
Volume 3, No. 3, May-June 2012 

International Journal of Advanced Research in Computer Science 

CASE STUDY AND REPORT 

Available Online at www.ijarcs.info 

© 2010, IJARCS All Rights Reserved                                45 

ISSN No. 0976-5697 

High Performance System in GPU and CUDA Media Processing System 

M.Chithik Raja 
Salalah College of Technology 

Department of Information Technology Salalah , Oman 
chithik25@gmail.com 

Abstract - This paper focuses on An Overview of High Performance with GPU and CUDA Media Processing System. The GPU ubiquitous 
graphics processing unit in every PC, laptop, desktop computer, and workstation. In its most basic form, the GPU generates 2D and 3D graphics, 
images, and video that enable window based operating systems, graphical user interfaces, video games, visual imaging applications, and video. 
The modern GPU that we describe here is a highly parallel, highly multithreaded multiprocessor optimized for visual computing. To provide 
real-time visual interaction with computed objects via graphics images, and video, the GPU has a unified graphics and computing architecture 
that serves as both a programmable graphics processor and a scalable parallel computing platform. PCs and game consoles combine a GPU with 
a CPU to form heterogeneous systems. 
 
Keywords: GPU , CUDA, VGA,C++,SPMD 

I. INTRODUCTION 

Graphics on a PC were performed by a video graphics 
array (VGA) controller. A VGA controller was simply a 
memory controller and display generator connected to some 
DRAM. In the 1990s, semiconductor technology advanced 
sufficiently that more functions could be added to the VGA 
controller. By 1997, VGA controllers were beginning to 
incorporate some three-dimensional (3D) acceleration 
functions, including hardware for triangle setup and 
pasteurization (dicing triangles into individual pixels) and 
texture mapping and shading (applying “decals” or patterns 
to pixel sand blending colors).In 2000, the single chip 
graphics processor incorporated almost every detail of the 
traditional high-end workstation graphics pipeline and 
therefore, deserved a new name beyond VGA controller.  

The term GPU was coined to denote that the graphics 
device had become a processor. Over time, GPUs became 
more programmable, as programmable processors replaced 
fixed function dedicated logic while maintaining the basic 
3D graphicspipeline organization. In addition, computations 
became more precise over time, progressing from indexed 
arithmetic, to integer and fixed point, to single precision 
floating-point, and recently to double precisionfloating-
point. GPUs have becomemassively parallel programmable 
processors with hundreds of cores and thousandsof threads. 
Recently, processor instructions and memory hardware were 
added to supportgeneral purpose programming languages, 
and a programming environment wascreated to allow GPUs 
to be programmed using familiar languages, including Cand 
C++. This innovation makes a GPU a fully general-purpose, 
programmable,manycore processor, albeit still with some 
special benefits and limitations.GPUs and their associated 
drivers implement the OpenGL and DirectX models 
ofgraphics processing. OpenGL is an open standard for 3D 
graphics programmingavailable for most computers. 
DirectX is a series of Microsoft multimedia 
programminginterfaces, including Direct3D for 3D graphics. 
Since these applicationprogramming interfaces (APIs) have 
well-defined behaviour, it is possible to buildeffective  

 
 

 
hardware acceleration of the graphics processing functions 
defined by theAPIs. 

This is one of the reasons (in addition to increasing 
device density) that newGPUs are being developed every 12 
to 18 months that double the performance ofthe previous 
generation on existing applications[1].Frequent doubling of 
GPU performance enables new applications that werenot 
previously possible. The intersection of graphics processing 
and parallel computing invites a new paradigm for graphics, 
known as visual computing. Itreplaces large sections of the 
traditional sequential hardware graphics pipelinemodel with 
programmable elements for geometry, vertex, and pixel 
programs.Visual computing in a modern GPU combines 
graphics processing and parallelcomputing in novel ways 
that permit new graphics algorithms to be implemented,and 
open the door to entirely new parallel processing 
applications on pervasivehigh-performance GPUs. 

