
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 153

ISSN No. 0976-5697

Development of SIP UDP Transport Process under Linux Environment

K.Venkateswarlu*, Swarnalatha.P, L. Ramanathan and D. Ganesh Gopal
M.Tech- C.S.E*, Asst. Professor (S.G), Asst. Professor (Sr), Asst. Professor

SCSE, VIT University Vellore-14
venkateswarlu.vit19@yahoo.com*, pswarnalatha@vit.ac.in, lramanathan@vit.ac.in, ganeshgopal@svit.ac.in

Abstract: SIP is an application-layer control protocol that can establish, modify, and terminate multimedia sessions (conferences) such as
Internet telephony calls. The Objective is to relinquish the SIP UDP transport process from the SIP gateway architecture (Voice
application) running on IOS (Internetworking OS) and make it as an independent process running on Linux OS. The paper deals with the UDP
(User Datagram Protocol) Socket Handler for SIP Service Provider under Linux Environment and the functionality of SIP UDP process which
will handle the incoming messages from Network Layer (NL) and placing those messages on SIP Stack, followed by forwarding incoming
messages will be sent to Application layer(AL) and Converse with the methods of Linux System
Calls,Socket(),Setsockopt(),connect(),Bind(),Accept(),close(), Select() [16] and Using POSIX Message Queue System calls [15].

Keywords: IOS, UDP, SIP, Linux, NL, AL, SIP Stack.

I. INTRODUCTION

A. SIP Part:
Sip is the generic IETF session establishment protocol

[10]. Sip is a peer-to-peer protocol [4]. Sip is human
readable, extensible [11]. Sip is only one piece of the puzzle
[4]:
SDP (Session Description Protocol): media negotiation
RTP/RTCP: Media
DNS: name resolution
NAT/Firewalls/SIP Security
HTTP 1.1: message formatting
MIME: application body encoding.

Figure1. SIP Protocol Descriptions.

There are many applications of the internet that require
the creation and management of a session, where a session is
treated as exchange of data between associations of
Participants [6].

The basic SIP message format [7] and conversation as
follows,

a. Received:
INVITE sip:123@9.44.29.12:5060 SIP/2.0
Via: SIP/2.0/UDP 10.104.45.90:5080;
branch=z9hG4bK-14159-1-0
From : sipp
<sip:sipp@10.104.45.90:5080>;tag=14159SIPpTag001

To : sut <sip:123@9.44.29.12:5060>
Call-ID : 1-14159@10.104.45.90
CSeq : 1 INVITE
Contact : sip:sipp@10.104.45.90:5080
Max-Forwards : 70
Subject : Performance Test
Content-Type : application/sdp
Content-Length : 0 [1]

b. Sent:
SIP/2.0 200 OK
Via: SIP/2.0/UDP 10.104.45.90:5080; branch=z9hG4bK-
14159-1-0; received=9.45.33.1
From : sipp
<sip:sipp@10.104.45.90:5080>;tag=14159SIPpTag001
T o : sut <sip:123@9.44.29.12:5060>;tag=4E8720A4-2395
Date : Wed, 15 Feb 2012 13:31:09 GMT
Call-ID : 1-14159@10.104.45.90
CSeq : 1 INVITE
Allow : INVITE, OPTIONS, BYE, CANCEL, ACK,
PRACK, UPDATE, REFER, SUBSCRIBE, NOTIFY,
INFO, REGISTER
Allow-Events : telephone-event
Remote-Party-ID : <sip:123@9.44.29.12>;party=called;
screen=no; privacy=off
Contact : <sip:123@9.44.29.12:5060>
Supported : replaces
Supported : sdp-anat
Server : Cisco-SIP Gateway/IOS-12.x
Supported: timer
Content-Type: application/sdp
Content-Disposition: session; handling=required
Content-Length: 208
V = 0
o = CiscoSystemsSIP-GW-User Agent 227 4705 IN IP4
9.44.29.12
s = SIP Call
c = IN IP4 9.44.29.12
t = 0 0
m=audio 18498 RTP/AVP 8 19
c=IN IP4 9.44.29.12
a=rtpmap: 8 PCMA/8000

http://sip:123@9.44.29.12:5060/�
http://sip:sipp@10.104.45.90:5080/�
http://sip:123@9.44.29.12:5060/�
mailto:1-14159@10.104.45.90�
http://sip:sipp@10.104.45.90:5080/�
http://sip:sipp@10.104.45.90:5080/�
http://sip:123@9.44.29.12:5060/�
mailto:1-14159@10.104.45.90�
mailto:sip%3A123@9.44.29.12�
http://sip:123@9.44.29.12:5060/�

