
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 456

ISSN No. 0976-5697

Evolution of Object Oriented Analysis & Design in Software Engineering
Amit Kumar Shrivastava*

Research Scholar, Dept of CSE
CMJ University Shillong (Meghalaya), India

amitku27@gmail.com

Sanjiv Kumar Shriwastava
Principal, SBITM, Betul,
Madhya Pradesh, India

skshriwastava@gmail.com

Rohit Sharma
Research Scholar, Dept of CSE

CMJ University Shillong (Meghalaya), India
rhtbjn@yahoo.com

Abstract: In this paper Object Oriented Analysis, Object Oriented Design, Object Oriented and evolution of Object Oriented Analysis & Design is
described. The Conventional methodologies like structured and Martin information engineering is explained. The importance of OOAD and
evolution is aimed for this paper. The purpose, benefits, design of OOAD is explained. Comparison of popular OO languages and Programming
object oriented concepts is also described in the paper, Case study of Banking is used to simplify the object oriented analysis & design. Process based
studies also span multiple disciplines including, but not limited to, OO design procedural design/programming and weaving design. Studies of
creativity have taken place in the less formally structured domains such as graphic design and industrial design rather than more structured software-
engineering disciplines. The improving OO related training relies on understanding the cognitive skills and activities that are applied in practice when
a designer translates his or her formal knowledge of the paradigm into working knowledge applied in a specific design situation using OOAD.

Keywords: Object Oriented Analysis, Object Oriented Design, Object Oriented, Evolution Object Oriented Analysis & Design

I. INTRODUCTION

The basic idea behind OOA is to reflect the problem
domain, system’s responsibilities and user requirements by
means of identifying and defining classes and their objects
found in the specified domain. It focuses on what the system
is supposed to do rather than how the system is to be built.
OOD is concerned with the proper and effective structuring
of a complex system. Using an OO notation at a higher level
than the individual constructs of a programming language
Object-oriented (OO) technologies (programming
languages, tools, methods, and processes) are claimed to
improve the quality of software product deliverables, to
support reuse and reduce the effort of developing and
maintaining the software product[1].

As object oriented analysis and design techniques
become widely used, the demand on assessing the quality of
object-oriented designs substantially increases. As with
traditional analysis, the primary goal of object-oriented
analysis is the development of an accurate and complete
representation of the problem domain. Object-oriented
analysis and design methods take full advantage of the
object specialization hierarchy when it comes to modeling
the objects in a system. When modeling system behavior,
however, system analysts continue to rely on traditional
tools such as state diagrams and dataflow diagrams. While
such diagrams capture important aspects of the processes
they model, they offer limited guidance as to the ways in
which a process can be improved.

II. OBJECT ORIENTED ANALYSIS (OOA)

Object Oriented Analysis is concerned with specifying
system requirements and analysing the application domain.
OOA is the process of converting the real-world problem
into a model using objects and classes as the modeling
constructs [2]. The objects identified from OOA are called
semantic objects since they have meaning in the problem
Domain. OOA is primarily concerned with the problem
domain i.e. what the system should do, not how it should be
accomplished Object Oriented Analysis (OOA) is concerned
with developing requirements and specifications expressed
as an object model (population of interacting objects) of a
system, as opposed to the traditional data or functional
views. Object-oriented analysis tries to identify the type of
objects that map into elements of the application domain to
be modeled. [3]

A. Benefits of OOA are:
a. Reuse Solution – by reusing already established design,

system analysts get a head start on their problems.
System analysts do not have to reinvent solutions for
commonly repeating problems. In this way, system
analysts can minimize their intellectual effort as well as
time and cost.

b. Establish Common Terminology – from a solution
readability and understandability perspective, analysis
patterns provide a common base vocabulary and a
common viewpoint of the problem for system analysts.

c. Promote Modeling Quality – as promoting proven
knowledge and solution to a recurring business
problem, analysis patterns can give some indications to

Amit Kumar Shrivastava et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,456-463

© 2010, IJARCS All Rights Reserved 457

entire stakeholders about the quality of the overall
conceptual model. Particularly, system analysts get the
benefit of learning from the experience of others. A
preliminary study has highlighted the effectiveness of
applying analysis patterns in helping the analyst identity
missing classes, associations and aggregations.