II. GPU EVOLVES INTO SCALABLE 
PARALLEL PROCESSOR SYSTEM 

GPUs have evolved functionally from hardwired, limited 
capability VGA controllersto programmable parallel 
processors. This evolution has proceeded by changingthe 
logical (API-based) graphics pipeline to incorporate 
programmable elementsand also by making the underlying 
hardware pipeline stages less specialized andmore 
programmable. Eventually, it made sense to merge disparate 
programmablepipeline elements into one unified array of 
many programmable processors.In the GeForce 8-series 
generation of GPUs, the geometry, vertex, and 
pixelprocessing all run on the same type of processor[2].  

This unification allows fordramatic scalability. More 
programmable processor cores increase the total 
systemthroughput. Unifying the processors also delivers 
very effective load balancing,since any processing function 
can use the whole processor array. At the other endof the 
spectrum, a processor array can now be built with very few 
processors, sinceall of the functions can be run on the same 
processors. This uniform and scalable array of processors 
invites a new model of programming for the GPU. The large 
amount of floating-point processing power in the GPU 



M.Chithik Raja, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,45-50 

© 2010, IJARCS All Rights Reserved                               46 

processor array is very attractive for solving non graphics 
problems. Given the large degree of parallelism and the 
range of scalability of the processor array for graphics 
applications, the programming model for more general 
computing must express the massive parallelism directly, 
but allow for scalable execution. GPU computing is the 
term coined for using the GPU for computing via a parallel 
programming language and API, without using the 
traditional graphics API and graphics pipeline model[3]. 

This is in contrast to the earlier General Purpose 
computation on GPU (GPGPU) approach, which involves 
programming the GPU using a graphics API and graphics 
pipeline to perform non graphics tasks. Compute Unified 
Device Architecture (CUDA) is a scalable parallel 
programming model and software platform for the GPU and 
other parallel processors that allows the programmer to 
bypass the graphics API and graphics interfaces of the GPU 
and simply program in C or C++. The CUDA programming 
model has an SPMD (single-program multiple data) 
software style, in which a programmer writes a program for 
one thread that is instanced and executed by many threads in 
parallel on the multiple processors of the GPU. traditional 
types of graphics applications plus many new applications.  

The original purview of a GPU was “anything with 
pixels,” but it now includes many problems without pixels 
but with regular computation and/or data structure. GPUs 
are effective at 2D and 3D graphics, since that is the purpose 
for which they are designed. Failure to deliver this 
application performance would be fatal. 2D and 3D graphics 
use the GPU in its “graphics mode,” accessing the 
processing power of the GPU through the graphics APIs, 
OpenGLTM, and DirectXTM. Games are built on the 3D 
graphics processing capability[4]. Beyond 2D and 3D 
graphics, image processing and video are important 
applications for GPUs. These can be implemented using the 
graphics APIs or as computational programs, using CUDA 
to program the GPU in computing mode. Using CUDA, 
image processing is simply another data-parallel array 
program. To the extent that the data access is regular and 
there is good locality, the program will  be efficient[4]. In 
practice, image processing is a very good application for 
GPUs. Video processing, especially encode and decode 
(compression and decompression according to some 
standard algorithms) is quite efficient. 

The greatest opportunity for visual computing 
applications on GPUs is to “breakthe graphics pipeline.” 
Early GPUs implemented only specific graphics APIs, 
albeitat very high performance. This was wonderful if the 
API supported the operationsthat you wanted to do. If not, 
the GPU could not accelerate your task, because earlyGPU 
functionality was immutable. Now, with the advent of GPU 
computing andCUDA, these GPUs can be programmed to 
implement a different virtual pipelineby simply writing a 
CUDA program to describe the computation and data 
flowthat is desired. So, all applications are now possible, 
which will stimulate new visualcomputing approaches. 