K.Venkateswarlu et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,153-162

© 2010, IJARCS All Rights Reserved 154

a=rtpmap: 19 CN/8000
a=ptime: 20 [5]

c. Received:
ACK sip:123@9.44.29.12:5060 SIP/2.0 [8]
Via: SIP/2.0/UDP 10.104.45.90:5080;branch=z9hG4bK-
14159-1-5
From : sipp
<sip:sipp@10.104.45.90:5080>;tag=14159SIPpTag001
To : sut <sip:123@9.44.29.12:5060>;tag=4E8720A4-2395
Call-ID : 1-14159@10.104.45.90
CSeq : 1 ACK
Contact : sip:sipp@10.104.45.90:5080
Max-Forwards : 70
Subject : Performance Test
Content-Type : application/sdp
Content-Disposition : session; handling=required
Content-Length: 371
v=0
o=user1 53655765 2353687637 IN IP4 10.104.45.90
s=SIP Call
c=IN IP4 10.104.45.90
t=0 0
m=audio 6000 RTP/AVP 8 96 101
a=rtpmap: 8 PCMA/8000
a=rtpmap: 96 mpeg4-generic/48000
a=fmtp: 96 profile-level-id=16; streamtype=5; mode=AAC-
hbr; Config=11B0; sizeLength=13; indexLength=3;
indexDeltaLength=3; constantDuration=480
a=rtpmap: 101 telephone-event/8000
a=fmtp: 101 0-15 [2]
 <============= Voice Path Established and the two
phones are in Conversation ================>

d. Sent:
BYE sip:sipp@10.104.45.90:5080 SIP/2.0
Via: SIP/2.0/UDP 9.44.29.12:5060;branch=z9hG4bK0727
From : sut <sip:123@9.44.29.12:5060>;tag=4E8720A4-
2395
To: sipp
<sip:sipp@10.104.45.90:5080>;tag=14159SIPpTag001
Date : Wed, 15 Feb 2012 13:31:24 GMT
Call-ID : 1-14159@10.104.45.90
User-Agent : Cisco-SIP Gateway /IOS-12.x
Max-Forwards : 70
Timestamp : 1329312704
CSeq : 101 BYE
Reason : Q.850;cause=16
P-RTP-Stat:
PS=228,OS=36480,PR=0,OR=0,PL=0,JI=1,LA=0,DU=19
Content-Length: 0 [1]

*Feb 15 13:31:44.767:
//5/27E927458013/SIP/Msg/ccsipDisplayMsg:
e. Received:

SIP/2.0 200 OK
Via: SIP/2.0/UDP 9.44.29.12:5060; branch=z9hG4bK0727
From: sut <sip:123@9.44.29.12:5060>; tag=4E8720A4-
2395
To: sipp <sip:sipp@10.104.45.90:5080>;
tag=14159SIPpTag001
Call-ID: 1-14159@10.104.45.90
CSeq: 101 BYE

Contact: <sip: 10.104.45.90:5080; transport=UDP>
Content-Length: 0 [3]

<============= Call Terminates =============>

B. SIP IOS Architecture:

Figure2. SIP IOS Architecture Diagram

In the above SIP IOS Architecture, under Connection
manager UDP Transport process we are moving that part to
Linux Environment for the purpose of performance
improvement using Socket Programming and Linux
Message queues Using C programming.

C. SIPPPart:
Sipp is a third party tool which allows for the crafting

and transmission/receipt of SIP messages [14]. It is a very
beneficial tool to reproduce behavior seen from a third party
SIP endpoint [14]. It will run on Linux and win32 [14]. It

Developed
UDP
Process.

http://sip:123@9.44.29.12:5060/�
http://sip:sipp@10.104.45.90:5080/�
http://sip:123@9.44.29.12:5060/�
mailto:1-14159@10.104.45.90�
http://sip:sipp@10.104.45.90:5080/�
http://sip:sipp@10.104.45.90:5080/�
http://sip:123@9.44.29.12:5060/�
http://sip:sipp@10.104.45.90:5080/�
mailto:1-14159@10.104.45.90�
http://sip:123@9.44.29.12:5060/�
http://sip:sipp@10.104.45.90:5080/�
mailto:1-14159@10.104.45.90�

