
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 228

ISSN No. 0976-5697

A Study on Optimization Techniques and Query Execution Operators That Enhances
Query Performance

Tejy Johnson*
Research Scholar, Department of Computer Applications,

Dr.MGR University, Maduravoyal
Chennai, India

Kty07_1980@yahoo.co.in

Dr.S.K.Srivatsa
Senior Professor, Department of Computer Applications

St. Joseph College of Engineering, Chennai-119
Chennai, India

profsks@rediffmail.com

Abstract: Now a day’s Query Optimization is a key technology for every application from operational systems to data warehouse and from analytical
systems to content management systems. Query Optimization is of great importance for the performance of a relational database, especially for the
execution of complex SQL statements. The performance of database systems is critically dependent upon the efficiency of Optimization techniques
and Query Execution Operators. Thus we present a detailed study of the various Optimization techniques and Query execution Operators that helps to
enhance the query performance. A survey of the available work into this field is also given. This detailed study helps to choose an Optimization
strategy that best suits your query environment. This study facilitates the enhancement of query performance by determining the best optimization
strategy and helping us to build a query optimizer model. In this paper we focus on the various Optimization techniques, Components of query
optimizer and the Query execution operators that are used for the enhancement of query performance.

Keywords: Query Optimization, Query Optimizer, Query Optimization Techniques, Query Execution Operators and Optimization Strategy

I. INTRODAUCTION

Now days we have to deal with a increasing amount of
facts, figures and data. Therefore it is necessary to store this
information in an adequate way. Thus the significance of
database system is increasing day by day. To meet the current
trend we need an efficient Query Optimizer that would help us
to determine the best Optimization Strategy. The development
of query optimization technology plays a vital role in the
success of commercial database systems. In general Query
Optimization [1] refers to the process of producing an optimal
execution plan for a given query where optimality is with
respect to a cost function to be minimized. The cost of
optimizing a query is mainly incurred by the investigation of
the solution space for alternative execution plans. As an
optimizer faces different query types with different
requirements, it should be easy to adapt the search strategy to
the problem, which implies some form of extensibility. A
desirable Optimizer [2] is one where the search space includes
plans that have low cost, the costing technique is accurate and
the enumeration algorithm is efficient. The Search Space [3]
for optimization depends on the set of algebraic
transformations that preserve equivalence and the set of
physical operators supported in an optimizer. These
transformations do not necessarily reduce cost and therefore
they must be applied in a cost based manner to ensure a
positive benefit. The optimizer may use several representation
of a query during the life cycle of optimizing a query. The
initial representation is often the parse tree of the query and
the final representation is an operator tree.

In this paper we will discuss some of the ways in which
queries can be optimized. Here we mainly focus on the actual
objective of the Optimizer that is to find a Strategy close to
the optimal. In section 2 we discuss about the Search Space,

Search Strategy and Processing Tree which describes the

Query Optimization problem and the associated cost model. In
section 3 we discuss about the various Optimization
Techniques that are used for query Optimization. In section 4
we discuss about the various Query Execution Operators that
enhances the query performance. Finally in section 5 we
conclude by suggesting a Query Optimizer model which is
best suited to enhance the performance of the query.

II. GENERAL PRINCIPLES OF QUERY
OPTIMIZATION

Query Optimization [4,16] can be formally defined as a
process of transforming a query into an equivalent form which
can be evaluated more efficiently. The goal of Query
Optimization is to find an Execution Strategy for the query
that is close to the optimal. An Execution Strategy for a
distributed query can be described with relational algebra
operations and communication primitives. The Query
Optimizer [5] that follows this approach consists of three main
components: - a Search Space, a Search Strategy and a Cost
model. The Search Space is the set of alternative execution to
represent the input query. In other words the Search Space or
Solution Space is the set of all Query Evaluation Plan’s that
compute the same result. A point in the solution space is one
particular plan i.e., solution for the problem. A solution is
described by the Query tree for executing the join expression.

Every point of the search space has a cost associated with
it, a cost function maps query trees to their respective cost.
The Query tree itself is a binary tree that consists of base
relations as its leaves and joins operations as its inner nodes.
Edges denote the flow of the data that takes place from the
leaves of the tree to the root. The specification of the

Tejy Johnson et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,228-233

© 2010, IJARCS All Rights Reserved 229

optimization search space is influenced by the input query and
the nature of investigated Query tree.