III. GPU SYSTEM ARCHITECTURES 

In this section, we survey GPU system architectures in 
common use today. We discuss system configurations, GPU 
functions and services, standard programming interfaces, 
and a basic GPU internal architecture. Heterogeneous CPU–
GPU System Architecture A heterogeneous computer 

system architecture using a GPU and a CPU can be 
described at a high level by two primary characteristics: 
first, how many functional subsystems and/or chips are used 
and what are their interconnection technologies and 
topology; and second, what memory subsystems are 
available to these functional subsystems [5]. The Historical 
PC Figure 1 is a high-level block diagram of a legacy PC, 
circa 1990. The north bridge contains high-bandwidth 
interfaces, connecting the CPU, memory, and PCI bus. The 
south bridge contains legacy interfaces and devices: ISA bus 
(audio, LAN), interrupt controller; DMA controller; 
time/counter. In this system, the display was driven by a 
simple frame buffer subsystem known as a VGA (video 
graphics array) which was attached to the PCI bus. 

 
Figure 1 Historical PC. VGA controller drives graphics display from frame 

buffer memory. 

Graphics subsystems with built-in processing elements 
(GPUs) did not exist in the PC landscape of 1990. Figure.2a 
illustrates two configurations in common use of 
Contemporary PCs with Intel and AMD CPU. These are 
characterized by a separate GPU (discrete GPU) and CPU 
with respective memory subsystems[6]. In Figure.2 with an 
Intel CPU, we see the GPU attached via a 16-lane PCI-
Express 2.0 link to provide a peak 16 GB/s transfer rate, 
(peak of 8 GB/s in each direction). Similarly, in Figure2b, 
with an AMD CPU, the GPU is attached to the chipset, also 
via PCI-Express with the same available bandwidth. In both 
cases, the GPUs and CPUs may access each other’s 
memory, albeit with less available bandwidth than their 
access to the more directly attached memories.  

In the case of the AMD system, the north bridge or 
memory controller is integrated into the same die as the 
CPU. A low-cost variation on these systems, a unified 
memory architecture (UMA) system, uses only CPU 
system memory, omitting GPU memory from the system. 
These systems have relatively low performance GPUs, since 
their achieved performance is limited by the available 
system memory bandwidth and increased latency of memory 
access, whereas dedicated GPU memory provides high 
bandwidth and low latency[7]. A high performance system 
variation uses multiple attached GPUs, typically two to four 
working in parallel, with their displays daisy-chained. An 
example is the NVIDIA SLI (scalable link interconnect) 
multi-GPU system, designed for high performance gaming 
and workstations. The next system category integrates the 
GPU with the north bridge (Intel) or chipset (AMD) with 



M.Chithik Raja, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012, 45-50 

© 2010, IJARCS All Rights Reserved                                47 

and without dedicated graphics memory. Console systems 
such as the Sony PlayStation 3 and the Microsoft Xbox 360 
resemble the PC system architectures previously described. 

 
Figure.2a. Contemporary PCs with Intel and AMD CPUs. 

Console systems are designed to be shipped with 
identical performance and functionality over a lifespan that 
can last five years or more. During this time, a system may 
be implemented many times to exploit more advanced 
silicon manufacturing processes and thereby to provide 
constant capability at ever lower costs. Console systems do 
not need to have their subsystems expanded and upgraded 
the way PC systems do, so the major internal system buses 
tend to be customized rather than standardized. 

IV. GPU INTERFACES AND DRIVERS 

In a PC today, GPUs are attached to a CPU via PCI-
Express. Earlier generations used AGP. Graphics 
applications call OpenGL [Segal and Akeley, 2006] or 
Direct3D [Microsoft DirectX Specification] API functions 
that use the GPU as a coprocessor. The APIs send 
commands, programs, and data to the GPU via a graphics 
device driver optimized for the particular GPU[10]. The 
graphics logical pipeline is described in. Figure .3 illustrates 
the major processing stages, and highlights the important 
programmable stages (vertex, geometry, and pixel shader 
stages). 

 
Figure 3 Graphics logical pipeline. Programmable graphics shaded stages 

are blue, and fixed-function blocks are white. 

