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Abstract:  This paper investigates the nonlinear observer design for nonlinear pendulum systems. Explicitly, Sundarapandian’s theorem (2002) 

for observer design for nonlinear systems is used to solve the problem of local exponential observer design for nonlinear pendulum systems. In 

this paper, we derive results for exponential observer design for pendulum systems for three cases, viz. (a) no damping, (b) linear damping and 

(c) quadratic damping. Numerical examples and simulations of nonlinear observer design for nonlinear pendulum systems are shown to illustrate 

the results and validate the proposed observer design for nonlinear pendulum systems. 
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I. INTRODUCTION  

In the control systems design, it is often necessary to 

construct estimates of state variables, which are not available 

for direct measurement. In such cases, the state vector of the 

control system can be approximately reconstructed by building 

an observer which is driven by the available outputs and inputs 

of the original control system. Local observer design for 

nonlinear control systems is one of the central problems in the 

control systems literature.  

The problem of designing observers for linear control 

systems was first introduced by Luenberger ([1], 1966) and that 

for nonlinear control systems was proposed by Thau ([2], 

1973). Over the past three decades, significant attention has 

been paid in the control systems literature to the construction of 

observers for nonlinear control systems. 

A necessary condition for the existence of an exponential 

observer for nonlinear control systems was obtained by Xia and 

Gao ([3], 1988). Explicitly, in [3], Xia and Gao showed that an 

exponential observer exists for the nonlinear system only if the 

linearization of the nonlinear system is detectable. 

On the other hand, sufficient conditions for nonlinear 

observers have been obtained in the control systems literature 

from an impressive variety of points of view. Kou, Elliott and 

Tarn ([4], 1975) obtained conditions for the existence of 

exponential observers using Lyapunov-like method. In ([5]-

[10]), suitable coordinate transformations were found under 

which a nonlinear control system is transferred into a canonical 

form, where the observer design is carried out. In [11], 

Kazantzis and Kravaris obtained results on nonlinear observer 

design using Lyapunov auxiliary theorem. In ([12]-[13]), 

Tsinias derived sufficient Lyapunov-like conditions for the 

existence of asymptotic observers for nonlinear systems. A 

harmonic analysis approach was proposed by Celle et al. ([14], 

1989) for the synthesis of nonlinear observers. 

Necessary and sufficient conditions for the existence of 

local exponential observers for nonlinear control systems were 

obtained using differential geometric techniques by 

Sundarapandian ([15], 2002). Krener and Kang ([16], 2003) 

introduced a new method for the design of observers for 

nonlinear systems using backstepping. 

In this paper, we shall use Sundarapandian’s theorem 

(2002) for observer design for nonlinear systems to solve the 

problem of designing observers for nonlinear pendulum 

systems.  The observer design for pendulum systems is very 

important in applications because pendulum systems are 

classical examples of stable systems widely studied in the 

literature. 

This paper is organized as follows. Section II reviews the 

definition of nonlinear observers and the results of 

observability and observers. Section III details the design of 

nonlinear observers for pendulum systems for the three cases, 

viz. (a) no damping, (b) linear damping and (c) quadratic 

damping. Numerical examples and simulations of nonlinear 

observer design for pendulum systems are also contained in this 

section. Finally, Section IV provides the conclusions of this 

paper.   

II. REVIEW OF OBSERVERS FOR NONLINEAR SYSTEMS 

By the concept of a state observer or state estimator for a 

nonlinear system, it is meant that from the observation of 

certain states of the system considered as outputs or indicators, 

it is desired to estimate the state of the whole system as a 

function of time. Mathematically, observers for nonlinear 

systems are defined as follows. 

Consider the nonlinear system described by 

       ( )x f x=�                                                           (1a) 

       ( )y h x=                                                            (1b) 

where 
n

x ∈� is the state and 
py ∈� the output.  It is 

assumed that : ,n n
f →� �  : n p

h →� � are 
1
� maps and 

for some ,n
x

∗ ∈� the following hold: 

              ( ) 0,  ( ) 0.f x h x
∗ ∗= =  
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Note that the solutions x
∗

of the equation         

( ) 0f x = are called the equilibrium points of  (1a). 