B. The methods of OOA are:
a. Finding class and object – specifies how class and

objects should be found. The first approach is given
by starting with the application domain and
identifying the classes and objects forming the
basis of the entire application and, in the light of
this, the systems responsibilities in this domain are
analyzed.

b. Identifying structures – this is done in two
different ways, first the generalization structure,
which captures the hierarchy among the identified
classes. Second, the whole part structure, which is
used to model how an object is part of another, and
how objects are composed into larger categories.

c. Defined subject – this is done by portioning the
class and object model into larger units. Subjects
are groups of class and object. The structure
identified earlier can be used.

d. Defining attributes - This is done by identifying
information and association for every instance.
This involves identifying the attributes needed to
characterize each object.

e. Defining services – defining the operations of the
classes. This is done by identifying the object states
and defining services fof accessing and altering that
state

Some activities involved in OOA are Describe object
dynamics in terms of constraints, conditions and effects [4],
Examine related systems and locate existing software
components for reuse, Provide a ‘first cut’ for the design of
the system [5].

III. OBJECT ORIENTED DESIGN (OOD)

Object Oriented Design is concerned with implementing
the requirements identified during OOA in the application
domain. Object-oriented design transforms the analysis
classes into a computerized model that belongs to the
solution space Object Oriented Design (OOD) is concerned
with developing object-oriented models of a
software/system to implement the requirements identified
during OOA.

Object-oriented Design is often touted as promoting
software reuse [6]. Sometimes however the benefits of the
object-oriented approach are overstated, and claims are
made that features can be added to an object-oriented system
without disturbing the existing implementation. The object-
oriented software often needs to be restructured before it can
be reused. While some software reuse techniques have
focused at the code level, others have focused on design-
level reuse. There are limitations on the reuse of code: it
works best when the domain is narrow and well understood

and the underlying technology is very static. Sometimes the
design of software is reusable even when the code is not.
However, a major problem with design-level reuse is that
there is no well-defined representation system for design.
An important object-oriented technique for facilitate design-
level reuse is an application framework. [7]. Good
frameworks are usually the result of many design iterations
and a lot of hard work involving structural changes [8, 9].
These changes may involve a single refactoring, or a series
of related refactorings

A. Purpose of OOD
a. Reusability: Reusability is the process to which a

software module or component can be used in more
than one computing program or software system. The
goal of reusability guidelines is to reduce designing,
coding, and testing, so that the total system will be
understandable and ensures faster development of
software applications[10][11][12]

b. Extensibility: Extensibility mentions the ability to add
or change a function or data without changing the
existing functions or data, so that the design will be free
from unwanted side effects

c. Robustness: Robustness is the stability of software
applications in extreme situations that is, maximum
load conditions. OMT model mentions that a method is
robust if it does not fail even, if it receives improper
parameters [13].

IV. OBJECT ORIENTED (OO)

Object-Oriented technologies are becoming pervasive in
many software development organizations. However, many
methods, processes, tools, or notations are being used
without thorough evaluation. An object is defined as a
concept, abstraction, or thing with crisp boundaries and
meaning for the problem at hand. Each object has its own
state diagram. An event generated at one object could
trigger state transitions of several other objects. The
dynamic interaction between objects is through the use of
the same event name at different locations in the dynamic
model. This way, events are globally defined. The dynamic
model does not have crisp boundaries as the object model
has. The collection of state diagrams with globally used
event names make it difficult to understand the dynamic
behavior of a system. Objects include physical entities as
well as concepts, such as trajectories, seating assignment,
and payment schedules. All classes must make sense in the
application domain; computer implementation constructs
must be avoided. Classes often correspond to nouns.
Searching for classes really is a search for objects. Every
object belongs to some class. A class can have many
instances or even just the one object found. Without being
too selective.