The Search Strategy [6] explores the search space and
selects the best plan. It defines which plans are examined and
in which order. The cost model predicts the cost of a given
execution plan which may consist of the following
components:-
a. Secondary Storage Cost: - This is the cost of searching

data on the secondary storage.
b. Memory Storage Cost: -This is the cost pertaining to the

number of memory buffers needed during Query
execution.

c. Computation Cost: - This is the cost of performing
memory operations on the data buffers during Query
Optimization.

d. Communication Cost: - This is the cost of shipping the
query and its results from the database site to the site
where the query originated.

Finally Cost functions provide the basis for comparing
different Query Evaluation Plans and for choosing the best
plan for execution. Cost functions reflect various aspects of
the execution environment such as distribution, CPU
consumption, sizes of tables, I/O costs etc. The cost of
optimizing a query is mainly incurred by the investigation of
the solution space for alternative execution plans. As the
solution space gets larger for complex queries, the search
strategy that investigates alternative solution is critical for the
Optimization cost.

Traditional Query Optimization [7,17] uses an
Enumerative Search Strategy which considers most of the
points in the solution space. Enumerative strategies can lead
to the best possible solution, but face a combinatorial
explosion for complex queries. In order to investigate larger
spaces Randomized Search Strategies have been proposed.
Randomized Search Strategy concentrate on searching a local
optimal solution around some particular points. They consist
of two steps: - First, one or several start solutions are obtained
by Depth first search. Second, the start solutions are improved
until local optimal solutions are obtained. In this phase
neighboring solutions are randomly obtained by applying
transformations. A local optimal solution is the one which is
the best among all the neighboring solutions. Randomized
strategies involve the definition of several parameters (the
number of transformations to apply and the criterion for
considering a solution to be a local optima one, etc).

The other approach is the Genetic Strategies [8] that start
with a population of solutions from which new generations
are built by successively applying Crossovers to individuals of
the original population. The basic actions in Genetic
Strategies are Crossover and Mutation. A Crossover consists
in selecting two parents from a population of complete
processing trees and generating two off springs according to
some principle. The individuals to be crossed are chosen at
random, but the choice is biased by their fitness. The fitness is
related to the function to be optimized. Thus new generation
are expected to contain better individuals than the previous
ones, because they are built from the features of the selected
parents. A Mutation applies to a unique individual and has the
same nature of transformations in Randomized Strategies. The

incremental nature of processing tree nodes is also important
for efficiently implementing Crossover actions.

Most Search Strategies [9] fall into two main classes:
Exhaustive Strategies and Heuristic Strategies. Exhaustive
Strategies generate all plans possible by the creation
procedure. Most commonly known are Depth first search
strategy and Breadth first search strategy. The Heuristic is the
most commonly known domain independent that limits the
creation of Query Evaluation plan in each level to one choice.
There are three major aspects common to all Search
Strategies. First, any Search Strategy needs to determine when
the search should terminate. Second, the Search Strategy has
to decide where to continue the search when several choices
are given. Finally, the Search Strategy might discard certain
choices thus not considering them for further exploration.

III. AN OVERVIEW OF QUERY OPTIMIZATION
TECHNIQUES

Query Optimization [10, 11, 18] is defined as the activity
of choosing an efficient strategy for processing a query. The
main aims of Query Optimization are to choose a
transformation that minimizes resource usages, reduce total
execution time of query and also reduce response time of the
query. There are three important components of query
optimization that are Access method, Join criteria and
Transmission cost.
a. Access Method: In most database system tables can be

accessed in one of two ways: by completely scanning the
entire table or by using an index. The best access method
to use, always depend upon the circumstances.

b. Join Criteria: If more than one table is accessed the
manner in which they are to be joined together must be
determined.

c. Transmission Cost: If data from multiple sites must be
joined to satisfy a single query then the cost of
transmitting the results from intermediate steps needs to
be factored into the equation.

Query Optimization [12, 13] is the process of selecting the
most efficient Query Evaluation plan for a query. There are
two main techniques for Query Optimization. The first
approach is to use a Rule based or Heuristic based method for
ordering the operations in a Query Execution Strategy. The
rules usually state general characteristics for data access. The
second approach systematically estimates the cost of different
Execution Strategies and chooses the least cost solution. This
approach uses simple statistics about the data structure size
and organization as arguments to a cost estimating equation.
In practices most commercial database systems use a
combination of both techniques. Hence Optimization is the
process of choosing the most efficient way to execute a SQL
statement.

