
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 253

ISSN No. 0976-5697

Design and Analysis of Software Architecture with Unified Modeling Language
Kamna Gauri* and Dipanwita Thakur
Dept.of Computer Science & Electronics

AIM & ACT Banasthali University Tonk (Rajasthan), India
Kamna.gk@gmail.com*, Dipanwita.thakur@gmail.com

Abstract: Software Architecture is being widely used today to describe a very high level design methodology of large & heterogeneous software
systems. A good Architectural representation scheme holds the key to the effectiveness of a Software architecture description and usage. In this
paper, we look at UML (unified modeling language) as a prospect for a generalized architecture description language. UML also “unifies" the
design principles of each of the object oriented methodologies into a single, standard, language that can be easily applied across the board for all
object-oriented systems and a scheme AND-OR DFD method is introduced and developed.

Keywords: Software Architecture, Unified Modeling Language, Software Architectural modeling view

I. INTRODUCTION

An Architectural Style defines a family of systems in
terms of a pattern of structural organization. An awareness
of these Architectural styles can simplify the problem of
defining system architectures. However, most large systems
are heterogeneous and do not follow a single architectural
style. Software Architecture determines how system
components are identified and allocated, how the
components interact to form a system, the amount and
granularity of communication needed for interaction, and
the interface protocols used for communication among
stakeholders:Customers, managers, designers, programmers.
Software Architecture consists of components, connectors,
data, a configuration, and a set of architectural properties.

An important feature of architecture is the ability to
facilitate development of large systems, with components
and connectors of varying granularity, implemented by
different developers, in different programming languages,
and with varying operating system requirements. [1]
a. Component: A component is an abstract unit of

software that provides a transformation of data via its
interface. Components can be computation units or
data stores. According to [2], components are loci of
computation and state.

b. Connector: A connector is an abstract mechanism that
mediates communication, coordination, or cooperation
among components. The connectors play a
fundamental role in distinguishing one architectural
style from another and have an important effect on the
characteristics of a particular style [3].

c. Datum: A datum is an element of information that is
transferred from a component, or received by a
component, via a connector.

d. Configuration: A configuration is the structure of
architectural relationships among components,
connectors, and data during some period of system
run-time.

II. INTRODUCTION TO UML

a. UML (Unified modeling language) is a clear and
concise modeling language without being tied down to
any technologies. It provides the ability to capture the

characteristics of a system by using notations and is the
language that can be used to model systems and make
them readable.

b. UML is a language to specify, to visualize and to build
and to document the artifact of the software systems, as
well as to model business and other systems besides
software systems. [4]

c. UML provides a wide array of simple, easy to
understand notations for documenting systems based
on the object-oriented design principles. These
notations are called the nine diagrams of UML.

III. INTRODUCTION TO UML DIAGRAMS

UML is made up of nine diagrams that can be used to
model a system at different points of time in the software
life cycle of a system.
The nine UML diagrams are:-

A. Use case Diagram:
This diagram is used to identify the primary elements

and processes that from the system. The primary elements
are termed as "actors" and the processes are called "use
cases."

B. Class Diagram:
This diagram is used to refine the use case diagram and

define the detailed design of the system. The class diagram
classifies the actors defined in the use case diagram into a
set of interrelated classes. The relationship or association
between the classes can be either an "is-a" or "has-a"
relationship. Each class in the class diagram may be capable
of providing certain functionalities.

C. Object Diagram:
The object diagram is a special kind of class diagram.

An object is an instance of a class. This essentially means
that an object represents the state of a class at a given point
of time while the system is running. The object diagram
captures the state of different classes in the system and their
relationships or associations at a given point of time.

mailto:Kamna.gk@gmail.com*�

Kamna Gauri et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,253-257

© 2010, IJARCS All Rights Reserved 254

D. State Diagram:
Objects in the system change states in response to

events. In addition to this, a state diagram also captures the
transition of the object's state from an initial state to a final
state in response to events affecting the system.

E. Activity Diagram:
This diagram is used to capture the process flows in the

system. Similar to a state diagram, an activity diagram also
consists of activities, actions, transitions, initial and final
states, and guard conditions.