The concept of object oriented design is gaining more
popularity and there is a constant increase in the shift
towards it, when compared to traditional design. Object
Oriented Design (OOD) is a method for decomposing
software architectures. It has the advantages of faster

Amit Kumar Shrivastava et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,456-463

© 2010, IJARCS All Rights Reserved 458

development, easier maintenance for the designers and
increased quality for the users. A designer runs a piece of
design against a list of design heuristics that were build up
through many years of design experience . Some terms
associated with object oriented are given below:
a. Object: The term object was first formally applied in

the Simula language, and objects typically existed in
Simula programs to simulate some aspect of reality
[14]. An object has state, behavior, and identity; the
structure and behavior of similar objects are defined in
their common class; the terms instance and object are
interchangeable.

b. Class: “A class represents a template for several
objects and describes how these objects are structured
internally. Objects of the same class have the same
definition both for their information structure” [15].

c. Inheritance: “Inheritance is the sharing of attributes
and operations among classes based on a hierarchical
relationship” [16].

d. Polymorphism: “Polymorphism means that the sender
of a stimulus does not need to know the receiving
instance’s class. The receiving instance can belong to
an arbitrary class” [15].

e. Abstraction: It means, to represent the essential feature
without including the background explanation.

f. Encapsulation: “Encapsulation is the process of
hiding all of the details of an object that do not
contribute to its essential characteristics” [15].

g. Aggregation: It is used to treat a collection of objects
as a single object. For example, among other things, a
car consists of tires and an engine. Note that the
opposite of aggregation is decomposition.

h. Association: It can be viewed as a weak form of
aggregation or as a data-oriented relationship between
two entities. For example, the following relationship
models the concept that if there is a car, it must be
associated with an owner.

Although design patterns are not strictly speaking an OO
concept, they are covered here because of their increasing
prevalence and acceptance within the OO community [17].
As such, design patterns are likely to be applied as part of
the OO design process as studied by the methodology
described in this paper. According to Alexander et al.
[17][18], “Each pattern describes a problem which occurs
over and over again in our environment, and then describes
the core of the solution to that problem in such a way that
you can use this solution a million times over, without doing
it the same way twice.” Although this seminal work
describes patterns in the context of building architecture,
this description applies equally well to object-oriented
software patterns, whose solutions are expressed in terms of
objects and interfaces rather than walls and doors [19].

V. CONVENTIONAL METHODOLOGIES

A systems development methodology combines tools
and techniques to guide the process of developing large-
scale information systems. The evolution of modern
methodologies began in the late 1960s with the development

of the concept of a systems development life cycle (SDLC).
Dramatic increases in hardware performance and the
adoption of high-level languages had enabled much larger
and more complicated systems to be built. The SDLC
attempted to bring order to the development process, which
had outgrown the ad hoc project control methods of the day,
by decomposing the process into discrete project phases
with “frozen” deliverables- formal documents- that served
as the input to the next phase. The systems development life
cycle concept gave developers a measure of control, but
provided little help in improving the productivity and
quality of analysis and design per se. Beginning in the
1970s, structured methodologies were developed to promote
more effective analysis and more stable and maintainable
designs. Early structured methodologies were largely
process-oriented, with only a minor emphasis on modeling
of entities and data.