The various Optimization techniques [14, 15, 19] used to
obtain efficient execution plan are as follows: Heuristic
Optimization, Syntactical Optimization, Cost based
Optimization and Semantic Optimization. Heuristic
Optimization: - It is a rule based method of producing an
efficient query execution plan. Because the query output of
the standardization process is represented as a canonical query

Tejy Johnson et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,228-233

© 2010, IJARCS All Rights Reserved 230

tree, each node of the tree maps directly to a relational
algebraic expression. The function of heuristic query
optimizer is to apply relational algebraic rules of equivalence
to this expression tree and transform it into a more efficient
representation. Using relational algebraic equivalence rules
ensure that no necessary information is lost during the
transformation of the tree.

The major steps [20, 21] involved in Heuristic
optimization are:
Step 1: Break conjunctive selects into cascading selects.
Step 2: Move selects down the query tree to reduce the
number of returned tuples.
Step 3: Move projects down the query tree to eliminate the
return of unnecessary attributes.
Step 4: Combine any Cartesian product operation followed by
a select operation into a single join operation.

When these steps have been accomplished the efficiency
of a query can be further improved by rearranging the
remaining select and join operations so that they are
accomplished with the least amount of system overhead.
a. Syntactical Optimization:- It relies on the users

understanding of both the underlying database schema
and the distribution of the data stored within the tables.
All tables are joined in the original order specified by the
user query. The Optimizer attempts to improve the
efficiency of these joins by identifying indexes that are
useful for data retrieval. This type of Optimization can
be extremely efficient when accessing data in a relatively
static environment. Using Syntactical Optimization
indexes can be created and tuned to improve the
efficiency of a fixed set of queries. Problems occur with
Syntactical Optimization whenever the underlying data is
fairly dynamic.

b. Cost based Optimization:- To perform Cost based
Optimization an Optimizer needs specific information
about the stored data. This information is extremely
system dependent and can include information such as
file size, file structure types, available primary and
secondary indexes and attributes selectivity. The goal of
any Optimization process is to retrieve the required
information as efficiently as possible. The realistic goal
of a Cost based Optimizer is not to produce the optimal
execution plan for retrieving the required data, but is to
provide a reasonable execution plan.

c. Semantic Optimization: - It operates on the premise that
the Optimizer has a basic understanding of the actual
database schema. When a query is submitted the
Optimizer uses its knowledge of system constraints to
simplify or to ignore a particular query if it is guaranteed
to return an empty result set. This technique holds great
promise for providing even more improvements to query
processing efficiency in future relational database
systems.

IV. QUERY EXECUTION OPERATORS

In this section we see how the Operators help in the Query
Optimization [22, 23]. The various operators discussed are as
follows:

a. Selection operation: - The lowest level Query
processing Operator for accessing data is the file scan. It
searches and retrieves record for a given selection
condition. The two scan algorithms used to implement
the selection operation are linear search and binary
search. In a linear search, the systems scans each file
block and test all records to see whether they satisfy the
selection condition. If the file is ordered on an attribute,
and the selection condition is an equality comparison on
the attribute, then we can use a binary search to locate
records that satisfy the selection. Selection algorithms
that use an index are referred as index scans. Index
structures also referred as access paths, since they
provide a path through which data can be located and
accessed. Selections specifying an equality condition can
use a secondary index. Selections that specify equality
comparison on a key attribute can use primary index.

b. Sorting: - It plays an important role in database systems
for two reasons. First, SQL queries can specify that the
output be sorted. Second, several of the relational
operations such as joins can be implemented efficiently.
We can sort a relation by building an index on the sort
key and then using that index to read the relation in
sorted order. Sorting of relations that do not fit in
memory is called external sorting. The most commonly
used technique for external sorting is external sort merge
algorithm.

c. Join operation: - Join operation is the most important
one in Query Optimization. It refers to the process of
calculating the optimal join order that is the order in
which the necessary tables are joined, when executing a
query. A join combines records from two tables based on
some common information. The order of join is a key
factor in controlling the amount of data flowing between
each operator in the execution plan. The order in which
the tables are joined determines the cost and
performance of the query. The nested loop join requires
no indices and it can be used regardless of what the join
condition is. In a nested loop join if an index is available
on the inner loops join attribute, index lookups can
replace file scans. This join method is called indexed
nested loop join. Merge joins can also be used to
compute natural joins and equi-joins. Like Merge join,
Hash join can also be used to implement natural joins
and equi-joins. In hash join, a hash function is used to
partition tuples of both relations.