F. Sequence Diagram:
A sequence diagram represents the interaction between

different objects in the system. This means that the exact
sequence of the interactions between the objects is
represented step by step. Different objects in the sequence
diagram interact with each other by passing "messages".

G. Collaboration Diagram:
A collaboration diagram groups together the interactions

between different objects. This diagram helps to identify all
the possible interactions that each object has with other
objects.

H. Component Diagram:
The component diagram represents the high-level parts

that make up the system. This diagram depicts, at a high
level, what components form part of the system and how
they are interrelated. It also depicts the components culled
after the system has undergone the development or
construction phase.

I. Deployment Diagram:
The deployment diagram captures the configuration of

the runtime elements of the application. This diagram is by
far most useful when a system is built and ready to be
deployed.

IV. INTRODUCTION TO ARCHITECTURAL
MODELING VIEWS

To describe Software Architecture, we use a model
composed of multiple views or perspectives. In order to
eventually address large and challenging architectures, the
model we propose is made up of six main views:
a. Logical view, which is the object model of the

design(when an object-oriented design method is used)
b. Process view, this view deals with concurrency and

distribution, system integrity, and fault tolerance [5].
c. Component view, which shows the grouped modules

of a given system, modeled using the component
diagram.

d. Development view, which describes the static
organization of the software in its development
environment.

e. Physical view, which describes the mapping(s) of the
software onto the hardware and reflects its distributed
aspect

f. Execution view, which is the runtime view of the
system. It involves the mappings of modules to run-
time images, defining the communication among them,
and assigning them to physical resources. Resource

usage and performance are key concerns in the
execution view.

Figure 1: “6+1” View Model of Software Architecture

V. AN EXAMPLE: C2 GENERATOR

Let us consider a software system called C2 Generator.
This software system would be written in an object oriented
language like JAVA and it attempts to generate an
architectural representation diagram based on the C2
Generator architecture. [6]

It takes as input the components of the system to be
modeled, the connectors and a list of who notifies whom.
But it will suffice to say here that C2 Generator is an
architecture description language (ADL) that is used to
model user interface intensive software systems i.e.,
applications that have a graphical user interface (GUI)
aspect.

This architectural style consists of components and
connectors. Components and connectors both have a defined
top and bottom. The top of a component may be connected
to the bottom of a single connector. The bottom of a
component may be connected to the top of a single
connector. There is no bound on the number of components
or connectors that may be attached to a single connector.

In C2-style architecture, connectors transmit messages
between components, while components maintain state;
perform operations, and exchange messages with other
components via two interfaces which are called top and
bottom.

Each interface consists of a set of messages that may be
sent and a set of messages that may be received. Inter-
component messages are either requests for a component to
perform an operation, or notifications that a given
component has performed an operation or changed state.

In the C2 style, components cannot interact directly but
can do so using the connectors. Each component interface
can be attached to at most one connector. A connector,
however, can be attached to any number of other
components and connectors. Request messages can only be
sent “upward” through the architecture, and notification
messages can only be sent “downward.”The C2 style has
another requirement that the components communicate with
each other only through message passing and never through
shared memory. Also, C2 requires that notifications sent
from a component correspond to the operations of its
internal object, rather than the needs of any components that
receive those notifications.

This constraint on notifications helps to ensure substrate
independence, which is the ability to reuse a C2 component
in architectures with differing substrate components (e.g.,
different window systems).

The C2 style explicitly does not make any assumptions
about the language(s) in which the components or
connectors are implemented, whether or not components

Kamna Gauri et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012, 253-257

© 2010, IJARCS All Rights Reserved 255

execute in their own threads of control, the deployment of
components to hosts, or the communication protocol(s) used
by connectors.

There are four primary components in this software. The
CreateConnection component has five subcomponents,
which are the various steps taken to create a connection.
First, the component to be connected to first created
component is identified from the connection list. Then new
ports are created and attached to both these components.

We assume here for simplicity that both components can
have unlimited number of ports and so unlimited number of
connections. Then the connector is created and the two ports
are connected. It is obvious that the steps in creating a new
connection start with reading a component name from the
connection list till the connector is attached to the two newly
formed ports.