A. Tools for Structured Methodologies:
a. Dataflow diagram (DFD) - Depicts processes (shown

as bubbles) and the flow of data between them (shown
as directed arcs). DFDs are usually organized into a
hierarchy of nested diagrams, where a bubble on one
diagram maps to an entire diagram at the next lower
level of detail.

b. Data-dictionary - A repository of definitions for data
elements, files, and processes. A precursor to the more
comprehensive “encyclopedias.”

c. Entity-relationship diagram (ERD) - Depicts real-
world entities (people, places, things, concepts) and the
relationships between them. Various notations are
used, but usually entities are portrayed as boxes and
relationships as arcs.

d. Hierarchy diagram - A simple diagram that shows a
top-to-bottom hierarchical decomposition of data files
and data items (enclosed within boxes) connected by
undirected arcs.

e. Mini-spec - A structured-English specification of the
detailed procedural logic within a process; performs
the same function as the traditional flowchart. A mini-
spec is developed for each process at the lowest level
of nesting in a set of DFDs.

f. State-transition diagram - Depicts the different
possible states of a system or system component, and
the events or messages that cause transitions between
the states.

g. Structure chart - Depicts the architecture of a system
as a hierarchy of functions (boxes) arranged in a tree-
like structure.

h. Information Engineering. In the late 1970s and early
1980s, planning and modeling of data began to take on
a more central role in systems development,
culminating in the development of data-oriented
methodologies such as information engineering.

B. Tools for Martin Information Engineering:
a. Actlon Diagram - Used to depict detailed procedural

logic at a given level of detail (for example, at a system
level or within individual modules

Amit Kumar Shrivastava et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,456-463

© 2010, IJARCS All Rights Reserved 459

b. Bubble chart - A low-level diagram used as an aide to
normalization of relational tables. Shows attributes
(depicted as bubbles) and the functional dependencies
between them (depicted as directed arcs).

c. Dataflow Diagram (DFD) - Conforms to the
conventional notation and usage for dataflow diagrams
(see the sidebar, "Tools for structured methodologies").

d. Data-Model Diagram - Depicts data entities (boxes)
and their relational connections (lines). Shows
cardinality and whether the connections are optional or
mandatory. Similar to the entity-relationship diagram.

e. Data-Structure Diagram - Shows data structures in a
format appropriate to the database management system
to be used for implementation.

f. Encyclopedia - A more comprehensive version of the
data dictionary that serves as an integrated repository
for modeling information from all development phases,
including the enterprise model.

g. Enterprise Model - A model that defines, at a high
level, the functional areas of an organization and the
relationships between them.

h. Entity-Process Matrix - Cross-references entities to
the processes that use them.

i. Process-Decomposition Diagram - A hierarchical
chart that shows the breakdown of processes into
progressively increasing detail. Similar to the
conventional tree diagram, except a particularly
compact notation is used to fit many levels on one
page.

j. Process-Dependency Diagram - A diagram consisting
of processes (depicted by bubbles) and labeled arcs. It
shows how each process depends on the prior
execution other processes. Similar to a dataflow
diagram, except conditional logic and flow of control
is also depicted.

k. State-Transition Diagram- Conforms to the
conventional notation and usage for state-transition
diagrams (see the sidebar, "Tools for structured
methodologies").

VI. EVOLUTION OF OBJECT ORIENTED
ANALYSIS AND DESIGN (OOAD)

Object-oriented technology is gaining substantial interest
as a beneficial paradigm for developing software
applications. Several approaches have evolved to model OO
designs. The Unified Modeling Language [20] is the result
of the unification process of earlier OO models and
notations. UML models capture the application static and
dynamic aspects, but do not provide dynamic model
execution or simulation. The Real-Time Object Oriented
Modeling (ROOM) [21] was introduced to study the
dynamic aspects of applications constructed as concurrently
executing objects. ROOM design models support simulation
of the application execution scenarios.

