
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 410

ISSN No. 0976-5697

Trends in Hash Partition for Effective Object Data Access in Oracle Object-Oriented
Database System

Clarence J M Tauro*
Center for Research

Christ University
Bangalore, India

clarence.tauro@res.christuniversity.in

Guruprasanna S
Department of Computer Science

Christ University
Bangalore, India

guruprsn@gmail.com

Girish S R
Department of Computer Science

Christ University
Bangalore, India

malur.girish@gmail.com

Joby Thomas
Department of Computer Science

Christ University
Bangalore, India

joby.thomas8@yahoo.com

Abstract: — Object-oriented database system is a superior model than relational database system, but as the database expands, even simple
objects become complicated to handle. Although the more deep hierarchy B tree structure implies that we have good reuse of code but it has
awful effects on memory and performance. In this paper we studied performance of B tree over retrieval of objects, effect on time and data sizes.
Also we studied Hash partition provides different criteria to split the database and retrieval of the heavy objects using hash partition method in
oracle object oriented database this is important for query performance and this paper emphasizes on performance of B-tree vs. Hash portioning.

Keywords: Oracle, OODB, OODBMS, Hash, B-tree

I. INTRODUCTION

In an object-oriented database management system
(OODBMS) the information is represented in the form of
objects as used in object-oriented programming. All entities
of interest to an application can be defined as objects[2].
Objects having the same structural and behavioral properties
are grouped together to form an object class. Object classes
are interrelated with each other through various association
types [3].

The performance of Object-Oriented Database depends
on the access method implemented in the data model. B-tree
is an indexing technique supporting query processing in
Object-Oriented Databases which is effective and efficient
for multimedia databases. This is a new access method which
supports range queries on Object-Oriented Databases [4, 5].
B-tree supports inheritance and aggregation hierarchies. This
has the structure of Dynamic Interpolation B-tree. Dynamic
Interpolation B-tree consists of hashing and B-tree. Both
hashing and B-tree are dynamic. By studying the
performance of both hashing and B-tree it can be conclude
which one has better performance over Oracle Object-
Oriented Database [6].

II. PERFORMANCE STUDIES OF B TREE

A. Effect of Time:
To study the search performance of the indexes with the

passage of time and updates summarizes the results, showing
that the TPR-tree degrades considerably faster than the B-
trees due to continuous enlargements of the MBR (minimum
bounding regions) [2].

B. Effect of Data Sizes:
In the average number of I/O operations and the CPU

time per range query for each index. The both B-tree variants
scale very well maintain consistent performance, while the
TPR-tree degrades linearly with the increase of the dataset
size. When the dataset reaches 1M objects, the B-trees are
nearly five times better than the TPR-tree [2]. This behavior
may be explained as follows.

In the B-trees, every object has a linear order, which is
determined by the space domain as the dataset grows the
range query cost of the B-trees increases mainly due to the
increase of the number of objects inside the range. However,
the structure of the TPR tree is affected more by the dataset
size. When the number of objects increases, the MBRs in the
TPR (Time-Parameterized R-tree) tree have higher
probabilities of overlapping. The B-tree(H-curve) achieves
better performance than the B-tree(Z-curve) because the
Hilbert curve generates a better distance-preserving mapping
than the Piano curve, and hence yields fewer search intervals
on the B-tree, i.e., less disk access. [2]

III. HASH PARTITIONING

Hash partitioning maps data to partitions based on a
hashing algorithm that Oracle applies to the partitioning key
that you identify. The hashing algorithm evenly distributes
rows among partitions, giving partitions approximately the
same size.

Hash partitioning is the ideal method for distributing data
evenly across devices. Hash partitioning is also an easy-to-
use alternative to range partitioning, especially when the data
to be partitioned is not historical or has no obvious
partitioning key. Note: You cannot change the hashing
algorithms used by partitioning.