Definition 1. The nonlinear system (1) is called locally 

observable at the equilibrium x
∗

over a given time interval 

[0, ],T if there exists 0ε > such that for any two different 

solutions ( )x t and ( )x t of the system (1a) with 

     | ( ) |x t x ε∗− < and | ( ) |x t x ε∗− <  for [0, ],t T∈  

the observed functions h x�  and h x� are different, i.e. there 

exists some [0, ]Tτ ∈ such that  

         ( )( ) ( )( ).h x h xτ τ≠� �           � 

For the formulation of a sufficient condition for local 

observability of the nonlinear system (1), consider the 

linearization of (1) at the equilibrium x
∗

given by 

      x Ax=�                                                               (2a) 

      y Cx=                                                               (2b) 

where  

         

x x

f
A

x ∗=

∂� �
= � �∂� �

   and  .
x x

h
C

x ∗=

∂� �
= � �∂� �

 

Theorem 1. (Lee and Markus, [17], 1971) 

If the observability matrix for the linear system (2) given by 

              

1

( , )

n

C

CA
C A

CA
−

� �
� �
� �=
� �
� �
� �

�
�  

has rank ,n then the nonlinear system (1) is locally observable 

at .x
∗

    � 

Definition 2. (Hurwitz Matrices) 

An n n× matrix A  is called Hurwitz if all eigenvalues of 

A  have negative real parts.         � 

Next, the definition of nonlinear observers for the given 

nonlinear system (1) is given. Basically, an observer for a 

nonlinear system is a state estimator. 

Definition 3. (Sundarapandian, [15], 2002) 

A 
1
�  dynamical system described by 

    ( , ),z g z y=�            (
n

z ∈� )                           (3) 

is a local asymptotic (respectively, exponential) observer for 

the nonlinear system (1) if the composite system (1) and (3) 

satisfies the following two requirements: 

(i)  If (0) (0),z x= then ( ) ( ),    0.z t x t t= ∀ ≥  

(ii) There exists a neighbourhood V of the equilibrium x
∗
  

            of 
n
�  such that for all (0), (0) ,z x V∈ the error 

           ( ) ( ) ( )e t z t x t= −  decays asymptotically (resp. 

         , exponentially) to zero. � 

Theorem 2. (Sundarapandian, [15], 2002) 

Suppose that the nonlinear system (1) is Lyapunov stable at 

the equilibrium x
∗
 and that there exists a matrix K  such that 

A KC−  is Hurwitz. Then the dynamical system defined by 

   [ ]( ) ( )z f z K y h z= + −�                                    (4) 

is a local exponential observer for the nonlinear system (1). � 

Remark 1. If the estimation error e  is defined as   

           ,e z x= −  

then the estimation error is governed by the dynamics 

       [ ]( ) ( ) ( ) ( )e f x e f x K h x e h x= + − − + −�        (5) 

Linearizing the error dynamics (5) at ,x
∗

 we obtain the 

linear system 

    ,e Ee=�                where  .E A KC= −               (6) 

If ( , )C A is observable, ie. if the observability matrix 

( , )O C A has full rank, then the eigenvalues of E A KC= −  

can be arbitrarily assigned in the complex plane. Since the 

linearization of  the error dynamics (5) is governed by the 

system matrix ,E A KC= − it follows that when ( , )C A is 

observable, then a local exponential observer of the form (4) 

can be always found so that the transient response of the error 

decays quickly with any desired speed of convergence. � 

III. NONLINEAR OBSERVERS FOR THE NONLINEAR 

PENDULUM SYSTEMS 

In this section, we discuss the nonlinear observer design for 

nonlinear pendulum systems. 

