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Abstract:  In this paper, we solve the problem of regulating the output of the chaotic T system, discovered by the scientists G. Tigan and  

D. Opris (2008). T system is one of the well-known three-dimensional chaotic attractors and it has many interesting complex dynamical 

behaviours and it has potential applications in secure communication. In this paper, we construct explicit state feedback control laws to regulate 

the output of the T system so as to track constant reference signals. The control laws are derived using the regulator equations of Byrnes and 

Isidori (1990), who have solved the output regulation of nonlinear systems involving neutrally stable exosystem dynamics.  

We also discuss the simulation results in detail. 
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I. INTRODUCTION  

Output regulation of nonlinear control systems is one of the 

very important problems in nonlinear control theory. The 

output regulation problem is the problem of controlling a fixed 

linear or nonlinear plant in order to have its output tracking the 

reference signals produced by some external generator (the 

exosystem). For linear control systems, the output regulation 

problem was solved by Francis and Wonham [1]. For nonlinear 

control systems, the output regulation problem was solved by 

Byrnes and Isidori [2] generalizing the internal model principle 

obtained by Francis and Wonham [1]. Byrnes and Isidori [2] 

made an important assumption in their work which demands 

that the exosystem dynamics generating the reference and 

disturbance signals is a neutrally stable system (Lyapunov 

stable in both forward and backward time). This class of 

exosystem signals includes the important particular cases of 

constant reference signals as well as sinusoidal reference 

signals. Using centre manifold theory for flows [3], Byrnes and 

Isidori derived regulator equations, which completely 

characterize the solution of the output regulation problem of 

nonlinear control systems. 

The output regulation problem for linear and nonlinear 

control systems has been the focus of many studies in recent 

years ([4]-[14]). In [4], Mahmoud and Khalil obtained results 

on the asymptotic regulation of minimum phase nonlinear 

systems using output feedback. In [5], Fridman solved the 

output regulation problem for nonlinear control systems with 

delay using centre manifold theory for flows. In [6]-[7], Chen 

and Huang obtained results on the robust output regulation for 

output feedback systems with nonlinear exosystems. In [8], Liu 

and Huang obtained results on the global robust output 

regulation problem for lower triangular nonlinear systems with 

unknown control direction. In [9], Immonen obtained results on 

the practical output regulation for bounded linear infinite-

dimensional state space systems. In [10], Pavlov, van de Wouw 

and Nijmeijer obtained results on the global nonlinear output 

regulation using convergence-based controller design. In [11], 

Xi and Ding obtained results on the global adaptive output 

regulation of a class of nonlinear systems with nonlinear 

exosystems. In [12]-[14], Serrani, Marconi and Isidori obtained 

results on the semi-global and global output regulation problem 

for minimum-phase nonlinear systems.  

In this paper, we solve the output regulation problem for the 

T system ([15], 2008) using the Byrnes-Isidori regulator 

equations [2] to derive the state feedback control laws for 

regulating the output of the T system for the case of constant 

reference signals (set-point signals). The T system (2008) is 

one of the recent three-dimensional chaotic attractors studied 

by the scientists G. Tigan and D. Opris  

In [15], Tigan and Opris show using a method of type 

Shilnikov that the T system displays “horseshoe” chaos, which 

in turn implies that the T system possesses a strange chaotic 

attractor. Thus, the T system has has many interesting complex 

dynamical behaviours and it has potential applications in secure 

communication. 

This paper is organized as follows. In Section II, we present 

a review of the solution of the output regulation for nonlinear 

control systems and the Byrnes-Isidori regulator equations. In 

Section III, we detail our solution of the output regulation 

problem for the T system. In Section IV, we discuss the 

simulation results. In Section V, we present the conclusions of 

this paper. 

II. REVIEW OF THE OUTPUT REGULATION FOR 

NONLINEAR CONTROL SYSTEMS 

In this section, we consider a multivariable nonlinear 

control system modelled by equations of the form 

            ( ) ( ) ( )x f x g x u p x ω= + +�                  (1a) 

           ( )sω ω=�                                                    (1b) 

            ( ) ( )e h x q ω= −                                       (2) 

Here, the differential equation (1a) describes the plant 

dynamics with state x defined in a neighbourhood X of the 

origin of 
nR and the input u takes values in 

mR  subject to the 

effect of a disturbance represented by the vector field ( ) .p x ω   
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The differential equation (1b) describes an autonomous 

system, known as the exosystem, defined in a neighbourhood 

W of the origin of ,k
R which models the class of disturbance 

and reference signals taken into consideration.  