a. Any project in the world has the following phases:
b. Planning
c. Analysis: system requirements are studied and

structured

d. Design: recommended solution is converted into
logical and then physical system specifications

a) Logical design – all functional features of the system
chosen for development in analysis are described
independently of any computer platform

b) Physical design – the logical specifications of the
system from logical design are transformed into the
technology-specific details from which all
programming and system construction can be
accomplished

e. Implementation
f. Testing
g. Maintenance

A. Object-Oriented Analysis and Design (OOAD):
a. Based on objects rather than data or processes
b. Object: a structure encapsulating attributes and

behaviors of a real-world entity
c. Object class: a logical grouping of objects sharing

the same attributes and behaviors
d. Inheritance: hierarchical arrangement of classes

enable subclasses to inherit properties of
superclasses

B. OOAD Project Phases:
a. Analysis
a) Requirement gathering, analysis, and modeling

(Requirement Engineering)
b) Use Case Model find Uses Cases, Flow of Events,

Activity Diagram)
c) Object Model
i. Find Classes & class relations,

ii. Object Interaction: Sequence & collaboration
Diagram, State Machine Diagram,

d) Object to ER Mapping
b. Design
a) Physical DB design
b) Design elements
c) Design system Architecture
d) Design classes: Checking The Model, Combine

Classes, Splitting Classes, Eliminate Classes
e) Design components
f) GUI design
In the late 1980s, using object-oriented analysis (OOA)

techniques in system analysis has received a great attention
from the information systems (IS) groups and organizations
[22]. The complete software life cycle spans from initial
formulation of the problem, through analysis ,design,
implementation, and testing of the software, followed by an
operational phase during which maintenance and
enhancement are performed The methodology has the
following stages[23]:
a. Analysis: Starting from a statement of the problem, the

analyst must work with the requester to understand the
problem because problem statements are rarely
complete or correct. The analysis model is a concise,
precise abstraction of what the desired system must do,
not how it will be done. The analysis model should not
contain any implementation decisions.

Amit Kumar Shrivastava et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,456-463

© 2010, IJARCS All Rights Reserved 460

b. System Design: The system designer makes high-level
decisions about the overall architecture. During system
design, the target system is organized into subsystems
based on both the analysis structure and the proposed
architecture. The system designer must decide what
performance characteristics to optimize.

c. Object Design: The object designer builds a design
model bases on the analysis model but containing
implementation details. The designer adds details to
the design model in accordance with the strategy
established during system design. The focus of object
design is the data structures and algorithms needed to
implement each class.

d. Implementation: The object classes and relationships
developed during object design are finally translated
into a particular programming language, database, or
hardware implementation. Programming should be a
relatively minor and mechanical part of the
development cycle, because all of the hard decisions
should be made during design.

VII. DESIGNING OBJECT ORIENTED ANALYSIS
AND DESIGN (OOAD)

Different OOAD methodologies are defined like

Analysis is usually defined as a process of extracting and
codifying user requirements and establishing an accurate
model of the problem domain. Design, by contrast, is the
process of mapping requirements to a system
implementation that conforms to desired cost, performance,
and quality parameters. While these two activities are
conceptually distinct, in practice the line between analysis
and design is frequently blurred. One of the frequently cited
advantages of object orientation is that it provides a
smoother translation between analysis and design models
than do structured methodologies. It is true that no direct
and obvious mapping exists between structured analysis and
structured design

Object
Oriented Design with Applications (OODA) by Booch [24],
Object Oriented Analysis and Object Oriented Design
(OOA/OOD) by Coad & Yourdon [25, 26], Object Oriented
Analysis and Design (OOAD) by Martin & Odell [27], .
Object Modeling Technique (OMT) by Rumbaugh, et al.
[28], Object Oriented Systems Analysis (OOSA) by Shlaer
& Mellor [29], Designing Object Oriented Software
(DOOS) by Wirfs- Brock, et al. [30]

A. Object-Oriented Analysis Methodologies:
Object Oriented Analysis Activities involves Classes

which Identify the classes which are part of the system.
State which Identify the attributes that of each class.
Behavior which Identify the operations or services needed
for each class. Collaborations which Identify collaborations
between classes.