Consider the classical simple pendulum model ([18]-[19]), 

which is illustrated in Figure 1. 

W = mg

θ

L

θ

mg sin θ

mg cos θ

O

P  

Figure 1. Simple Pendulum 

Let m denote the mass of the bob and L the length of the 

rod. Let θ  denote the angle suspended by the rod and the 

vertical axis through the pivot point. The pendulum is free to 

swing in the vertical plane and the bob of the pendulum moves 

in a circle of radius .L  

Using Newton’s second law of motion, the equation of 

motion of the pendulum in the tangential direction can be 

easily obtained as 

           sin  ( )mL mg L Qθ θ θ= − −�� �                               (7) 

where ( )Q θ� is the damping force.  

Using the phase variables 1 2,x xθ θ= = � , the pendulum 

equation (2) can be written in state-space form as 
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1 2

2 1 2

1
sin ( )

x x

g
x x Q x

L m

=

= − −

�

�
                           (8) 

We also suppose that the angular displacement θ is 

available for measurement. Thus, we consider the output y as 

         1y x=                                                               (9) 

  

In this section, we shall use Sundarapandian’s result (Theorem 

2) for solving the nonlinear observer design problem for the 

pendulum model described in (8)-(9) for the following cases: 

(a) No damping,  i.e. 2( ) 0.Q x =      

    (b) Linear damping, i.e. 2 2( ) .Q x kx=  

    (c) Quadratic damping,  i.e. 2 2 2( )  | | .Q x k x x=  

[Here, k is the damping constant.] 

A. Observer Design for Pendulums with No Damping 

In this case, the pendulum model is described by 

            

1 2

2 1

1

sin

x x

g
x x

L

y x

=

= −

=

�

�                                      (10) 

The system dynamics in (10) has a Lyapunov stable 

equilibrium at 1 2( , ) (0,0).x x = Also, the linearization 

matrices for the system (10) are given by 

 [ ]1 0C =    and    

0 1

0
A g

L

� �
� �=
� �−
� �

. 

The observability matrix for this system is  

   
1 0

( , )
0 1

C
C A

CA

� � � �
= =� � � �
� � � �

O  

which has full rank.   Thus, by Theorem 1, we obtain the 

following result for the pendulum system with no damping. 

Theorem 3. The pendulum system with no damping described 

by (10) is locally observable near 1 2( , ) (0,0).x x =  � 

Next, we note that the pendulum system (10) has a 

Lyapunov stable equilibrium at 1 2( , ) (0,0).x x =  

Thus, by Sundarapandian’s result (Theorem 2), we derive 

the following result which gives a formula for the construction 

of nonlinear exponential observer for the pendulum system 

with no damping. 

Theorem 4.  The pendulum system with no damping described 

by (10) has a local exponential observer given by 

          [ ]
2

1

1

2 1sin

z
z

K y zg
z z

L

� �
� � � �= + −� � � �−� �

� �

�

�
            (11) 

where 
1

2

k
K

k

� �
= � �
� �

 is a matrix chosen so that A KC− is 

Hurwitz.  Since ( , )C A is observable, a gain matrix K can be 

found so that the error matrix  

                  E A KC= −  

has arbitrarily assigned set of eigenvalues with negative real 

parts.  �          

Example 1.   Consider the pendulum model (10) with                       

2 .L g= In this case, the plant equations (10) simplify to 

                    

1 2

12

1

0.5sin

     

x x

xx

y x

� � � �
=� � � �

−� �� �

=

�

�                             (12) 

The system linearization matrices are 

   [ ]1 0C =   and 
0 1

.
0.5 0

A
� �

= � �−� �
 

Note that the pair ( , )C A is observable. 

Using the Ackermann formula for the observability gain 

matrix ([20], p.822), we can choose K so that the error matrix 

E A KC= − has the eigenvalues { }2, 2 .− −  

A simple calculation using MATLAB yields 

                      
4.0

.
3.5

K
� �

= � �
� �

 

By Theorem 4, a local exponential observer for the 

pendulum plant (12) near the equilibrium ( )1 2, (0,0)x x =  is 

given by 

    [ ]1 2

1

2 1

4.0
.