This whole process has to be repeated till there are no
more entries in the connection list. This iterative property of
the system cannot be known from the decomposition model,
though it must occur if the system executes correctly.
Second, there might be repeated entries in the connection
list.

Table 1 Process Decomposition of C2 Generator
Module Name Submodule(s)

1) ReadInput
2) CreateComponent
3) ReadConnectionList
4) CreateConnection CreateComponentToBeConnected
 CreatePorts
 ConnectPortsToBothComponents
 CreateConnector
 ConnectBothPortsWithConnector

There is no restriction to the number of connections one

component can have with other components. For an entry
that refers to a component which has already been created,
one doesn’t need to create it again, but just identify that
component and create a new port. Hence, once an entry has
been read from the Connection List, one of two things
happen depending on the read value. Either the component
doesn’t exist and needs to be created, or it exists and needs
to be identified. Again, there is no way of knowing this from
the decomposition model. Let us now consider how the
AND-OR DFD tackles these issues.

A. AND-OR DFD Representation of C2 Generator:

Figure 2 AND-OR DFD representation of C2 Generator (process view)

From Figure 2, we see that the data flow is represented
by this modified DFD, but with two significant differences.
Firstly, there is an OR-group of two components that

illustrate that once an entry has been read from the
connection list, either a new component is created, or
control moves to an existing component, depending on the
value read from the connection list. Second, the iterative
portion of the system has been illustrated by a shaded box.
So we now can tell that the steps starting from the reading of
the connection list to the connection of the ports by a
connector are iterative and are executed for each entry in the
connection list.

VI. UML FOR SOFTWARE ARCHITECTURE

In order to represent architecture using UML, the
architecture is separated into four views: conceptual,
module, execution and code. Each of these views addresses
different concerns, and separation of these concerns allows
the architect to make decisions without design trade-offs.

a. The conceptual view (logical view) describes the
architecture in terms of domain elements.

b. The module view describes the decomposition of
the software and its organization into layers.

c. The execution view (process view) is the run-time
view of the system.

d. The code view captures how modules and
interfaces in the module view are mapped to source
files, and run-time images in the execution view are
mapped to executable files.

VII. ARCHITECTING WITH UML

In order to see how UML can construct the Software
Architecture of a system, let us go back to the example of
the C2 Generator. Table 2 shows the logical decomposition
of the system. The use of layering in modeling C2 style
architecture for GUI intensive software systems [6] and the
use of layering in representation of module view of an
architecture using UML also indicate the vast potential for
the layering style.

The logical (conceptual) decomposition highlights the
main components of the system and their subcomponents if
any.

Table 2: Logical Decomposition of C2 Generator

We see that the C2Generator component has the task of
creating the component(s) and the connector, and updating
the component and connection lists. The component module
checks for free ports on the component(s) and if there are
free ports, then it creates the physical port. The Port
component creates the connector in turn, and the connector
component joins the two components (called the connecting

Kamna Gauri et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,253-257

© 2010, IJARCS All Rights Reserved 256

component and the connected component here) and updates
the two components for the connection created.

A. Conceptual View:
From table2, we came to know about Logical

decomposition of C2 Generator. Let us now try to construct
the logical architectural view for C2 Generator. Figure 2
shows the conceptual architectural view of the C2 Generator
using UML constructs.

Figure 3: Conceptual view of C2 Generator

Figure 3 show the conceptual architectural view of the
C2 Generator using UML constructs [7].

The problem with this representation lies in the
relationship of the port and the Connector Conn. i.e. a
connector can be broken off from one component and joined
to another component. So a composition doesn’t hold good
here. Even an aggregation doesn’t hold good because when
the connector is isolated from the ports of both the
connecting components, it ceases to exist independently. So
here is a situation where there is a composition relationship
that involves two components and a connector.

B. Execution View:
The execution view or process view of C2 Generator

will be modeled from the process decomposition model we
saw earlier. Figure 4 shows one sequence diagram
representing the execution configuration of the C2
Generator.