Basic Unified GPU Architecture Unified GPU 
architectures are based on a parallel array of many 
programmable  processors[8]. They unify vertex, geometry, 
and pixel shader processing and parallel computing on the 
same processors, unlike earlier GPUs which had separate 
processors dedicated to each processing type. The 
programmable processor array is tightly integrated with 
fixed function processors for texture filtering, rasterization, 
raster operations, anti-aliasing, compression, decompression, 
display, video decoding, and high-definition video 
processing. Although the fixed-function processors 
significantly outperform more general programmable 
processors in terms of absolute performance constrained by 

an area, cost, or power budget, we will focus on the 
programmable processors here. Compared with multicore 
CPUs, many core GPUs have a different architectural design 
point, one focused on executing many parallel threads 
efficiently on many Figure.4 shows how the logical pipeline 
comprising separate independentprogrammable stages is 
mapped onto a physical distributed array of 
processors.processor cores. By using many simpler cores 
and optimizing for data-parallel behaviour among groups of 
threads, more of the per-chip transistor budget is devoted to 
computation, and less to on-chip caches and overhead.  

Programming multiprocessor GPUs is qualitatively 
different than programming other multiprocessors like 
multicore CPUs. GPUs provide two to three orders of 
magnitude more thread and data parallelism than CPUs, 
scaling to hundreds of processor cores and tens of thousands 
of concurrent threads in 2008. GPUs continue to increase 
their parallelism, doubling it about every 12 to 18 months, 
enabled by Moore’s law [1965] of increasing integrated 
circuit density and by improving architectural efficiency. To 
span the wide price and performance range of different 
market segments, different GPU products implement widely 
varying numbers of processors and threads. Yet users expect 
games, graphics, imaging, and computing applications to 
work on any GPU, regardless of how many parallelthreads it 
executes or how many parallel processor cores it has, and 
they expect more expensive GPUs (with more threads and 
cores) to run applications faster. 

 
Figure 4 Logical pipeline mapped to physical processors. 

The programmable shaderstages execute on the array of 
unified processors, and the logical graphics pipeline 
dataflow recirculatesthrough the processors.As a result, 
GPU programming models and application programs are 
designed to scale transparently to a wide range of 
parallelism. The driving force behind the large number of 
parallel threads and cores in a GPU is real-time graphics 
performance—the need to render complex 3D scenes with 
high resolution at interactive frame rates, at least 60 frames 
per second. Correspondingly, the scalable programming 
models of graphics shading languages such as Cg (C for 
graphics) and HLSL (high-level shading language) are 
designed to exploit large degrees of parallelism via many 
independent parallel threads and to scale to any number of 
processor cores[9].  

The CUDA scalable parallel programming model 
similarly enables general parallel computing applications to 



M.Chithik Raja, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,45-50 

© 2010, IJARCS All Rights Reserved                               48 

leverage large numbers of parallel threads and scale to any 
number of parallel processor cores, transparently to the 
application. In these scalable programming models, the 
programmer writes code for a single thread, and the GPU 
runs myriad thread instances in parallel. Programs thus scale 
transparently over a wide range of hardware parallelism. 
This simple paradigm arose from graphics APIs and shading 
languages that describe how to shade one vertex or one 
pixel. It has remained an effective paradigm as GPUs have 
rapidly increased their parallelism and performance since 
the late 1990s. This section briefly describes programming 
GPUs for real-time graphics applications using graphics 
APIs and programming languages.  

It then describes programming GPUs for visual 
computing and general parallel computing applications 
using the C language and the CUDA programming model. 
Programming Real-Time Graphics APIs have played an 
important role in the rapid, successful development of GPUs 
and processors. There are two primary standard graphics 
APIs: OpenGL and Direct3D, one of the Microsoft DirectX 
multimedia programming interfaces. OpenGL, an open 
standard, was originally proposed and defined by Silicon 
Graphics Incorporated[11]. The ongoing development and 
extension of the OpenGL standard is managed by Khronos, 
an industry consortium. Direct3D, a de facto standard, is 
definedand evolved forward by Microsoft and partners. 
OpenGL and Direct3D aresimilarly structured, and continue 
to evolve rapidly with GPU hardware advances.They define 
a logical graphics processing pipeline that is mapped onto 
the GPUhardware and processors, along with programming 
models and languages for theprogrammable pipeline 
stages.Logical Graphics Pipeline. OpenGL has asimilar 
graphics pipeline structure.  