0.5sin 3.5

z z
y z

z z

� � � � � �
= + −� � � � � �− � �� � � �

�

�
           (13) 

 
Figure 2. Exponential Observer the Pendulum (12) 

 

Figure 2 depicts the exponential convergence of the 

observer states 1z  and 2z  of the system (13) to the states 

1x and 2x  of the plant (12). For simulation, we have taken the 

initial conditions as  

1.2
(0)

1.5
x

� �
= � �
� �

   and   
2.2

(0)
0.5

z
� �

= � �
� �

. 

B. Observer Design for Pendulums with Linear Damping 

In this case, the pendulum model is described by 
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1 2

2 1 2

1

sin

x x

g k
x x x

L m

y x

=

= − −

=

�

�                                   (14) 

The system dynamics in (14) has an asymptotically stable 

equilibrium at 1 2( , ) (0,0).x x = Also, the linearization 

matrices for the system (14) are given by 

 [ ]1 0C =    and    

0 1

A g k

L m

� �
� �=
� �− −
� �

. 

The observability matrix for this system is  

   
1 0

( , )
0 1

C
C A

CA

� � � �
= =� � � �
� � � �

O  

which has full rank.   Thus, by Theorem 1, we obtain the 

following result for the pendulum system with linear damping. 

Theorem 5. The pendulum system with linear damping 

described by (14) is locally observable near 1 2( , ) (0,0).x x =  

� 
Next, we note that the pendulum system (14) has an 

asymptotically stable equilibrium at 1 2( , ) (0,0).x x = Thus, 

by Sundarapandian’s result (Theorem 2), we derive the 

following result which gives a formula for the construction of 

nonlinear exponential observer for the pendulum system with 

linear damping. 

Theorem 6.  The pendulum system with linear damping 

described by (14) has a local exponential observer given by 

          [ ]
2

1

1

2 1 2sin

z
z

K y zg k
z z z

L m

� �
� � � �= + −� � � �− −� �

� �

�

�
            (15) 

where 
1

2

k
K

k

� �
= � �
� �

 is a matrix chosen so that A KC− is 

Hurwitz.  Since ( , )C A is observable, a gain matrix K can be 

found so that the error matrix  

                  E A KC= −  

has arbitrarily assigned set of eigenvalues with negative real 

parts.  �          

Example 2.   Consider the pendulum model (14) with  

2 ,L g=  0.2k =  and 1.m =               

 In this case, the plant equations (14) simplify to 

                

1 2

1 22

1

0.5sin 0.2

     

x x

x xx

y x

� � � �
=� � � �

− −� �� �

=

�

�                          (16) 

The system linearization matrices are 

   [ ]1 0C =   and 
0 1

.
0.5 0.2

A
� �

= � �
− −� �

 

Note that the pair ( , )C A is observable. 

Using the Ackermann formula for the observability gain 

matrix ([20], p.822), we can choose K so that the error matrix 

E A KC= − has the eigenvalues { }2, 2 .− −  

A simple calculation using MATLAB yields 

                      
3.80

.
2.74

K
� �

= � �
� �

 

By Theorem 6, a local exponential observer for the 

pendulum plant (16) near the equilibrium ( )1 2, (0,0)x x =  is 

given by 

    [ ]1 2

1

2 1 2

.
0.5sin 0.2

z z
K y z

z z z

� � � �
= + −� � � �

− −� � � �

�

�
    (17) 

 
Figure 3. Exponential Observer the Pendulum (16) 

 

Figure 3 depicts the exponential convergence of the 

observer states 1z  and 2z  of the system (17) to the states 

1x and 2x  of the plant (16). For simulation, we have taken the 

initial conditions as  

2.0
(0)

0.8
x

� �
= � �
� �

   and   
1.1

(0) .
2.5

z
� �

= � �
� �

 

C. Observer Design for Pendulums with Quadratic    

  Damping 

In this case, the pendulum model is described by 

        

1 2

2 1 2 2

1

sin

x x

g k
x x x x

L m

y x

=

= − −

=

�

�                          (18) 

The system dynamics in (18) has an asymptotically stable 

equilibrium at 1 2( , ) (0,0).x x = Also, the linearization 

matrices for the system (18) are given by 

   [ ]1 0C =    and    

0 1

0
A g

L

� �
� �=
� �−
� �

. 