d. Projection operation: - The projection operation is used
to select data of particular attributes (columns) from a
single relation and discards the other columns. We can
implement projection easily by performing projection on
each tuple, which gives a relation that could have
duplicate records, and then removing duplicate records.

e. Set Operation: - We can implement the union,
intersection and set difference operations by first sorting
both relations and then scanning once through each of
the sorted relations to produce the result. For all these
operations, only one scan of the two input relations is
required.

Tejy Johnson et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,228-233

© 2010, IJARCS All Rights Reserved 231

f. Aggregation Operation: - We can implement aggregate
operations sum, min, max, count and avg on the fly as
the groups are being constructed. The cost estimate for
implementing the aggregate operation is the same as the
cost for aggregate functions such as min, max, sum,
count and avg.
 The query performance can be measured by
using three main metrics: - Query cost, Page read and
Query execution time.

g. Query Cost: - which is a measure of the CPU and the I/O
resources used by the query.

h. Page Read: - They are a set of statements that indicates
how many pages were read from storage.

Query execution time: - It measures the total execution
time of a query in milliseconds.

The other ways to improve the query performance are
rewriting the query, normalizing or de normalizing tables and
adding indexes. Joins in query increase the cost of the query
and thereby loses its performance. Hence it is best to
minimize the number of join clauses to ensure optimized
query performance. Outer joins incur more cost than inner
joins. So avoid using outer joins. Based on this study we
propose query optimizer model which is discussed in coming
section.

V. PROPOSED QUERY OPTIMIZER MODEL

The Query Optimizer [26-30] determines the most
efficient way to execute a SQL statement after considering
many factors related to the object referenced and the
conditions specified in the query. This determination is an
important step in the processing of any SQL statement and can
greatly affect the execution time. By default the goal of the
Query Optimizer is the best throughput.

To maintain the effectiveness of query optimizer you must
have statistics that are representative of the data. The Query
optimizer operations include transforming queries, estimating
and generating plans. The components of query optimizer are
depicted in the following figure 1.

 Parsed Query

 Transformed query
 Statistics

 Query + Estimates

 Query Plan

Figure. 1 Components of Query Optimizer

The input to the query transformer is a parsed query which
is represented by set of query blocks. The query blocks are
nested or interrelated to each other. The main objective of the

query transformer is to determine if it is advantageous to
change the form of the query so that it enables generation of a
better query plan. The end goal of the estimator is to estimate
the overall cost of a given plan. The estimator generates three
different types of measures that are selectivity, cardinality and
cost. Selectivity represents a fraction of rows from a row set.
Cardinality represents the number of rows in a rows set.

Whereas Cost represents units of work or resource used.
The query optimizer uses disk I/O, CPU usage and memory
usage as unit of work. These measures are related to each
other and one is desired from another. If statistics are
available then the estimator uses them to compute the
measures. The statistics improve the degree of accuracy of the
measures. The main function of the plan generator is to try out
different possible plans for a given query and pick the one that
has the lowest cost. Modern database systems use a query
optimizer to identify the most efficient strategy called plan to
execute declarative SQL queries.The query optimizer
performs the following steps:-
a. The optimizer generates a set of potential plans for the

SQL statement based on available access paths and hints.
b. The Optimizer estimates the cost of each plan based on

statistics in the data dictionary for the data distribution.
c. The Optimizer calculates the cost of access path and

joins orders based on the estimated computer resources.
d. The Optimizer compares the costs of the plans and

chooses the one with the lowest cost.
After the analysis of different Optimization techniques,

execution operations according to the three fundamental
aspects of creation, search strategy and cost function, we
show here how we can combine them for the implementation
of an Optimizer component. To keep our explanations simple
and clear, we prefer describe the model informally. This
model is independent of the approach taken to optimize the
query. This model can be used as a general architecture for
implementing an extensible query optimizer.