The API and logical pipeline provide a streaming 
dataflow infrastructure and plumbing for the programmable 
shader stages, shown inblue. The 3D application sends the 
GPU a sequence of vertices grouped into 
geometricprimitives—points, lines, triangles, and polygons. 
The input assembler collectsvertices and primitives. The 
vertex shader program executes per-vertex processing 
including transforming the vertex 3D position into a screen 
position and lighting thevertex to determine its color. The 
geometry shader program executes per-primitiveprocessing 
and can add or drop primitives. The setup and rasterizer unit 
generatespixel fragments (fragments are potential 
contributions to pixels) that are covered bya geometric 
primitive.  

The pixel shader program performs per-fragment 
processing, including interpolating per-fragment parameters, 
texturing, and coloring. Pixelshaders make extensive use of 
sampled and filtered lookups into large 1D, 2D, or3D arrays 
called textures, using interpolated floating-point 
coordinates. Shaders usetexture accesses for maps, 
functions, decals, images, and data[12]. The raster 
operationsprocessing (or output merger) stage performs Z-
buffer depth testing and stenciltesting, which may discard a 
hidden pixel fragment or replace the pixel’s depth withthe 
fragment’s depth, and performs a color blending operation 
that combines thefragment color with the pixel color and 
writes the pixel with the blended color.The graphics API and 
graphics pipeline provide input, output, memory objects,and 
infrastructure for the shader programs that process each 
vertex, primitive, andpixel fragment. 

V. PROGRAMMING PARALLEL COMPUTING 
APPLICATIONS 

CUDA, Brook, and CAL are programming interfaces for 
GPUs that are focused on data parallel computation rather 
than on graphics. CAL (Compute Abstraction Layer) is a 
low-level assembler language interface for AMD GPUs. 
Brook is a streaming language adapted for GPUs by Buck, 
et. al. [2004]. CUDA, developed by NVIDIA [2007], is an 
extension to the C and C++ languages for scalable parallel 
programming of manycore GPUs and multicore CPUs. With 
the new model the GPU excels in data parallel and 
throughput computing, executing high performance 
computing applications as well as graphics applications. Ata 
Parallel Problem Decomposition to map large computing 
problems effectively to a highly parallel processing 
architecture, the programmer or compiler decomposes the 
problem into many small problems that can be solved in 
parallel. For example, the programmer partitions a large 
result data array into blocks and further partitions each block 
into elements, such that the result blocks can be computed 
independently in parallel, and the elements within each 
block are computed in parallel. Figure 5 shows a 
decomposition of a result data array into a 3 × 2 grid of 
blocks, where each block is further decomposed into a 5 × 3 
array of elements [13].  

The two-level parallel decomposition maps naturally to 
the GPU architecture: parallel multiprocessors compute 
result blocks, and parallel threads compute result elements. 
The programmer writes a program that computes a sequence 
of result data grids, partitioning each result grid into coarse-
grained result blocks that can becomputed independently in 
parallel. The program computes each result block with an 
array of fi ne-grained parallel threads, partitioning the work 
among threads so that each computes one or more result 
elements. Scalable Parallel Programming with CUDA The 
CUDA scalable parallel programming model extends the C 
and C++ languages to exploit large degrees of parallelism 
for general applications on highly parallel multiprocessors, 
particularly GPUs. Early experience with CUDA showsThe 
GeForce 8800 Ultra clocks the SP thread processor cores 
and SFUs at 1.5 GHz,for a theoretical operation peak of 576 
GFLOPS. The GeForce 8800 GTX has a1.35 GHz processor 
clock and a corresponding peak of 518 GFLOPS.The 
following three sections compare the performance of a 
GeForce 8800 GPUwith a multicore CPU on three different 
applications—dense linear algebra, fastFourier transforms, 
and sorting. The GPU programs and libraries are 
compiledCUDA C code. The CPU code uses the single 
precision multithreaded Intel MKL10.0 library to leverage 
SSE instructions and multiple cores. 