The observability matrix for this system is  

   
1 0

( , )
0 1

C
C A

CA

� � � �
= =� � � �
� � � �

O  

which has full rank.   Thus, by Theorem 1, we obtain the 

following result for the pendulum system with quadratic 

damping. 
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Theorem 7. The pendulum system with linear damping 

described by (18) is locally observable near 1 2( , ) (0,0).x x =  

� 

Next, we note that the pendulum system (18) has an 

asymptotically stable equilibrium at 1 2( , ) (0,0).x x = Thus, 

by Sundarapandian’s result (Theorem 2), we derive the 

following result which gives a formula for the construction of 

nonlinear exponential observer for the pendulum system with 

quadratic damping. 

Theorem 8.  The pendulum system with quadratic damping 

described by (18) has a local exponential observer given by 

    [ ]
2

1

1

2 1 2 2sin | |

z
z

K y zg k
z z z z

L m

� �
� � � �= + −� � � �− −� �

� �

�

�
      (19) 

where 
1

2

k
K

k

� �
= � �
� �

 is a matrix chosen so that A KC− is 

Hurwitz.  Since ( , )C A is observable, a gain matrix K can be 

found so that the error matrix  

               E A KC= −  

has arbitrarily assigned set of eigenvalues with negative real 

parts.  �          

Example 3.   Consider the pendulum model (18) with  

2 ,L g=  0.2k =  and 1.m =               

 In this case, the plant equations (14) simplify to 

           

1 2

1 2 22

1

0.5sin 0.2 | |

     

x x

x x xx

y x

� � � �
=� � � �

− −� �� �

=

�

�                  (20) 

The system linearization matrices are 

   [ ]1 0C =   and 
0 1

.
0.5 0

A
� �

= � �−� �
 

Note that the pair ( , )C A is observable. 

Using the Ackermann formula for the observability gain 

matrix ([20], p.822), we can choose K so that the error matrix 

E A KC= − has the eigenvalues { }1, 1 .− − A simple 

calculation using MATLAB yields 

                      
2.0

.
0.5

K
� �

= � �
� �

 

By Theorem 8, a local exponential observer for the 

pendulum plant (12) near the equilibrium ( )1 2, (0,0)x x =  is 

given by 

  [ ]1 2

1

2 1 2 2

.
0.5sin 0.2 | |

z z
K y z

z z z z

� � � �
= + −� � � �

− −� � � �

�

�
    (21) 

 

Figure 4 depicts the exponential convergence of the 

observer states 1z  and 2z  of the system (21) to the states 

1x and 2x  of the plant (20).  

For simulation, we have taken the initial conditions as  

0.2
(0)

2.6
x

� �
= � �
� �

   and   
2.5

(0) .
0.9

z
� �

= � �
� �

 

 

 
Figure 4. Exponential Observer the Pendulum (20) 

IV. CONCLUSIONS  

For many real problems of science and engineering, 

pendulum systems are classical examples of stable nonlinear 

systems. In this paper, methodology based on 

Sundarapandian’s theorem (2002) for nonlinear observer 

design is suggested for the design of exponential observers for 

pendulum systems for the three important cases, viz. (a) no 

damping, (b) linear damping and (c) quadratic damping. 

Numerical examples have been worked out in detail to 

illustrate the construction of local exponential observers for 

the pendulum systems for all the three cases of damping. 
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