We also assume that all the constituent mappings of the 

system (1)-(2) and the error equation (3), namely, , , ,f g p ,s  

h and q are 
1
� mappings vanishing at the origin.   

Thus, for 0,u = the composite system (1) has an 

equilibrium state ( ) ( ), 0,0x ω = with zero error (2).  

A state feedback controller for the composite system (1) 

has the form  

                ( ),u xα ω=                                                 (3) 

where α is a 
1
� mapping defined on X W× such that 

(0,0) 0.α =  Upon substitution of the feedback law (3) in the 

composite system (1), we get the closed-loop system given by 

             
( ) ( ) ( , ) ( ) 

( )

x f x g x x p x

s

α ω ω

ω ω

= + +

=

�

�
               (4) 

The purpose of designing the state feedback controller (3) is 

to achieve both internal stability and output regulation. Internal 

stability means that when the input is disconnected from (4) 

[i.e. when 0],ω = the closed-loop system (4) has an 

exponentially stable equilibrium at 0.x =  Output regulation 

means that for the closed-loop system (4), for all initial states 

( (0), (0))x ω  sufficiently close to the origin, ( ) 0e t →  

asymptotically as .t → ∞  Formally, we can summarize the 

requirements as follows. 

State Feedback Regulator Problem [2]: 

Find, if possible, a state feedback control law 

( , )u xα ω=  such that  

(OR1) [Internal Stability] The equilibrium 0x = of   

                 ( ) ( ) ( ,0)x f x g x xα= +�  

     is locally asymptotically stable. 

(OR2) [Output Regulation] There exists a neighbourhood 

     U of ( , ) (0,0)x ω =  contained in X W× such that for  

      each initial condition ( )(0), (0)x ω in ,U the solution  

      ( ( ), ( ))x t tω  of the closed-loop system (4) satisfies 

                  [ ]lim ( ( )) ( ( )) 0.
t

h x t q tω
→∞

− =             � 

Byrnes and Isidori [2] solved this problem under the 

following assumptions: 

(H1) The exosystem dynamics ( )sω ω=�  is neutrally 

stable at 0,ω =  i.e. the system is Lyapunov stable in both 

forward and backward time at 0.ω =  

(H2) The pair ( )( ), ( )f x g x has a stabilizable linear 

approximation at 0,x = i.e. if  

             

0x

f
A

x =

∂� �
= � �∂� �

   and   

0x

g
B

x =

∂� �
= � �∂� �

, 

then ( , )A B  is stabilizable, which means that we can find 

a gain matrix K so that A BK+ is Hurwitz. � 

Next, we recall the solution of the output regulation 

problem derived by Byrnes and Isidori [2]. 

Theorem 1. [2] Under the hypotheses (H1) and (H2), the state 

feedback regulator problem is solvable if and only if there exist 
1
�  mappings ( )x π ω=  with (0) 0π = and ( )u ϕ ω= with 

(0) 0,ϕ = both defined in a neighbourhood of 
0

W W⊂ of 

0ω = such that the following equations (called the Byrnes-

Isidori regulator equations) are satisfied: 

(1)  ( ) ( ( )) ( ( )) ( ) ( ( ))s f g p
π

ω π ω π ω ϕ ω π ω ω
ω

∂
= + +

∂
 

(2) ( )( ) ( ) 0h qπ ω ω− =  

When the Byrnes-Isidori regulator equations (1) and (2) are 

satisfied, a control law solving the state feedback regulator 

problem is given by 

    [ ]( ) ( )u K xϕ ω π ω= + −                                      (5) 

where K  is any gain matrix such that A BK+ is Hurwitz. � 

III. OUTPUT REGULATION OF THE CHAOTIC T SYSTEM 

The T system is a new three-dimensional chaotic attractor 

discovered by the scientists Tigan and Opris ([15], 2008) and 

described by   

      

1 2 1

2 1 1 3

3 3 1 2

( )

( )

x a x x

x c a x ax x u

x bx x x

= −

= − − +

= − +

�

�

�

                                   (6) 

where 0,  0,  0a b c> > >  are the parameters and u is the 

control. 