VI. DENSE LINEAR ALGEBRA 
PERFORMANCE 

Another issue is the bit depth of textures that can be used 
with these techniques. Because the FFT requires many 
passes, 16 bits per channel are necessary even for non-HDR 
images. Convolution in spatial domain can be done with 
only 8 bits per channel in case the application doesnot 
require higher range. The bit depth has a major impact on 
the speed – the speed ratios for 8 bit integer and 16 and32 
bit floats per channel are approximately 4:2:1.The overview 
of major pros and cons of the convolution and the FFT is 



M.Chithik Raja, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012, 45-50 

© 2010, IJARCS All Rights Reserved                                49 

recapitulated in table 1. All implementations and 
measurements were done on a machine with 2.6GHz Intel 
Celeron D processor, 1GBRAM and NVIDIA GeForce 6600 
GT 128MB at PCIE. Programs were implemented using 
HLSL and DirextX9.0c. Both the CPU and GPU are typical 
mainstream hardware of the beginning of 2005.The GPU 
implementations of both the FFT and spatial convolutions 
clearly outperform CPU versions. Figure6 charts 
performance results for spatial convolution (for textures 
256x256 and 512x512) – 32bit GPU version is 3times faster 
than the CPU implementation and 16bit GPU version gives 
an average speed up of 7.4 over 32bit CPU implementation 
(16bit precision brings no advantage on a32bit 
architecture).Complex FFT of a 256x256 texture took 5.9ms 
on the GPU while CPU implementation took about 20ms – 
i.e .the speedup of 3.4. For the CPU FFT algorithm we used 
FFTW libraries by M. Frigo and S. G. Johnson [2]. It is a 
heavily-optimized algorithm that uses advanced features of 
today’s CPUs. Multiplying the transformed data array with a 
filter took additional 20ms on the CPU while it added only 
about 0.1ms on the GPU. 

 

 
Figure 5: Mapping pixels to Texel’s 

 
Figure.6. Comparison of GPU and CPU implementationsof convolution 

(textures 256x256 and 512x512) 

VII. CONCLUSION 

The results show that GPU implementations of both the 
convolution and the FFT outperform their CPU counterparts. 
Convolution on GPU performs better than the FFT on GPU 
when we want to apply simple and small filters. Separable 
convolution allows more optimizations, because of or 
kernels up to approximately 100 pixels in size all the values 
and texturing coordinates can be pre computed and stored in 
a uniform data array. This offers a significant speedup in 
comparison with storing the values in texturiser computing 
them directly. GPUs are massively parallel processors and 

have become widely used, not only for 3D graphics, but also 
for many other applications. This wide application was 
made possible by the evolution of graphics devices into 
programmable processors.  

The graphics application programming model for GPUs 
is usually an API such as DirectXTM or OpenGLTM. For 
more general-purpose computing, the CUDA programming 
model uses an SPMD (single-program multiple data) style, 
executing a program with many parallel threads. GPU 
parallelism will continue to scale with Moore’s law, mainly 
by increasing the number of processors. Only the parallel 
programming models that can readily scale to hundreds of 
processor cores and thousands of threads will be successful 
in supporting manycore GPUs and CPUs. Also, only those 
applications that have many largely independent parallel 
tasks will be accelerated by massively parallel many core 
architectures. GPU architecture will continue to adapt to the 
usage patterns of both graphics and other application 
programmers. GPUs will continue to expand to include 
more processing power through additional processor cores, 
as well as increasing the thread and memory bandwidth 
available for programs.  

VIII. REFERENCES 

[1]. S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S. 
Ueng, J. A. Stratton, and W. Hwu. Program optimization 
space pruning for a multithreaded GPU. In CGO, April 
2008. 