As with traditional analysis, the primary goal of object-
oriented analysis is the development of an accurate and
complete representation of the problem domain. We
conducted a literature search to identify well-documented,
broadly representative OOA methodologies first published

in book form or as detailed articles in refereed journals from
1980 to 1990. The goal here is to provide a detailed
comparison of representative methodologies at a single point
in time, not a comprehensive review. The 00s methodology
consists of a seven-step procedure:
a. Identify key Problem Domain Entities: Draw dataflow

diagrams and then designate objects that appear in
process names as candidate entities.

b. Distinguish Between Active and Passive Entities:
Distinguish between entities whose operations are
significant in terms of describing system requirements
(active entities) versus those whose detailed operations
can be deferred until design (passive). Construct an
entity-relationship diagram (ERD).

c. Establish data flows between active Entities:
Construct the top-level (level 0) entity-dataflow
diagram (EDFD). Designate each active entity as a
process node and each passive entity as a dataflow or
data store.

d. Decompose entities (or functions) into sub entities
and/or functions: This step is performed iteratively
together with steps 5 and 6. Consider each active entity
in the top-level EDFD and determine whether it is
composed of lower level entities. Also consider what
each entity does and designate these operations as
functions. For each of the sub entities identified, create
a new EDFD and continue the decomposition process.

e. Check for new entities: At each stage of
decomposition, consider whether any new entities are
implied by the new functions that have been introduced
and add them to the appropriate EDFD, reorganizing
EDFDs as necessary.

f. Group functions under new entities: Identify all the
functions performed by or on new entities. Change
passive to active entities if necessary and reorganize
EDFDs as appropriate.

g. Assign entities to appropriate domains: Assign each
entity to some application domain, and create a set of
ERDs, one for each domain. Design is the process of
mapping system requirements defined during analysis t
o an abstract representation of a specific system-based
implementation, meeting cost and performance
constraints.

Another important benefit claimed for OOAD is
improved communication among development team
members, as well as between users and developers [31]. In
this research, several field studies were conducted using
developers’ timesheets, videotapes of meetings on design
activities and semistructured interviews with developers.

VIII. BANKING EXAMPLE

Here we use a Bank Activity System (BAS) for case
diagram and activity diagram Fig 1 shows the UML Use
Case diagram of BAS. The users or actors of the system and
their characteristics are as follows:

Manager is a person ask the customer for the purpose of
visit, he is also having authority to correct errors occurred
during the transaction

Amit Kumar Shrivastava et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,456-463

© 2010, IJARCS All Rights Reserved 461

Clerk is a person who is responsible for: a) Opening new
account b) issuing token to the customer.

Cashier is a person who is responsible for: a) Collecting
or giving the cash b) Making database entry, and c) Writing
cash book.

Customer is a person who visits the Bank of some task
like deposit, withdrawn, loan, complaint etc

After capturing the requirements the next step in the
process is to generate the Platform Independent Model.

Fig 2. Shows the For Activity Diagram

Manager ask the customer for the purpose of visit, Then
he direct him for further process, If customer is having
complaint, Manager will look farward in to the matter
If new account is to be opened clerk will take the documents
and open account.
Clerk will issue the token for the cashier
Cahier will collect or give the case as per the token given by
the clerk
Customer will collect the compiled pass book.

Table 1 - Feature comparison of popular OO languages

 Inheritance Polymorphism Typing Genericity

ANSI C++ Multiple Single Strong Yes
Java 1.3 Single Implementation

Multiple Interface
Single Strong No

CLOS Multiple Multiple Optional No
Ada 95 Single Single Strong Yes
Eiffel Multiple Single Strong Yes

Smalltalk-80 Single Single Untyped No

Table 2: Programming object oriented concepts

OOAD C C(files) C++ Java
Class Struct Separate file Class Class
Object Variable None Variable variable

Inheritance None None Derived class Subclass
Aggregation Nested struct None Nested class Reference
Association Pointer None Pointer Reference
Aggregation Data member Static data Data member Data member

Service External function External function Member function Member function
Message Function call Function call Function call Function call

Figure 1. Use Case Diagram for BAS.