K.Venkateswarlu et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,153-162

© 2010, IJARCS All Rights Reserved 155

also has the capacity to replay RTP packets from a packet
capture with the media replay function [14].

a. How to run Sipp:
Home /... /sipp 10.105.35.65 –sf sample_uac.xml –m 2 –s
123

II. SYSTEM DESIGN

A. Design Methodology:
The project proposes top-down approach. A top-down

development process starts with the definition of the most
general concepts in the domain and subsequent
specialization of the concepts. It starts with creating classes
for the general concepts. Then it specialize the class by
creating some of its subclasses. Fig-1 describes Top-Down
development process for implementation of sip transport
layer UDP process under Linux environment.

Figure3. Top-Down development process for SIP Transport Layer UDP
Process.

In the above top-down approach, indicates that
implementation of sip transport layer UDP [12] process
under Linux environment contains three modules.

First, the UDP [12] process takes the care about
whatever the incoming messages that are coming from
network layer, received on either IPv4 or IPv6 sockets. To
develop these we have used the Linux system calls such as
socket (), bind (), SETSOCKOPT () and select () System
call (). The select allow a program to monitor multiple file
descriptors, waiting until one or more of the file descriptors
become "ready" for some class of I/O operation. A file
descriptor is considered ready if it is possible to perform the
corresponding I/O operation without blocking.

Second, the UDP Process takes care about the SIP Queue
related things such as,

Void *dequeue (void *queue_ptr)
Bool enqueue (queuetype *qptr, void *eaddr)

 Void *peekqueuehead (const queuetype* q)
 Void *sip_peekqueuehead (sip_queue_t* queue)
 Void *sip_peekqueuenext (sip_queue_t* queue, void

*element)
sip_queue_init (sip_queue_t *sip_q, int size)

Enqueue - add an element to a FIFO queue.
Dequeue - remove first element of a FIFO queue.
Peekqueuehead - Return address of element at head of
Queue.

Third, The main Functionality of SIP UDP Process,
After Receiving Messages on socket, using
sip_udp_read_sock () it reads the message and it processes

message and it forwards that message to SIPSPI on
application layer.

These, functionality can be implemented in Linux Using
Message Queue Concept. We are using the POSIX Linux
Message queue System calls [15] such as mq_create (),
mq_send (), mq_receive (), mq_notify (), mq_close (),
mq_unlink ()...Etc.

B. Module-Wise Algorithmic Approach:
The project is divided into three modules:
a. Handle the Sockets (NL) Related Parts.
b. Develop SIP Queue Related Parts.
c. Implement Message Queue Between TL and AL.

MODULE-1 HANDLE RECEIVED MESSAGES ON
NETWORK LAYER
These, Module Functionality can be handled using the
following functions.

a. Bool process_watch_socket_event ():
The API to call sockets, and ask it watches for events

you want. This Function initializes os structure, watched
item and puts u on the notification queue. RECURRING ->
every time packet arrives.
LINUX:
Using, Message queues.

b. Bool process_get_socket_event ():
The API call to get the socket off the event_list.

This function dequeues the socket from the event_list and
gives it to the application if there are interesting events it
wants.
Also, takes itself of the run queue, providing fairness if
necessary.
Input Parameters:
FD -> File descriptor for which to retrieve events.
event_mask-> the mask for the event.
LINUX:
Using Select API, We can do the same functionality.
SYNTAX OF SELECT:
Int select (int nfds, fd_set *readfds, fd_set *writefds,
 fd_set *exceptfds, struct timeval *timeout)[16];
select(): It allow a program to monitor multiple file
descriptors, waiting until one or more of the file descriptors
become "ready" for some class of I/O operation[16] .

A file descriptor is considered ready if it is possible to
perform the corresponding I/O operation without blocking
[16].
Parameters:
Nfds -> is the highest-numbered descriptor in any of the
three sets, plus 3.
fd_set -> FD_SET and FD_CLR add or remove a given
descriptor from a set.
fd_zero -> FD_ZERO will clear a set.
fd_isset -> FD_ISSET tests to see if a descriptor is part of
the set; this is useful after select returns.
Timeout -> is an upper bound on the amount of time elapsed
before select returns. It may be zero, causing select to return
immediately. (This is useful for polling.) If timeout is NULL
(no timeout), select can block indefinitely.
INPUT: Send the Multiple Messages to Network Layer
(Sockets) From Data Link Layer.
OUTPUT: After, Receiving the Message on the Different
Sockets, Which are created by the SIP UDP Transport
Process read those messages and print those messages.