[2]. J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. 
Kr¨uger, A Lefohn, and T. J. Purcell. Asurvey of general- 
Purpose computation on graphics hardware. Computer 
Graphics Forum, 26(1):80–113, 2007. 

[3]. J. Guo, G. Bikshandi, B. B. Fraguela, and D. Padua. 
Programming with tiles. In PPoPP’08: Proceedings of the 
13th ACM SIGPLAN Symposium on Principles of Parallel   
Programming, 2008. 

[4]. M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. 
Ramanujam, A. Rountev, and Sadayappan. Automatic data 
movement and computation mapping for multi-
levelparallel architectures with explicitlmanagedmemories. 
In PPoPP ’08: Proceedings of the 13th ACM SIGPLAN 
Symposium on Principles and Practice of Parallel 
Programming, 2008. 

[5]. Amada, T., Imura, M., Yasumuro, Y., Manabe, (2003). 
Particle-based fluid simulation the GPU. Proc. ACM 
Workshop on General-purpose Computing on Graphics 

[6]. Dalrymple, R.A., Gómez-Gesteira, M., Rogers, B.D., 
Panizzo,A., Crespo, A.J.C., Cuomo, Narayanaswamy, 
M.(2009). Smoothed particle hydrodynamics forwater 
waves., World Scientific Publishing. 

[7]. http://wiki.manchester.ac.uk Green, S. (2008). CUDA 
Particles. Technical Report contained in the CUDA SDK, 
www.nvidia.com. 

[8]. Levada A. M. L., Mari J. F., Saito J. H. (2007). Voice 
Command Recognition with Dynamic Time Warping 
(DTW) using Graphics Processing Units (GPU) with 
Compute Unified Device Architecture(CUDA), SBAC-
PAD International Symposium on Computer Architecture 
and High Performance computing, 2007, pages 19-27 

http://wiki.manchester.ac.uk/�
http://www.nvidia.com/�


M.Chithik Raja, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,45-50 

© 2010, IJARCS All Rights Reserved                               50 

[9]. Fukushima K. and Miyake S. (2010). Neocognitron: A 
New Algorithm for Pattern Recognition Tolerant of 
Deformations and Shift in Position, Pattern Recognition, 
Vol.15, pages 455-469 

[10]. S. H. Yoo, J. H. Park, C. S. Jeong, “Accelerating 
Multiscale Image Fusion Algorithms Using CUDA,” 
International Conference of Soft Computing and Pattern 
Recognition, SOCPAR '09, pp. 278-282, 2009. 

[11]. S. P. Mohanty, N. Pati, and E. Kougianos, “A 
watermarking co-processor for new generation graphics 
processingunits,” In Consumer Electronics, 2007. Digest of 
Technical Papers. International Conference on, pp. 1– 2, 
2007. 

[12]. C. T. Li, “Digital fragile watermarking scheme for 
authentication of jpeg images,” EE Proc.-Vis. Image Signal 
Process., Vol. 151, pp. 460 – 466, 2010. 

[13]. H. Kourkchi and S. Ghaemmaghami, “Improvement to 
semi-fragile water marking scheme against a proposed 

counterfeiting attack,” Advanced Communication 
Technology, 2009. 11th International Conference on, Vol. 
03, pp.   1928-1932, 2009 

 
Short Bio Data for the Author 

M.Chithik Raja MSc.,M.E.(PhD)., He has finished 
his Master Degree in M.S.S.Wakf Board College at 
Madurai. Master of Engineering is awarded by Anna 
University Chennai Affiliation, Tamilnadu. Now He is 
pursuing his research in Network Security and System 
Architecture. He has written more than 8 Reputed 
International Journal and Conference Proceedings. He has 
published 3 International Standard Academic Books. He has 
more than 11 years of Academic Experience in International 
level Technological College as well as University. He is font 
of conducting workshop and witting Books for Recent 
Communication Technologies System Architecture. 

 
 