This optimization model consists of following major
components: the Creator, the Cost evaluator, the Updater, the
Tester and the Decider. The Creator component takes as its
input the search tree and selects a state that is to be expanded
next. Its output is a set of new states that form the input to the
component cost evaluator. This component determines s the
cost of each new state. Then the component updater decides
which state to be eliminated or /and which state to be
appended from the newly created search tree. This decision
can be based on comparing the costs of different query
evaluation plan created so far. Since the search tree has
changed the Tester might decide to either terminate the search
or output one query evaluation plan or to continue the creation
process. In case the search continues, it is the responsibility of
the decider to determine the next state to be expanded. The
components Tester, Decider and Updater only depend on the
representation of the search tree and they do not need to know
the detailed representation of a state itself.

The only relevant information needed from a state are the
cost values of generated query evaluation plans. On the other
hand the component Creator depends only on the
representation of the states. This separation and independence
is advantageous in case a new search strategy should be

Query Transformer

Estimator Dictionary

Plan Generator

Tejy Johnson et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,228-233

© 2010, IJARCS All Rights Reserved 232

implemented, cost function should be changed or rewriting
rules are changed, deleted or added. All of these changes can
be performed in the corresponding component without
affecting others. The Creator either generates different query
evaluation plan for accessing one relation considering the
different access paths available or adds to an existing query
evaluation plan another relation by creating a join operator
and considering different join methods such as nested loop
join, an index join or a sort merge join. It uses an internal
cutoff to reduce the number of plans it tries when finding the
one with the lowest cost. The cutoff is based on the cost of the
current best plan. If the current best cost is large then the
Creator tries harder to find a better plan with lower cost. If the
current best cost is small then the creator ends the search
swiftly. The Cost evaluator then determines the cost of each
newly created query evaluation plan using the cost functions.
The Updater depending on properties of already existing or
newly created plan, it stores the cheapest plan and all other
plans are eliminated. The Decider checks if all paths in the
search tree have been explored. If so the final plan is the
output, otherwise the search continues.

We believe that our model provides a well founded basis
for implementing an extensible Optimizer. One can change
the search strategy, the cost functions or the query evaluation
plan creation depending on new or changing requirements
without affecting the components of the Optimizer.

VI. CONCLUSION AND FUTURE WORK

In this paper we have discussed about various Query
Optimization techniques, various Query Execution Operators
and Search Strategies used for optimizing a query. We have
also discussed about the basic principles of Query
Optimization. We have tried to quantify the factors that
enhance the performance of the query. We have also proposed
a simple operational model for Query Optimization that
incorporates the modularity and flexibility necessary to
implement an extensible Query Optimizer as required for the
new generation of database management systems. We believe
that results of this paper will help to extend the existing
Optimization techniques to the demanding requirements of
new application areas. Usage of constraints and methods like
introducing an additional join to the original query requires
further study from an implementation point of view.

VII. REFERENCES

[1] G.M. Sacco and S.B. Yao, “Query Optimization in
Distributed Database Systems,” In Advances in Computers,
Academin Press, New York, vol. 21, pp. 225–273, 1982.

[2] L. Mackert and G. Lohman, “R* Optimizer and performance
evaluation for distributed queries,” In Proceedings VLDB ,
Kyoto, Japan , Aug 1986, pp.149–159.

[3] A. Aljanaby, “A Survey of Distributed Query Optimization,”
The International Arab journal of Information
technology,vol. 2, Jan 2005, pp.48–57.

[4] M. Jarke and J. Koch, “Query Optimization in Database
systems,” aCM Computing surveys, June 1984,pp. 111-152.

[5] S.G. Rosana ,Lanzelotte,Patrick Valduriez,” Extanding the
Search Strategy in a Query Optimizer,” In proceedings of
17th VLDB, 1991,pp. 363-373.

[6] A. Makinouchi,M. Tezuka,H. Kitakami and S. Adachi, “The
Optimization Strategy for Query Evaluation in RDB,” In
proceedings of 7th International conference on VLDB,IEEE
,New York, vol. 1, pp. 518–529, Sept 1981.

[7] A.M.J. Skulimowski,”Optimal Strategies for Quantitative
data retrieval in Distributed database systems,” IEEE 2nd
International conference on Intelligent systems Engineering,
1994, pp. 389-394.

[8] W. Xu and U.M. Diwekar,” Improved Genetic algorithms for
deterministic Optimization and Optimization under
certaintity,” Industrial and Engineering chemistry research,
ACS publications, Aug 2005,pp.7138-7146.