SIP TRANSPORT LAYER UDP PROCESS
UNDER LINUX ENVIRONMENT

DEVELOP SIP QUEUE
RELATED THINGS AT TL

DEVELOP MQ BETWEEN
NL AND AL

HANDLE SOCKET
RELATED PART FROM
NETWORK LAYER

IPv4
SOCKET
PART

SIP SPI
STACK

K.Venkateswarlu et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,153-162

© 2010, IJARCS All Rights Reserved 156

MODULE-2 HANDLE SIP QUEUE RELATED PARTS
The aim of this module is to implement the sip queue
functionalities.
The Functions that are developed are as follows,

a. Void *dequeue ():
Dequeue - remove first element of a FIFO queue.
LINUX:
These is normal queue operation

b. Bool enqueue ():
Enqueue - add an element to a fifo queue.
LINUX:
This is normal queue operation.

c. Void *peekqueuehead ():
Peekqueuehead -- Return address of element at head of
queue.
MODULE-3 DEVELOP MESSAGE QUEUE BETWEEN
TRANSPORT LAYER AND APPLICATION LAYER

The main functionality of this module is the SIP UDP
Process received the messages from Network Layer; it takes
that message send to the AL via Message Queue using
message queue id and converse.

III. DETAILED DESIGN

A. Design Diagram for UDP Process:
In the below diagram, IOS Scheduler is Non Preemptive,

The task scheduler is responsible for scheduling and
executing kernel processes on a CPU [9]. Because the
scheduler is run-to-completion, all tasks must voluntarily
relinquish control to the scheduler [9]. In general, a task
should perform a small amount of work, relinquish the
processor, and then continue working the next time it
receives the CPU from the scheduler [9].

The Linux Scheduler is Preemptive, Means the process
is forcibly interrupted by the Linux scheduler, and because
of this behavior every process will get the chance to execute
their tasks periodically. Ultimately this increases the
performance of the SIP UDP Transport Process by
decreasing the socket depth and message queue depth

Figure 4. SIP UDP Transport Process under Linux Environment.

B. Design Explanation:

Figure 5. Detail Description about the SIP UDP Transport Process.

In the above diagram, P3 receives the Messages from the
Network Layer and it performs some processing, forwards
that message to P1 via P2. Assume the process P1 has the
control in case of IOS, at that time so many messages
received by the P3 but P1 has to give control voluntarily to
process P3 until the socket depth increases. This is the main
reason why we want to port to Linux Environment. In case
of Linux, the scheduler is preemptive so after some time
scheduler forcibly gives control to the P3. So these
behaviors increase the performance of the overall process.

K.Venkateswarlu et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,153-162

© 2010, IJARCS All Rights Reserved 157

C. Code Flow Diagram @Socket Part:
LINUX:

Figure 6. Code Flow Diagram for Sockets Handling at Network Layer.

D. Code Flow Diagram @Message Queue Module:
LINUX:

Figure7. Code Flow Diagram for Message Queue Module

IV. IMLEMENTATION

A. Snapshots at UDP Process Side:

Start

The functions, watch_socket_event and get_socket_event are replaced by
LINUX Select API.Here whatever the sockets that are created by the SIP
UDP Process are added to the readfds.

sip_udp_read_socket (): This Function calls appropriate function for
processing a SIP Message based on the connection id on which the
message received (Either IPV4 or IPV6).

After reading the message from socket, SIP UDP Process sends the
message to message queue using mq_send (msgqid, msgcontent, strlen
(msgcontent), msgprio) system call.

End

Create the message queue, using mq_open (MSGQOBJNAME,
O_RDWR)

Enable Watch on Message Queue, Using mq_notify() System
Call, when ever any message received by message queue, it
notifies the SIP SPI as well as it notifies the SIP UDP Process, if
message is received from SIP SPI.

If any Message Queue event Occurs, then
sip_udp_check_queue_events (); Process that event, reply to the
SIP UDP Process.