Amit Kumar Shrivastava et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,456-463

© 2010, IJARCS All Rights Reserved 462

Figure 2. Activity Diagram of BAS

IX. CONCLUSION

In this paper Object Oriented Analysis Benefits
like maintainability, reusability, productivity and OOA
Methods like Finding class and object, Identifying structures,
Defined subject, Defining attributes, Defining services are
explained. Also Object Oriented Design Benefits like
Reusability, Extensibility, Robustness and OOD process like
Object-oriented analysis, Object-oriented design, Object-
oriented programming are explained. Object Oriented concept
as class, object, Polymorphism, inheritance, abstraction,
encapsulation, aggregation, association are summered up.
Traditional software-engineering techniques were based upon
the top-down structured design method, which focuses on
algorithmic decomposition, i.e. the process of decomposing a

problem with respect to functionality. Although this method is
well documented and has produced the majority of software
systems to date, according to the well known OO practitioner
Booch, it fails to adequately address important issues such as
encapsulation, reusability, and pure abstraction. These
shortcomings in comparison to OO, whether merely perceived
or otherwise, have caused a significant shift towards object-
oriented technologies, whether it be Object-Oriented Analysis
(OOA), Object-Oriented Design (OOD), Object Oriented
Programming (OOP), or full OO development involving all of
these processes1 In conclusion, improving OO related training
relies on understanding the cognitive skills and activities that
are applied in practice when a designer translates his or her
formal knowledge of the paradigm into working knowledge
applied in a specific design situation. Obtaining such an
insight could be done by creating a methodology that details

Amit Kumar Shrivastava et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,456-463

© 2010, IJARCS All Rights Reserved 463

the experimental approach, data collection and encoding
scheme, and subsequent interpretation of data. This paper is
concerned primarily with Object-Oriented Analysis and
Design (OOAD) as opposed to other parts of the software
development lifecycle. This is because if the initial process of
analysis and abstraction is flawed, the subsequent OOD
produced will not sufficiently resemble the original problem at
either a semantic or structural level. This negatively influences
all subsequent steps in the software-development lifecycle,
rendering them tedious and error-prone. The importance of
analysis and design in comparison to the later stages of the
development lifecycle has been widely described in the
literature.

X. REFERENCES

[1]. Empirical Studies of Object-Oriented Artifacts, Methods, and
Processes: State of the Art and Future Directions L. BRIAND
Carleton University, Canada E. ARISHOLM University of
Oslo, Norway S. COUNSELL Birbeck College, University of
London, K F. HOUDEK Daimler-Chrysler AG, Germany P.
TH´EVENOD–FOSSE LAAS–CNRS, France, WORKSHOP
AND CONFERENCE REPORTS

[2]. Srivastava, N.P.S. and S. Sabharwal, 2006. The classification
framework for model transformation. J. Comput. Sci., 2: 166-
170. DOI:10.3844/jcssp.2006.166.170

[3]. Applying Object-Oriented analysis and design : Article: Jean-
Marc Nerson

[4]. de Champeaux, D., D. Lea, and P. Faure. The Process of
Object-Oriented Design. In Proc. of OOPSLA'92. 1992.

[5]. Jacobson, I., G. Booch, and J. Rumbaugh, The Unified
Software Development Process. 1999, Reading,
Massachusetts: Addison-Wesley.

[6]. Gerhard Fischer. Cognitive view of reuse and redesign. IEEE
Software, 4(4):60-72, 1987.

[7]. L. Peter Deutsch. Design reuse and frameworks in the
smalltalk-80 system. In Software Reusability - Volume II:
Applications and Experience, pages 57-72, 1989.

[8]. Ralph E. Johnson and Brian Foote. Designing reusable
classes. Journal of Object-Oriented Programming, 1(2):22-35,
1988.