The C2Generator first creates the connecting component
by calling the Create Component () procedure and
interacting with the component module. The component
module in turn then creates a port and connects the newly

created component to it by calling the Create And Connect
To Port () procedure and communicating with the Port
module. The Port module now creates the connector and
attaches the port to this connector by calling two functions
and talking to the Connector module. Once this is done and
the control is back to the C2 Generator component, it now
reads the connection list and checks if the component to be
connected exists or not. If it exists, control moves to this
existing component and that component is connected via a
new port to the already created connector. If the component
doesn’t exist then it is created before being connected to the
connector.

Figure 4: Sequence Diagram for a process view of C2 Generator

This implementation is efficient because the control flow
doesn’t move back and forth. Both the components are
ready before the ports are created and both the ports are
ready before the connector is created and the connection
made. So we see that UML is rather useful for representing
different views of the software architecture of a system [7,
8]. It does reasonably well and represents all the facets of
that view clearly. Moreover, UML is good for all the views,
and not just the process view which can be adequately
represented by the AND-OR DFD. Moreover, we can
extend UML by constraints, tagged values, stereotypes and
profiles [9].

Table3: Summary of “6+1” view model of Software Architecture

View Components Connectors Containers Stakeholders Concerns Tool Support
Logical Class association,

inheritance,
containment

Class category

End-user

Functionality

Rose

Process Task

Rendezvous,
Message,
broadcast,
RPC, etc.

Process

System
designer,
integrator

Performance,
availability,
S/W fault tolerance,
Integrity

UNAS/SALE
DADS

Component Module Interaction Component Developer Interoperability Rose

Kamna Gauri et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012, 253-257

© 2010, IJARCS All Rights Reserved 257

Development Subsystem

compilation
dependency,
“with” clause,
“include”

Subsystem
(library)

Developer,
manager

Organization,
reuse,
portability, line of-
product

Apex, SoDA

Physical Node

Communication
medium,
LAN, WAN,
Bus, etc.

Physical
subsystem

System
designer

Scalability,
performance,
availability

UNAS,
Openview
DADS

Execution Mappings of node Run time view End-user,
Developer

Resource usage and
performance

Rose

Scenario Step,
Scripts

 Web End-user,
developer

Understandability Rose

VIII. REFERENCES

[1]. Medvidovic, N., Taylor, R.: "A framework for classifying
and comparing architecture description languages,"
Proceedings of the 6th European conference held jointly
with the 5th ACM SIGSOFT international symposium on
Foundations of software engineering, Zurich, Switzerland,
Pages: 60 - 76, 1997.

[2]. Shaw, M., DeLine, R., Klein, D., Ross, T., Young, D.,
Zelesnik, G.: "Abstractions for Software Architecture and
Tools to Support Them," IEEE Transactions on Software
Engineering, 21(4):314-335, April 1995.

[3]. Perry, D., Wolf, A.: "Foundations for the study of software
architecture," ACMSIGSOFT SoftwareEngineering Notes,
Volume 17, Issue 4 (October 1992), Pages: 40 - 52, 1992.

[4]. “OMG Unified Modeling Language Specification,”
Version 1.5, March 2003.

[5]. Clements, C., Bachmann, F., Bass, L., Garlan, D., Ivers, J.,
Little, R., Nord, R., Stafford, J.: “Documenting Software

Architectures: Views and Beyond.” Addison- Wesley,
2003, ISBN 0-201-70372-6.

[6]. Medvidovic, N., Rosenblum, D.: "Assessing the Suitability
of a Standard Design Method for Modeling Software
Architectures." In Proceedings of the First Working IFIP
Conference on Software Architecture (WICSA1), pages
161-182, San Antonio, TX, February 22-24, 1999.

[7]. Hofmeister, C., Nord, R., Soni, D.: “Applied Software
Architecture,” Addison- Wesley, 2000, ISBN 0-201-
32571-3.

[8]. Hofmeister, C., Nord, R., Soni, D.: "Describing software
architecture with UML,"Proceedings of the TC2 First
Working IFIP Conference on Software Architecture
(WICSA1), Pages: 145 - 160, 1999.

[9]. Medvidovic, N., Rosenblum, D., Robbins, J., Redmiles, D.:
"Modeling Software Architectures in the Unified Modeling
Language," ACM Transactions on Software Engineering
and Methodology (TOSEM), Volume 11, Issue 1 (January
2002), Pages: 2 - 57, 2002.

