
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 54

ISSN No. 0976-5697

An Easy-Chair Mechanism Based Algorithmic Generalized Approach for load
Balancing in Database Servers

*P.Mohan Kumar, DR.J.Vaideeswaran
School of Information Technology

VIT University, Vellore. -14 T.N India.
pmohankumar@vit.ac.in
Jvaideeswaran@vit.ac.in

Abstract: Load balancing is the swinging challenging task in computing application, whenever any approach either parallel or distributed
becomes popular. There were lot of analysis, approaches, algorithms and implementation mechanisms and architectural variants for the past few
decades, but their exist till a thrust among the researchers. In this marathon as a participant in our paper we propose a generalized approach for
load balancing issue in database server, an algorithm is designed based on easy-chair, a simple game mechanism which seems to be optimistic
with respect to few existing technique when tested with a case study.

Key words: load balancing, algorithm, database server.

I. INTRODUCTION

Load balancing in its simplest form is ensuring that
every processor does the same amount of work. As per
Amdahl’s law it was concerned not only with the proper
assignment and reducing serialize ability but also limiting on
potential speedup. As speed up is less than or equal to
sequential work by max work on any processor .i.e. not only
different processor do same amount work but they should
also be working at same time We concentrate with this
concern but exclusively only on scheduling the incoming
request to the processors (database server) and avoiding
delay, i.e. mainly on how the load is dispatched and
balanced. The paper is organized as discussing some basic
issues in load balancing; communication abstracts a
programming model [1] which gives details of user level
communication primitives of the system, the proposed
model and the actual algorithm to be implemented and the
case study sample. With these aspects we present our work
as generalized approach for optimizing the database server
by balancing the work load and reducing the time spent at
synchronous events, and by reducing the extra work done to
determine and manage a good assignment.

II. MOTIVATION

The real goal of load balancing is to minimize the time
processes spend waiting at synchronization points, including
an implicit one at end of the program. The process of
balancing the workload and reducing the synchronization
wait time include four aspects a) Enough concurrency in
decomposition must be found b).deciding statistically or
dynamically the concurrency is managed c) determining the
granularity at with the concurrency to be exploited and
finally serialization and synchronization cost must be
reduced as specified in [1]. Before discussing these issues
we see about the communication abstract a program model
which gives the details of user level communication
primitives of the system which deals with software that
maps the communication abstractions to the actual hardware
primitives. The communication architecture defines the set

of communication operations available to the user software.
The detail discussion about the layers is specified in [1] but
we consider only the vision of communication process.

Figure 1: Abstraction layers in parallel architectures.

As the base work in load balancing is to identify enough
concurrency can be perform by either data parallelism or
functional parallelism .Somehow our process is not at in
depth data or function level it concentrates at initial stage we
discuss more on managing concurrency and reducing the
wait time based on reducing inherent and reducing extra
work. Firstly managing concurrency, concurrency can be
managed in two ways one by static a algorithm mapping of
process to task and a predetermined assignment which incur
management overhead at runtime and next the dynamic one
adapt to load imbalances at runtime.ie actual workload is
determined during runtime. To overcome this semi static
technique is deployed i.e. periodic recomputations of load
balanced assignment .A distributed task queue is used to
manage this technique [2].Thirdly the inherent
communications is reduced by assigning task to processor
based on the impact communication to computation ratio
(domain decomposition) i.e. not only by the absolute amount
of communication but also by the computation quantity.
This can be accomplished statically or semi statically

P.Mohan Kumar et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,54-57

© 2010, IJARCS All Rights Reserved 55

depending upon the nature of computation. Based on these
aspects the speed up limit is calculated as speedup is less
than or equal to sequential work by maximum of work with
synchronous wait time and communication cost and extra
work. As it’s basic to identify the aspects for load balancing
we discussed a little and we traverse to the proposed work as
follows.

III. PROPOSED WORK

The base work of our paper is to design an algorithm
based on easy chair mechanism and test the case to
minimizing the delay and optimize the communication time
between user and server (request and response between
process and processor) as load balancing in the server side.
Firstly we say about easy chair mechanism then about the
algorithmic design and implementation. Easy-chair is a
small game played in schools were ‘n’ number of chairs will
be kept in round form and ‘n+1 or 2’ pupils are allowed to
run around the chair for ample of time, by counting using
stop clock or playing music and suddenly ask the persons to
occupy the chair by stopping the clock or music and check
the status who occupied seats. Possibly n pupils occupied
and remaining will be removed .Similarly n-1 chairs are kept
and allowed to run around with the existing persons, this
process will be repeated till two persons exist with one
chair and finally one person occupy the chair he is winner
and other is removed. This concept is mapped in our
approach and analyzing for load balancing among
processors. In the below diagram the representation is
present.