Tigan and Opris studied the chaotic attractor (6),  when the 

parameter values are 2.1,  0.6a b= =  and 30.c = The 

chaotic portrait of the unforced T system is shown in Figure 1. 

 
Figure 1. State Orbits of Unforced T System (6) 
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In this paper, we solve the problem of output regulation for 

chaotic T system (6) for the tracking of constant reference 

signals (set-point signals). 

The constant or set-point reference signals are generated by 

the exosystem dynamics  

               0ω =�                                                             (7) 

It is important to observe that the exosystem given by (7) is 

neutrally stable. This follows simply because the differential 

equation (8) admits only constant solutions, i.e.  

            0( ) (0)tω ω ω≡ =  for all t .∈ R                   (8) 

Thus, the assumption (H1) of Theorem 1 holds trivially. 

Linearizing the dynamics of the chaotic T system (6) at the 

equilibrium 1 2 3( , , ) (0,0,0),x x x = we get the following 

system matrices: 

0

0 0

0 0

a a

A c a

b

−� �
� �= −� �
� �−� �

  and  

0

1 .

0

B

� �
� �= � �
� �� �

 

Using Kalman’s rank test for controllability [16], it can be 

easily seen that the pair ( , )A B is not controllable. However, it 

can be also easily seen by PBH rank test for stabilizability [16] 

that the pair ( , )A B is stabilizable. Indeed, we note that  

[ ]
0 0

rank rank 0 1

0 0 0

a a

I A B a c

b

λ

λ λ

λ

+ −� �
� �− = −� �
� �+� �

 

has rank 2 for all values of λ except when .bλ = −  Thus, 

bλ = − is an uncontrollable mode for the linear system 

corresponding to the system pair ( , ).A B   

 Since 0,b > it is immediate that the uncontrollable mode 

0b > is stable. Thus, we conclude that the pair ( , )A B is 

stabilizable. Hence, the assumption (H2) of Theorem 1 also 

holds.  

We can also show that ( , )A B  is stabilizable by noting that 

     
1 10

,
0 0

A
A B

B
b

=
� � � �

=� � � �−� � � �
 

where 1 1( , )A B is controllable and the uncontrollable mode 

bλ = −  is stable (since 0b > ). Thus, we choose the feedback 

gain matrix K as 0 ,K K= � �� �
� where [ ]1 2,K k k=� can be 

chosen so that the eigenvalues of 1 1A B K+ � are arbitrarily 

placed in the stable region (open left-half of the complex 

plane). 

Next, we shall discuss separately three cases of the output 

regulation problem detailed as follows. 

Case (A): The error equation is 1e x ω= −  

For this case, the Byrnes-Isidori regulator equations 

(Theorem 1) are obtained as 

  

[ ]2 1

1 1 3

3 1 2

1

          ( ) ( )                      0

( ) ( ) ( ) ( ) ( )   0

         ( ) ( ) ( )             = 0

            ( )                                0

a

c a a

b

π ω π ω

π ω π ω π ω ϕ ω

π ω π ω π ω

π ω ω

− =

− − + =

− +

− =

    (9) 

Solving the regulator equations (9), we obtain the solution 

  

2

1 2 3

3

( ) ,  ( ) ,  ( )

( ) ( )

b

a
a c

h

ω
π ω ω π ω ω π ω

ω
ϕ ω ω

= = =

= − +

              (10)    

By Theorem 1, the control law solving the state feedback 

regulator problem is given by 

             ( ) [ ( )],u K xϕ ω π ω= + −  

where ( )ϕ ω and ( )π ω are as defined in (10).  