Clarence J M Tauro et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,410-412

© 2010, IJARCS All Rights Reserved 411

Figure 1: Hash partitioning

A. Composite List-Hash Partitioning:
Composite list-hash partitioning enables hash sub

partitioning of a list-partitioned object; for example, to
enable partition-wise joins.

B. Composite Range-Hash Partitioning
Composite range-hash partitioning partitions data using

the range method, and within each partition, sub partitions it
using the hash method. Composite range-hash partitioning
provides the improved manageability of range partitioning
and the data placement, striping, and parallelism advantages
of hash partitioning as shown in Figure 2

Figure 2: Composite Partitioning - Range Hash

C. Global Hash Partitioned Indexes:
Global hash partitioned indexes improve performance by

spreading out contention when the index is monotonically
growing. In other words, most of the index insertions occur
only on the right edge of an index [5, 6].

D. Hash Cluster Tables:
Clustered tables give you the ability to physically 'pre-

join' object data together. You use clusters to store related
object data from many tables on the same object database
block. Clusters can help read intensive operations that always
join object data together or access related sets of object data.
They will reduce the number of blocks that Oracle must
cache; instead of keeping 10 blocks for 10 employees in the
same department, they will be put in one block and therefore
would increase the efficiency of your buffer cache. Oracle
will take the key value for a row, hash it using either an
internal function or one you supply, and use that to figure out
where the data should be on disk. One side effect of using a
hashing algorithm to locate data however, is that you cannot
range scan a table in a hash cluster without adding a
conventional index to the table. [5, 6]

Figure 3: SQL Query

a. In a hash cluster, the query in Figure 3 would result in a
full table scan unless you had an index on the DEPTNO
column. Only exact equality searches may be made on
the hash key without using an index that supports range

scans. In a perfect world, with little to no collisions in
the hashing algorithm, a hash cluster will mean we can
go straight from a query to the data with one I/O. In the
real world, there will most likely be collisions and row
chaining periodically, meaning we'll need more than
one I/O to retrieve some of the data. Like a hash table in
a programming language, hash tables in the database
have a fixed 'size'. When you create the table, you must
determine the number of hash keys your table will have,
forever. That does not limit the amount of rows you can
put in there. When you create a hash cluster, you will
use the same CREATE CLUSTER statement you used
to create the index cluster with different options. We'll
just be adding a HASHKEYs option to it to specify the
size of the hash table. Oracle will take your
HASHKEYS values and round it up to the nearest
prime number, the number of hash keys will always be
a prime. Oracle will then compute a value based on the
SIZE parameter multiplied by the modified
HASHKEYS value. It will then allocate at least that
much space in bytes for the cluster. This is a big
difference from the index cluster above, which
dynamically allocates space, as it needs it. A hash
cluster pre-allocates enough space to hold
HASHKEYS. So for example, if you set you’re SIZE to
1,500 bytes and you have a 4 KB block size, Oracle
will expect to store 2 keys per block. If you plan on
having 1,000 HASHKEYs, Oracle will allocate 500
blocks.

Below is the result of a small utility stored procedure [6]
to see what sort of space hash clusters takes. If we issue a
CREATE CLUSTER statement, the storage it allocated in
Figure 4:

Figure 4: Result of the Procedure

In the result given in Figure 4, the total number of blocks
allocated to the table is 1,016. Six of these blocks are unused
(free). One block goes to table overhead, to manage the
extents. Therefore, there are 1,009 blocks under the high
water mark of this object, and these are used by the cluster.
1,009 just happen to be the next largest prime over 1,000 and
since my block size is 8 KB we can see that Oracle did in
fact allocate (8192 * 1009) blocks. This figure is a little
higher than this, due to the way extents are rounded and/or
by using locally managed table spaces with uniformly-sized
extents. This point out one of the issues with hash clusters
you need to be aware of. Normally, if we create an empty
table, the number of blocks under the high water mark for

select * from emp where deptno between 10 and 20

tkyte@TKYTE816> create cluster hash_cluster
2 (hash_key number)
3 hashkeys 1000
4 size 8192
5 /
Cluster created.
tkyte@TKYTE816> exec show_space(
'HASH_CLUSTER', user, 'CLUSTER')
FreeBlocks..................0
TotalBlocks.................1016
TotalBytes..................8323072
UnusedBlocks................6
UnusedBytes.................49152
Last Used ExtFileId.........5
Last Used ExtBlockId........889
Last UsedBlock..............2
PL/SQL procedure successfully completed.