Figure: 2 Easy chair mechanism.

……… possibilities
_______ occupied status

In the above diagram square boxes are assumed to be
processor and elliptical are the request process. Here the
entire incoming request is allowed to participate in the
competition and no specific assignment of particular process
to particular processor. When ever the processor becomes
free the participating process may occupy the processor, if
all the processor were filled then he remaining process will
put in the temp buffer queue and allowed make request
continuously it won’t go out so that no separate count is
made The process will assigned to the processor whenever
the process becomes free .This will be understood by the
below algorithm and the case study better. The architecture
model similar to [2] specified below may be considered.

Figure: 3 proposed system

The above diagram shows the work flow of our
algorithm. User request server through clients the entire
request will be stored in the PFE (process forward engine)
which is responsible for forwarding the process (user
request) to server (processor) based on the service manager
response status about the processor. These all managed by
user routine specified in program model as well which
controls and manages the load during assignment of process
to the sever. Basically the PFE is a temporary buffer which
process on circular queue principle to store the hit and miss
process before and after assignment of process to
processor’s .SLBM the load balance performs its operation
on monitor routine a user written .Which records status
about the processor (server) which is free or busy and the
weight assigned, the processor which forwarded through
PFE got hit or Miss and queue status as well as the in
coming process request details. The working procedure is as
follows user requesting process all forwarded through client
and stored in PFE queue. The PFE before passing the
process to processor the status is verified by service
manager which is responsible for load balancing. Based on
this the processor in queue will be assigned to availability.

All miss process will be stored at end of queue in general
.in our concept since circular queue is employed so the
missed process will occupy the position which ever is empty
i.e. the process which get immediate miss will placed in the
position where process comes out of queue in this way the
delay is minimized. A random mechanism is organized
instead of round robin. This process of assignment will be
repeated in a cyclic manner .The service load balancing
manger in parallel monitors the processor as well as the
queue whether it’s getting empty with ample of time. If
queue becomes empty the 1st

IV. AIALGORITHM _EASY-CHAIR
MECHANISM.

 set of incoming request is
completed and next set is allowed for processing. This is
explained with below algorithm. The load balancing is
achieved for N+1 process with N processor is the base
analysis.

Data structure: Circular queue
Input set of process
Output processed request.

P.Mohan Kumar et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012, 54-57

© 2010, IJARCS All Rights Reserved 56

Step 1. Initialize the queue // queue size must be greater than
the number of processor available.
 Let queue size be N+1 or N+2.
 Let number of processor be N.
 Queue = Null;
 Queue = number of incoming processes (user
request)//in our case assume process as queries since its
database server.
Step 2. Initialize service manager.
 //Get the status of processors (servers).
 If all the processors are busy then
 Status=wait;
 Else
 Assign the process in queue sequentially to all the
available processors.
 Q [i--] =p[j]// i be the process and j be the processor
Step.3 Monitor the status.
 If process get hit then
 P[j]=p[j+1];
 If miss then store the process in the queue to the
available empty position exist.
 //This performed by circular queue principle.
Step 4.Repeat the above process until all the process get hit
and completed.
 Q [N+1] = P [N]//i.e. the entire incoming
request gets assigned.
Step 5.Repeat the above process until the initial assigned
time elapses.
Step 6.End.

V. RELATED WORK

A. Scheduling the Process to Server:
The objective of scheduling is to provide service

differentiation (or QoS-quality of service guarantee) for
different user classes in terms of the allocation of CPU and
disk I/O capacities and balance the Load among various
nodes in the cluster to ensure maximum utilization and
minimum execution time. Basic components involved in
scheduling are each service subscriber maintains a queue to
request classification determines the queue for each input
request, for request scheduling determines which queue to
serve next to meet the QoS requirement for each subscriber
and for resource usage accounting capture detailed resource
usage associated with each subscriber’s service requests as
shown in [3].

Asigining process to servers

Node A

Node B

Node C

Figure 5: process assignment to server sample representation.

Figure 6: Dynamic mapping of process to server

Dynamic Re-Mapping of Servers
Allow dynamic re-mapping of load in a system.