End

Start

K.Venkateswarlu et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,153-162

© 2010, IJARCS All Rights Reserved 158

K.Venkateswarlu et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,153-162

© 2010, IJARCS All Rights Reserved 159

K.Venkateswarlu et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,153-162

© 2010, IJARCS All Rights Reserved 160

B. Snapshots at SIPSI Side:

K.Venkateswarlu et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,153-162

© 2010, IJARCS All Rights Reserved 161

C. Snapshots at SIPP Side:

K.Venkateswarlu et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,153-162

© 2010, IJARCS All Rights Reserved 162

V. CONCLUSION AND FUTURE WORKS

After testing, the SIP UDP Transport Process
functionality in both the operating systems such as IOS and
Linux Environment, we made the conclusion as the socket
Depth and Message Queue Depth decreased under Linux
Environment. These, factor improves the performance of the
network and response time also minimized.

The main advantage for developing the SIP UDP
Transport Process under Linux Environment is to reduce the
size of Socket Depth (Measure at Network Layer) and
Message Queue Depth (Measure at Transport Layer), which
we achieved because of preemptive behavior of Linux
Operating System.

Currently, we developed the SIP UDP Transport Process
under Linux Environment, in Future we are planning to
Develop the other two common transport Layer processes at
connection manager level, such as TCP (transmission
congestion protocol) and TLS (transport layer security) .The
Aim of these two processes are developing under Linux
Environment also to reduce the Socket Depth at NL and
Message Queue Depth at TL. In order to implement these
two processes under Linux Environment, there are
challenging issues associated with Timers and Security
aspects. We Measured the Socket Depth and Message
Queue Depth by Using the SIPP tool for performance testing
of the SIP UDP Transport Process.

VI. REFERENCES

[1]. C. Holmberg, E. Burger, and H. Kaplan, “Session Initiation
Protocol (SIP) INFO Method and Package
Framework,”RFC 6086 (Proposed Standard), Internet
Engineering Task Force, January 2011.

[2]. C. Jennings, R. Mahy, and F. Audet, “Managing Client-
Initiated Connections in the Session Initiation Protocol
(SIP),” RFC 5626 (Proposed Standard), Internet
Engineering Task Force, Oct. 2009.

[3]. R. Mahy, B. Biggs, and R. Dean, “The Session Initiation
Protocol (SIP) “Replaces” Header,” RFC 3891 (Proposed
Standard), Internet Engineering Task Force, Sept. 2004.

[4]. SIP: Understanding the Session Initiation Protocol Alan B.
Johnston, Artech House, second edition, 2004.

[5]. R. Mahy and D. Petrie, “The Session Initiation Protocol
(SIP) “Join” Header,” RFC 3911 (Proposed Standard),
Internet Engineering Task Force, Oct. 2004

ISBN 1-
58053-655-7

[6]. J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J.
Peterson, R. Sparks, M. Handley, and E. Schooler, “SIP:
Session Initiation Protocol,” RFC 3261 (Proposed
Standard), Internet Engineering Task Force, June 2002.

[7]. J. Rosenberg and H. Schulzrinne, “Reliability of
Provisional Responses in Session Initiation Protocol
(SIP),” RFC 3262 (Proposed Standard), Internet
Engineering Task Force, and June 2002.

[8]. B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema,
and D. Gurle, “Session Initiation Protocol (SIP) Extension
for Instant Messaging,” RFC 3428 (Proposed Standard),
Internet Engineering Task Force, Dec. 2002.

[9]. Cisco IOS Programmer’s Guide/ Architecture Reference,
Software Release 12.0, Fifth Edition, February 1999, Text
Part Number: 78-2051-05.

[10]. M. Handley, H. Schulzrinne, E. Schooler, and J.
Rosenberg, “SIP: Session Initiation Protocol,” RFC 2543
(Proposed Standard), Internet Engineering Task Force,
Mar. 1999, obsolete by RFCs 3261, 3262, 3263, 3264,
3265.

[11]. H. Schulzrinne and J. Rosenberg, "The Session Initiation
Protocol: Providing Advanced Telephony Access across
the Internet," Bell Labs Technical Journal

[12]. Postal, J., “User Datagram Protocol, “RFC 768, 1980.

, October-
December 1998.

[13]. H. Sinnreich and A. Johnston,

[14]. http://sipp.sourceforge.net/doc3.0/reference.html

Internet Communications
Using SIP: Delivering VoIP and Multimedia Services with
Session Initiation Protocol, John Wiley & Sons, New York,
NY, USA, 2nd edition.

[15]. http://linux.die.net/man/7/mq_overview.
[16]. http://manpages.courier/mta.org/htmlman2/select.html

	SIP Part:
	SIPPPart:

