id, i ( A}, M = {xP(i)P, x( id, i ( B}; A, B ({1,2, ..., n}.  Then, following conditions are equivalent:
	XRxR P+P( MRxR  =  XRxR , x( id
	XRxR P+P( (MRxR\ XRxR )  = (,  x( id
	MRxR\ XRxR P+P = MRx R\ XRxR , x( id
	where:  XRxR = {xP(i)P, i ( A},  MRxR = {xP(i)P, i ( B}.
	Proof
	a) => b):  We have  XRxR P+P( MRxR  =  XRxR , x( id,  we need to prove:   XRxR P+P( (MRxR\ XRxR )  = (,  x( id.
	Indeed,  suppose  the opposite exist  P (  XRxR P+P( (MRxR\ XRxR ) => P (  XRxR P+P and  P ( MRxR\ XRxR  => P (  XRxR P+P and  P ( MRx   Rvà  P( XRxR  =>  P (  XRxR P+P( MRx R = XRx  R và  P( XRxR  => contradiction. Hence  XRxR P+P( (MRxR\ XRx...
	b) => c):  We have  XRxR P+P( (MRxR\ XRxR )  = (,  x( id, we need to prove:  MRxR\ XRxR P+P = MRx R\ XRxR , x( id.
	Indeed, by  XRxR ( XRxR P+P => MRxR\ XRxR P+P (  MRx R\ XRxR.             (1)
	Suppose that  P ( MRxR\ XRxR  => P ( MRx   Rand  P( XRxR ,  so  P ( XRxR P+P  because if  P ( XRxR P+P then we deduce  P ( XRxR P+P( (MRxR\ XRxR )  = (  (under the assumption) => contradiction. So  P (  MRxR\ XRxR P+P  =>  MRx R\ XRx   R(R   RMRx...
	From  (1) and (2)  we have:  MRxR\ XRxR P+P = MRx R\ XRxR , x( id.
	c) => a):  We have  MRxR\ XRxR P+P = MRx R\ XRxR , x( id, we need to prove:  XRxR P+P( MRxR  =  XRxR , x( id.
	Indeed, under the assumption we have  X ( M  => XRxR ( MRxR,  on the other hand, under the nature of closure then:   XRxR ( XRxR P+PR R => XRxR ( XRxR P+P( MRxR .         (1)
	Conversely, suppose  P ( XRxR P+P( MRxR => P ( XRxR P+P  and  P ( MRxR => P( MRxR\ XRxR P+
	If  P ( XRxR  then  P ( MRx R\ XRxR = MRxR\ XRxR P+P , so  P ( MRxR  and  P ( XRxR P+P => conflict =>  P ( XRxR .  So  XRxR P+P( MRxR ( XRxR .                  (2)
	From (1) and (2)  we inferred  XRxR P+P( MRxR = XRxR .
	Proposition 2.3:
	Let block scheme ( = (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR );  X, M (  , X ={xP(i)P, x( id, i ( A}, M = {xP(i)P, x( id, i ( B}; A, B ({1,2, ..., n}.  Then, following conditions are equivalent:
	X P+P( M  =  X
	X P+P( (MR R\ X )  = (
	MR R\ X P+P = MR R\ X
	Proof
	Using the necessary and sufficient conditions for the closure of the index attribute set of block scheme in  [4]  we have:
	a)   XRxR P+P(  MRxR  =  XRxR , x( id          <=>    X P+P( M  =  X
	b)   XRxR P+P( (MRxR\ XRxR )  = (,  x( id   <=>    X P+P( (MR R\ X )  = (
	c)   MRxR\ XRxR P+P = MRx R\ XRxR , x( id        <=>    MR R\ X P+P = MR R\ X
	From these results, we deduce the equivalent of three equations in the statement of proposition 2.3.
	Proposition 2.4:
	Let block scheme ( = (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR );  X (  , X ={xP(i)P, x( id, i ( A}; A ({1,2, ..., n},  FRhR is a sufficient set of functional dependencies over  R .  Then we have:
	\P PAttr(FRhx R)   (  URIxR , x( id
	If  XRxR (  URIx R then   XRxR P+ P( URKxR = XRx R,  x( id
	Proof
	We denoted MRxR = RS(FRhxR)\ LS(FRhxR),  then we have:  URIx R=  \ MRxR , moreover we have:
	MRxR ( Attr(FRhx R)  =>    \P PAttr(FRhx R)   (  \ MRxR = URIxR.
	Assume that  {KR1R, KR2R, …, KRtR} is the set of keys on the slice scheme   (RxR = (RRxR, FRhxR), XRxR  (  URIxR  then  the nature of keys we have:
	If   XRxR  (  URIxR  then   XRxR  (  URIxR  ( KRixR   =>  XRxR P+P( KRixR = XRxR , i=1..t .
	Vậy:   XRxR P+P( URKR = XRxR , x( id .
	Consequence :
	Let block scheme ( = (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR );  X (  , X ={xP(i)P, x( id, i ( A}; A ({1,2, ..., n},  FRhR is a sufficient set of functional dependencies over  R .  Then we have:
	\P PAttr(FRh R) (  URIR
	If  X (  URI R then  X P+P( URKR = XR
	Proof
	From a) in the proposition 2.4 we have:  \P PAttr(FRhx R ( URIxR , x( id
	Thus, when we take the union of the left side and union of the right side respectively then the nature of implies not change, so:
	\P PAttr(FRh R) (  URIR
	Prove by the method as in question a).