Chord Ring

20 11

3

10 30

15

Node A

Node C

Node B

T=50

T=15

T=35

L=45

L=31

L=14

L=30

Figure 7: Dynamic remapping of process to server.

Random allocation[4],[5] distributes the incoming
requests uniformly with equal probability of reaching any
server for dispatching thus ,we prefer the random allocation
due to the following Advantages i).flexibility in being able
to move load from any node to any other node, not just to
neighbor and ii).Easily supported by the underlying direct
hash table because movement of virtual server appears as
join and leave to the direct hash table and load balancing
scheme is achieved by performing two methods one taking
periodic action -Try to bring the nodes below target to bring
the system in a good state and secondly Take emergency
action -If the arrival of an item causes a node to go over
capacity, then seek help immediately as specified detail in
[4]. This is present in fig: 7 and fig: 8.Thus an analysis is
made to load balance the database server wit respect to user
request.

B. Case Study:
We tested this approach using the case study the FFCS

i.e. a University based academic system called Fully
Flexible Credit System [6] where students are allowed to
choose their subject, faculty and time of class based on their
credit system. Here during the registration period n number
students participate for registration. All the users request are
maintained in queue and their access will processed based
on the availability. These managed by the database listener
which takes responsibility for all user process. User request
are allowed to access the server continuously if they get hit
then it will be processed if not they will be placed in the
empty position available in the queue. And the server status
will be recorded with ample time intervals any how no

P.Mohan Kumar et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,54-57

© 2010, IJARCS All Rights Reserved 57

request will be denied it makes a in process wait time to get
hit, it won’t go for extra time such as Input-output like. Thus
the load is managed to process all the incoming process. By
the proposed algorithm this can be achieved. The existing
system simply denies if the processor is busy and database
listener queue is full, our approach overcomes this. Here the
concept of content blind approach is used. The incoming
requests uniformly distributed with equal probability of
reaching any server. One overhead arises in collecting state
information and analyzing them cause expensive anyhow
it’s managed with Input-output cost. Since our method
process in dynamic and random allocation we use the server
state aware concept which has the following benefits least
loaded, server index based identification, fewest active
connection first, fast response and weighted round robin
approach i.e. variation of static Round-Robin, associates
each server with a dynamically evaluated weight that is
proportional to the server load .

Figure 8: system model.

VI. CONCLUSION

Thus in this paper an easy chair mechanism algorithm is
designed and implemented to test load balancing among
database server at user request response level and a case
study is analyzed based on the algorithm. It seem to be
optimistic when compared to the existing methods since it
allows n+1 process to n processor as well as it manage with
minimum delay without denying the incoming process.
Further the details about the dynamic scheduling is
presented and we can conclude this paper by the extension
work as content level management since we talk about

database server in spite of request level it can be for query
level.

VII. ACKNOWLEDGEMENT

I thank my guide for giving me valuable suggestions on
behalf my research work whenever I approach him and I
would like to thank our university for motivating research
activities by providing lab without time limit.

VIII. REFERENCES

[1]. David E.Culler, Anoop Gupta “Parallel computer
Architecture” Elsevier publications.1st

[2]. Curt kersey, Cisco Systems and Aaron Silverton Microsoft
system- “A seminar series on Rserpool and server load
balancing.”pp-15 -19.

 Edition August 1998
unit-1.pp-128-138.

[3]. Sonesh Surana Berkley education, a seminar series on
“Load Balancing in structured P2P systems” June 2003.pp-
5-10.

[4]. Q.Zhang, A Riskw, A.W. Sun “Scheduling in web server
clusters” IBM Technical report 2007. Pp-14 -17

[5]. V.Cardellini, E Casilicchio, O.H. Biro The state of Art in
locally distributed system”, ACM Computing surveys Vol:
34 No: 2, PP 1-49 June 2002.

[6]. Academics Section in Vellore Institute of Technology
Vellore www.vit.ac.in.

Short Bio Data for the Authors

Mr. P. Mohan Kumar is working as Assistant
Professor.,(senior) in School of Information Technology and
Engineering(SITE), VIT University, Vellore. His area of
Research includes Advanced Database Management
Systems and Neural networks. He is having more than ten
years teaching and academic activities. He is currently
working in optimization of parallel query processing in
distributed databases as a research.

Dr. J. Vaideeswaran. is working as Senior Professor
in Architecture and Embedded systems division, in School
of Computing Sciences and Engineering, VIT University,
Vellore. His research includes High Performance
Computing and Computer Architecture. Having more the 2
decades teaching experience.