Clarence J M Tauro et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,410-412

© 2010, IJARCS All Rights Reserved 412

that table is 0. If we full scan it, it reaches the high water
mark and stops. With a hash cluster, the tables will start out
big and will take longer to create as Oracle must initialize
each block, an action that normally takes place as data is
added to the table. They have the potential to have data in
their first block and their last block, with nothing in between.
Full scanning a virtually empty hash cluster will take as long
as full scanning a full hash cluster. This is not necessarily a
bad thing; you built the hash cluster to have very fast access
to the data by a hash key lookup. You did not build it to full
scan it frequently. [5]
a. The hash cluster did significantly less I/O (query

column). This is what we had anticipated. The query
simply took the random numbers, performed the hash
on them, and went to the block. The hash cluster has to
do at least one I/O to get the data. The conventional
table with an index had to perform index scans
followed by a table access by row ID to get the same
answer. The indexed table has to do at least two I/Os to
get the data. [6]

b. The hash cluster query took significantly more CPU.
This too could be anticipated. The act of performing a
hash is very CPU-intensive. The act of performing an
index lookup is I/O intensive.

c. The hash cluster query had a better elapsed time. This
may vary. The elapsed time for the hash cluster query
was very close to the CPU time and system used.

IV. CONCLUSION

In this paper, we presented importance of OODBMS and
the two methods of indexing method one is B tree where we
did performance study on the effect of Time Elapsed on
Range

Query Performance as time passes and effect of Data
Sizes on Range Query Performance is relatively independent
of the number of moving objects. Two the overview of

Hashing partition and different types, we studied stored
procedure to see what sort of space hash clusters take and
we concluded the hash cluster query had a better elapsed
time, significantly more CPU.

V. REFERENCES

[1]. Ubaid, M.; Atique, N.; Begum, S.; , "A pattern for the
effective use of object oriented databases," Information and
Communication Technologies, 2009. ICICT '09.
International Conference on , vol., no., pp.229-234, 15-16
Aug. 2009.

[2]. Christian S. Jensen, Dan Lin, Beng Chin Ooi "Query and
Update Efficient B -Tree Based Indexing of Moving
Objects" [online]
(2004). http://www.vldb.org/conf/2004/RS20P3.PDF
(Accessed: 3 April 2012).

[3]. Silberschatz. Korth &, Sudarshan, Database System
Concepts. 5th ed., Foxit Software Company, 2004, pp.
361–365.

[4]. J. Clerk Maxwell, A Treatise on Electricity and
Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892,
pp.68–73.

[5]. Jianzhong Li; Wenjun Sun; Yingshu Li; , "Parallel join
algorithms based on parallel B+-trees," Cooperative
Database Systems for Advanced Applications, 2001.
CODAS 2001. The Proceedings of the Third International
Symposium on , vol., no., pp.178-185, 2001.

[6]. Thomas Kyte, "Expert One-on-One Oracle", Apress
Publication, 2003, ISBN-10: 1590592433. pp. 170-235

[7]. Thomas Kyte,"Expert Oracle", Apress Publication 2005,
pp. 231-260

http://www.vldb.org/conf/2004/RS20P3.PDF�

	INTRODUCTION
	PERFORMANCE STUDIES OF B TREE
	Effect of Time:
	Effect of Data Sizes:

	HASH PARTITIONING
	A. Composite List-Hash Partitioning:

	CONCLUSION
	REFERENCES