	Proposition 2.5:
	Let block scheme ( = (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR );  X, Y (  , X ={xP(i)P, x( id, i ( A}, Y={xP(i)P, x( id, i ( B}; A, B ({1,2, ..., n},  FRhR is a sufficient set of functional dependencies over R.  Then:
	If  xP(i) P( LS(FRhx R)  and  FRhxR => XRxR->YRxR then  FRhxR => XRxR\ xP(i)P ->YRxR \ xP(i)P , i=1..n,
	wherei  XRxR = {xP(i)P, i ( A},  YRxR = {xP(i)P, i ( B}.
	Proof
	We consider the slice scheme  (RxR = (RRxR, FRhx R), from assuming  FRhxR => XRxR->YRxR inferred  YRxR ( XRxRP+P.  Based on the algorithm search closure of  XRxR then  existing a range of functional dependencies  LR1R -> RR1 R, LR2R -> RR2 R, … ,LRkR ...
	LR1R ( X , LR2R ( XRR1R , LR3R ( XRR1RRR2R , …, LRkR ( XRR1RRR2R …RRk-1R ,
	Y  ( XRR1RRR2R …RRk-1R RRkR = XP+P.  (1)
	Because   xP(i) P( LS(FRhx R) => xP(i) P does not appear in the left side of  F so we have:
	LR1R ( X\ xP(i) P,  LR2R ( (X\xP(i)P)P PRR1R ,  LR3R ( (X\xP(i)P)P PRR1RRR2R , …,
	LRkR ( (X\xP(i)P)P PRR1RRR2R …RRk-1R ,   Y  ( (X\xP(i)P)P PRR1RRR2R …RRk-1R RRkR = (X\xP(i)P)P +P.   (2)
	From  (1) and (2) we have:
	(X\xP(i)P)P +P= (X\xP(i)P)P PRR1RRR2R …RRk-1R RRkR = XRR1RRR2R …RRk-1R RRkR\ xP(i) P ( Y\ xP(i)
	So:      FRhxR => R RX\xP(i)  P-> Y\ xP(i)P.
	Conséquence ;
	Let block scheme ( = (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR );  X, Y (  .  Then, if  xP(i) P( LS(FRh R) and  FRhR => XR R->YR R then  FRhR => X\ xP(i)P ->Y \ xP(i)P , i=1..n, x ( id.
	Proposition 2.6:
	Let block scheme ( = (R, FRhR), R = (id; AR1R, AR2R, ... , ARnR );  X (  , X ={xP(i)P, x( id, i ( A}; A ( {1,2, ..., n},  FRhR is a sufficient set of functional dependencies over R.  Then:
	a) URoxRP+P= URoxR , x( id
	b) XRxR (  URoxR  <=> URoxR -> XRxR  <=> URoxR -> XRxRP+P <=>  XRxRP+P(  URoxR,  x( id
	c) If  ( -> XRxR  then   XRxRP+P(  URoxR ,  x( id
	d)  RS(FRhR) \ LS(FRhR)  (  URoxR,  x( id
	where  XRxR = {xP(i)P, i ( A},  URoxR = {xP(i) P| xP(i) P(  URoR},  x( id.
	Proof
	a)  Follow the definition of closure we have:  URoxR (  URoxRP+P, so to prove URoxRP+P= URoxR  we need to prove   URoxRP+P (  URoxR.
	Indeed, assume that  P is a key attribute and  P( URoxRP+P, KRxR  is the key contained  P  in (RxR = (RRxR, FRhxR). Then:  URoxR -> P, put  Y=KRxR\P => YP=KRxR.
	We have:   YURoR -> YP, where  YP = KRxR  is a key => YURoR  is a superkey in  (RxR , according to the nature of the superkey then:  YURoR \ URoR = Y is a superkey. This contradicts with the assumption  Y  is actually part of the key KRxR. So we have:...
	b) To demonstrate the sequence above, we will prove the circle diagramn:
	Indeed, from  XRxR (  URoxR => URoxR -> XRxR => URoxR -> XRxRP+P => XRxRP+P(  URoxRP+P, according to  a)  we have:  URoxRP+P =  URoxR. Therefore: XRxRP+P(  URoxR => XRxRP P(  URoxR .
	We have:  URoxR -> (, which  ( -> XRxR  inferred:  URoxR -> XRxR. According to b) has been proved, then  XRxRP+P(  URoxR .
	d) We prove:  RS(FRhR) \ LS(FRhR)  (  URoxR,  x( id, indeed:
	Assume that  FRhR = {LR1R->RR1R, LR2R->RR2R, ..., LRkR->RRkR}  then by the nature of the additive functional dependencies, we have:  LR1RLR2R...LRkR -> RR1RRR2R...RRkR  that is:  LS(F) -> RS(F).  To prove  RS(FRhR) \ LS(FRhR)  (  URoxR,  we prove by  ...
	Assume that conversely, we have key attribute  P( RS(F) \ LS(F) and KRxR is the key contains  P. Then: KRxR ->URxR , P( RS(F), P ( LS(F) => KRxR\P -> URxR\P. Because  P ( LS(F) => LS(F) ( URx R\ P => URx R\ P -> LS(F),where LS(F) -> RS(F), RS(F) -> P....
	RS(FRhR) \ LS(FRhR)  (  URoxR,  x( id.