[9]. William F. Opdyke and Ralph E. Johnson. Refactoring: An
aid in designing application frameworks and evolving object-
oriented systems. In Proceedings of Symposium on Object-
Oriented Programming Emphasizing Practical Applications
(SOOPPA), September 1990.

[10]. Arthur J. Riel:Object-Oriented Design Heuristics.Addison-
Wesley May 1996.

[11]. Booch, G.: Object-Oriented Analysis And Design With
Applications, 1991.

[12]. Jacobson, I., Christerson, M., Jonsson, P., and Overgaard G.:
Object-Oriented Software Engineering: A Use-Case Driven
Approach, Addison-Wesley, 1992

[13]. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy F. and
Lorensen, W: Object- Oriented Modeling and Design,
Prentice-Hall, 1991.

[14]. Booch, G.: Object-Oriented Analysis And Design With
Applications, 1991.

[15]. Jacobson, I., Christerson, M., Jonsson, P., and Overgaard G.:
Object-Oriented Software Engineering: A Use-Case Driven
Approach, Addison-Wesley, 1992

[16]. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy F. and
Lorensen, W: Object- Oriented Modeling and Design,
Prentice-Hall, 1991.

[17]. Coplien, J.O. Software Design Patterns: Common Questions
& Answers. in Proc. Of Object Expo New York. 1994. NY:
SIGS Publications.

[18]. Alexander, C., et al., A Pattern Language. 1977, NY: Oxford
University Press.

[19]. Gamma, E., et al., Design Patterns: Elements of Reusable
Object-Oriented Software. 1995, Reading, Massachusetts:
Addison-Wesley.

[20]. The Unified Modeling Language Resource Center
http://www.rational.com/uml/ index.html

[21]. Selic, B., G. Gullekson, and P. Ward, “Real-Time Object
Oriented Modeling”, John Wiley & Sons, Inc. 1994

[22]. Coad, P. and Yourdon, E. 1991. Object-Oriented Analysis.
Prentice Hall, Englewood Cliffs, N.J.

[23]. Towards an Object-Oriented Analysis and Design method for
Hardware/Software Systems. A Case Study. Erik Hansen,
1995

[24]. Booch, G., Object-Oriented Design with Applications, The
Benjamin/Cummings Publishing Company Inc., Redwood
City, CA, 1991.

[25]. Coad, P., Yourdon, E., Object Oriented Analysis (2nd
Edition), Yourdon Press, Englewood Cliffs, N.J., 1991.

[26]. Coad, P., Yourdon, E., Object Oriented Design, Yourdon
Press, Englewood Cliffs, N.J., 1991.

[27]. Martin, J., Odell, J., Object Oriented Analysis and Design,
Draft manuscript, 1992.

[28]. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F.,
Lorensen, W., Object Oriented Modelling and Design,
Prentice-Hall, Englewood Cliffs, N.J., 1991.

[29]. Shlaer, S., Mellor, S.J., Object-Oriented Systems Analysis:
Modeling the World in Data, Yourdon Press, Englewood
Cliffs, N.J., 1988.

[30]. Wirfs-Brock, R., Wilkerson, B., Wiener, L., Designing
Object Oriented Software, Prentice-Hall, Englewood Cliffs,
N.J., 1990.

[31]. Garceau, L., E. Jancura and J. Kneiss, 1993. Object oriented
analysis and design: A new approach to systems
development. J. Syst. Manag., 44: 25-33

http://www.rational.com/uml/index.html�

	INTRODUCTION
	OBJECT ORIENTED ANALYSIS (OOA)
	OBJECT ORIENTED DESIGN (OOD)
	OBJECT ORIENTED (OO)
	CONVENTIONAL METHODOLOGIES
	EVOLUTION OF OBJECT ORIENTED ANALYSIS AND DESIGN (OOAD)
	DESIGNING OBJECT ORIENTED ANALYSIS AND DESIGN (OOAD)
	BANKING EXAMPLE
	CONCLUSION
	REFERENCES