Thus, we have 

3

1 1 2 2( ) ( ) ( )
a

u a c k x k x
h

ω
ω ω ω= − + + − + −     (11) 

 Case (B): The error equation is 2e x ω= −  

For this case, the Byrnes-Isidori regulator equations 

(Theorem 1) are obtained as 

   

[ ]2 1

1 1 3

3 1 2

2

          ( ) ( )                      0

( ) ( ) ( ) ( ) ( )   0

         ( ) ( ) ( )             = 0

            ( )                                0

a

c a a

b

π ω π ω

π ω π ω π ω ϕ ω

π ω π ω π ω

π ω ω

− =

− − + =

− +

− =

   (12) 

Solving the regulator equations (9), we obtain the solution 

       

2

1 2 3

3

( ) ,  ( ) ,  ( )

( ) ( )

b

a
a c

h

ω
π ω ω π ω ω π ω

ω
ϕ ω ω

= = =

= − +

         (13)    

By Theorem 1, the control law solving the state feedback 

regulator problem is given by 

             ( ) [ ( )],u K xϕ ω π ω= + −  

where ( )ϕ ω and ( )π ω are as defined in (10). Thus, we have 

      

3

1 1 2 2( ) ( ) ( )
a

u a c k x k x
h

ω
ω ω ω= − + + − + −   (14) 

Case (C): The error equation is 3e x ω= −  

For this case, the Byrnes-Isidori regulator equations 

(Theorem 1) are obtained as 

[ ]2 1

1 1 3

3 1 2

3

          ( ) ( )                      0

( ) ( ) ( ) ( ) ( )   0

         ( ) ( ) ( )             = 0

            ( )                                0

a

c a a

b

π ω π ω

π ω π ω π ω ϕ ω

π ω π ω π ω

π ω ω

− =

− − + =

− +

− =

      (15) 

Solving the regulator equations (9), we obtain the solution 
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( )
1 2 3( ) ,  ( ) ,  ( )

( )

b b

a c a b

π ω ω π ω ω π ω ω

ϕ ω ω ω

= = =

= − +
       (16)    

By Theorem 1, the control law solving the state feedback 

regulator problem is given by 

             ( ) [ ( )],u K xϕ ω π ω= + −  

where ( )ϕ ω and ( )π ω are as defined in (10).  

Thus, we have 

       
( ) 1 1

2 2

( )

           ( )

u a c a b k x b

k x b

ω ω ω

ω

= − + + − +

−
              (17) 

IV. NUMERICAL SIMULATIONS 

For simulation, we consider the classical chaotic case 

studied by Tigan and Opris, viz. 2.1,a = 0.6,b = 30.c =  

We also consider the set-point control as 0 2.ω =    

As shown in Section III, 0.6bλ = − = − is the 

uncontrollable, stable eigenvalue  of the closed-loop system 

matrix .A BK+  Since 1 1( , )A B is controllable, we can 

compute K� (using Ackermann’s formula) so that 

1 1A B K+ � has the eigenvalues { }1, 1 .− −  

A simple calculation using MATLAB gives 

         [ ]28.4762 0.1000K = −�  

Thus, the gain matrix 0K K� �= � �
� is such that the 

closed-loop system matrix A BK+ has the eigenvalues  

          { } { }0.6 1, 1 .− ∪ − −  

Case (A): The error equation is 1e x ω= −  

Suppose that we take ( )1 2 3(0), (0), (0) (7,1, 4).x x x =  

Also, 0 2.ω =  

 

Figure 2. Case (A) - 1x tracks the set-point signal ω  

The simulation graph is depicted in Figure 2 from which it 

is clear that the state 1( )x t tracks the constant signal 2ω ≡  in 

about10 sec.  

Case (B): The error equation is 
2

e x ω= −  

Suppose that we take  

        ( )1 2 3(0), (0), (0) (2,5,3).x x x =  

Also, 0 2.ω =  

The simulation graph is depicted in Figure 3 from which it 

is clear that the state 2 ( )x t tracks the constant signal 2ω ≡  in 

about 10 sec.  

 

 

Figure 3. Case (B) - 2x tracks the set-point signal ω  

Case (C): The error equation is 3e x ω= −  

Suppose that we take  

            ( )1 2 3(0), (0), (0) (4,1,9).x x x =  

Also, 0 2.ω =  

 

Figure 4. Case (C) - 3x tracks the set-point signal ω  
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The simulation graph is depicted in Figure 4 from which it 

is clear that the state 3( )x t tracks the constant signal 2ω ≡  in 

about 10 sec. 

V. CONCLUSIONS  

In this paper, we have studied in detail the output 

regulation of the chaotic T system (2008) and we have also 

presented the complete solution of the output regulation 

problem for chaotic T system. Explicitly, using the Byrnes-

Isidori regulator equations (1990), we have presented new 

feedback control laws for regulating the output of the chaotic 

T system.  
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