[9] A. Hameurlain and Franck Morvan, “Evolution of Query
Optimization methods,” Transactions on large scale data and
knowledge centred systems, vol. 5740/2009, Sep.
2009,pp.211-242.

[10] Y.E. Loannidis, “Query Optimization,” The computer science
and Engineering handbook,CRC press, pp. 1038-1054,1996.

[11] D. Kossmann, “The State of art in Distributed Query
Optimization,” ACM computing surveys, Sep 2000.

[12] M.A. Pund, S.R. Jedhao and P.D.Thakare,”A Role of Query
Optimization in Relational Database,” Int. journal of
scientific engineering and research, vol. 2, June 2011.

[13] Chun–Nan Hsu and Craig A. Knoblock,” Rule induction for
Semantic Query Optimization,”Information science institute
AAA1, Technical report on Knowledge discovery in
Databases, 1994, pp. 311-317.

[14] Peter Paul Beran, Werner Mach and Ralph vigne, “ a
heuristic Query Optimization approach for Heterogeneous
Environments,” In proceedings of the 10th IEEE , ACM
International Conference on cluster and cloud computing ,
2010, pp. 542-546.

[15] Dunrenche and Karl Aberer,” A Heuristic based approach to
Query Optimization in structured document databases,” In
the proceedings of the IDEAS99 International Symposium,
1999.

[16] J.C. Freytag ,” The Basic Principles of Query Optimization,”
European computer industry research centre, IFIP, 1989.

[17] M.L. Rupley, “ Introduction to Query Processing and
Optimization ,Indiana University,2008.

[18] Avi Silbershatz, Hank Korth and S. Sudarshan, “Database
System Concepts,”4th edition ,Mc Graw hill , Technical
Report,2002.

[19] M. Joseph, ‘Optimization techniques for queries with
expensive methods,” ACM Transactions on Database
systems, vol.23, June 1998, pp. 113-157.

[20] D.U. Weimin, “Query Optimization in Heterogeneous
DBMS,” In proceedings of the 18th VLDB conference
vancover,1992.

Tejy Johnson et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,228-233

© 2010, IJARCS All Rights Reserved 233

[21] J.Grant, J. Gryz, J. Minker and L. Rashid,”Semantic Query
Optimization for Object Databases,” In ICDE, 1997, pp. 444-
453.

[22] A. Swami and A. Gupta ,” Optimization of Large Join
Queries ,” In proceedings of the ACM SIGMOD
Conference, Chicago, June 1998, pp. 8-17.

[23] S. b. Yao, “ Optimization of Query evaluation algorithms,”
ACM Trans. Database Systems, vol.4, June 1979, pp. 133-
155.

[24] Sreekumar T. shenoy and Zehra Meral Ozsoyoglu,” Design
and Implementation of a Semantic Query Optimizer,” IEEE
Transactions on knowledge and Data engineering ,vol. 2,
Sep. 1989.

[25] P.P.S. Chen and J. Akoka,”Optimal design of Distributed
Information sysytems,” IEEE Transactions Computing
Database., vol. 12, 1980, pp. 1068-1080.

[26] A.K. Chandra and P.M. Merlin,” Optimal implementation of
conjunctive queries in relational databases,” In proceedings
of the 9th ACM Symposium on Theory of Computation, New
York, 1977, pp. 77-90.

[27] B. Gavish and A. segev,”Query Optimization in distributed
computer systems ,” In management of distributed data
processing, New York, 1982, pp. 233-252.

[28] W.W. Chu and P. Hurley, “ Optimal Query processing for
distributed database systems,” IEEE Trans., Comput., 1982,
pp. 835-850.

[29] J.J.King,” A System for Semantic Query Optimization in
Relatinal databases,” In proceedings of 7th VLDB
conference,pp. 510-517.

[30] C.Hsu and C.A. Knoblock ,” Rule Induction for sematic
Query Optimization ,” Inproceedings of 11th International
conference on machine learning,1994, pp. 112-120.

	INTRODAUCTION
	GENERAL PRINCIPLES OF QUERY OPTIMIZATION
	AN OVERVIEW OF QUERY OPTIMIZATION TECHNIQUES
	QUERY EXECUTION OPERATORS
	PROPOSED QUERY OPTIMIZER MODEL

