
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 276

ISSN No. 0976-5697

Ranking Spatial Data using Quality Preferences
Murali Krishna M*
Department of CSE

Kaushik College of Engineering
Visakhapatnam, India

maadugula@gmail.com

Ramesh Naidu G
Department of CSE

Kaushik College of Engineering
Visakhapatnam, India

rameshgonnet@gmail.com

Abstract: Day to day growth of objectives required selection on basis of features. A spatial preference query ranks objects based on the qualities of
features in their spatial neighbourhood. For example, consider a real estate agency office that holds a database with available flats for lease. A
customer may want to rank the flats with respect to the appropriateness of their location, defined after aggregating the qualities of other features (e.g.,
restaurants, cafes, hospital, market, etc.) within a distance range from them. In this paper, we formally define spatial preference queries and propose
appropriate indexing techniques and search algorithms for them. Our methods are experimentally valuated for a wide range of problem settings.

Keywords: spatial preference, branch and bound algorithm, and query processing.

I. INTRODUCTION

A query to a web search engine usually consists of a list of
keywords, to which the search engine responds with the best
or “top” k pages for the query. This top-k query model is
prevalent over multimedia collections in general, but also over
“structured” data for applications where users do not expect
exact answers to their queries, but instead a rank of the objects
that best match the queries. A top-k query in this context is
then simply an assignment of target values to the attributes of
a relation. To answer a top-k query, a database system
identifies the objects that best match the user specification,
using a given scoring function .Example 1. Consider a relation
with information about restaurants in the New York City area.
Each tuple (or object) in this relation has a number of
attributes, including Address, Rating, and Price, which
indicate, respectively, the restaurant’s location, the overall
food rating for the restaurant represented by a grade between 1
and 30, and the average price for a diner. A user who lives at
2590 Broadway and is interested in spending around $25 for a
top quality restaurant might then ask a top-10 query
fAddress=“2590 Broadway”, Price=$25, Rating=30g. The
result to this query is a list of the 10 restaurants that match the
user’s specification the closest, for some definition of
proximity.

Processing top-k queries efficiently is challenging for a
number of reasons. One critical such reason is that, in many
web applications, the relation attributes might not be available
other than through external web-accessible form interfaces.
For instance, in our example above, the Rating attribute might
be available through the Zagat-Review website,1 which, given
an individual restaurant name, returns its food rating as a
number between 1 and 30 (random access). This site might
also return a list of all restaurants ordered by their food rating
(sorted access). Similarly, the Price attribute might be
available through the New York Time’s NYT-Review

website. 2 Finally, the scoring associated returns the distance
(in miles) between the restaurant and the user addresses.

To process a top-k query over web-accessible databases,
we then have to interact with sources that export different
interfaces and access capabilities. In our restaurant example, a
possible query processing strategy is to start with the Zagat-
Review source, which supports sorted access, to identify a set
of candidate restaurants to explore further. This source returns
a rank of restaurants in decreasing order of food rating. To
compute the final score for each restaurant and identify the
top-10 matches for our query, we then obtain the proximity
between each restaurant and the user-specified address by
querying MapQuest, and check the average dinner price for
each restaurant individually at the NYT-Review source.

Hence, we interact with three autonomous sources and
repeatedly query them for a potentially large set of candidate
restaurants. Our query scenario is related to a (centralized)
multimedia query scenario where attributes are reached
through several independent multimedia “subsystems,” each
producing scores that are combined to compute a top-k query
answer. While multimedia systems might support sorted and
random attribute access, there are important differences
between processing top-k queries over multimedia systems
and over web sources. First, web sources might only support
random access (e.g., MapQuest returns the distance between
two given addresses). Second, attribute access for centralized
multimedia systems might be faster than for web sources,
because accessing web sources requires going over the
Internet. Finally, and importantly, unlike in multimedia
systems where attribute access requires “local” processing,
applications accessing web sources can take full advantage of
the intrinsic parallel nature of the web and issue probes to
several web sources simultaneously, possibly issuing several
concurrent probes to each individual source as well.

In this article, we present algorithms to efficiently process
top-k queries over web sources that support just random
access and, optionally, sorted access as well. We first
introduce an efficient sequential top-k query processing

Murali Krishna M et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,276-279

© 2010, IJARCS All Rights Reserved 277

algorithm that interleaves sorted and random accesses during
query processing and schedules random accesses at a fine-
granularity per-object level. Then, we use our sequential
technique as the basis to define a parallel query processing
algorithm that exploits the inherently parallel nature of web
sources to minimize query response time. As we will see,
making the algorithms parallel results in drastic reductions in
query processing time.

II. BACKGROUND AND RELATED WORK

Object ranking is a popular retrieval task in various
applications. In relational databases, we often want to rank
tuples using an aggregate score function on their attribute
values [1]. For example, consider a database of a real estate
agency, containing information about flats available for rent.
potential customer may want to view the top-10 flats with the
largest sizes and lowest prices. The score of each flat in this
case is expressed by the sum of two individual scores: size and
price, after they have been scaled to the same range (e.g.,
between 0 and 1, where 1 indicates the highest preference;
highest possible size and lowest possible price). Another
popular object ranking application is document ranking based
on the relevance of the keywords (terms) they contain to a user
query (also expressed by a set of terms).This problem has been
the primary research in information retrieval (IR) for over two
decades [2]. The ranking function in this problem is again an
aggregation of the relevance of the query terms with the
document, often enriched with some global ranking scores of
the documents according to their popularity [3].

In spatial databases, ranking is often associated to nearest
neighbor (NN) retrieval. Given a query location, we are often
interested in retrieving the set of nearest objects to it that
qualify a condition (e.g., restaurants). Assuming that the set of
interesting objects is indexed by a hierarchical spatial access
method (e.g., the R-tree [4]), we can use distance bounds
while traversing the index to derive the answer in a branch-
and-bound fashion [5]. Tao et al. [6] noted that top-k queries
can be modeled as (weighted) nearest neighbor queries, in the
multi-dimensional space defined by the involved attribute
domains, where the query point is formed by taking the
maximum value of each dimension.

Motivated by this observation, they adapted the algorithm
of [7] for this problem. Nevertheless, it is not always possible
to use multidimensional indexes for top-k retrieval. First, such
indexes usually break-down in high dimensional spaces [8, 3].
Second, top-k queries may involve an arbitrary set of
attributes (e.g., size and price) from a set of possible ones
(e.g., size, price, distance to the beach, number of bedrooms,
floor, etc.) and indexes may not be available for all possible
attribute combinations (i.e., they are too expensive to create
and maintain). Third, information for different rankings to be
combined (i.e., for different attributes) could appear in
different databases (in a distributed database scenario) and
unified indexes may not exist for them. A stream of research
[8, 1, 5, 7] for top-k queries has focused on the efficient
merging of object rankings that may arrive from different
(distributed) sources. The motivation of these methods is to
minimize the number of accesses to the input rankings until

the objects with the top-k aggregate scores have been
identified. To achieve this, upper and lower bounds for the
objects seen so far are maintained while traversing the sorted
lists.

In the next paragraphs, we first review the R-tree, which is
the most popular spatial access method and the NN search
algorithm of [9] and survey recent research of feature based
spatial queries.

A. Spatial Query Evaluation on R-trees:
The most popular spatial access method is the R-tree [9],

which indexes minimum bounding rectangles (MBRs) of
objects. Figure 2 shows a collection R = {p1, . . . , p8} of
spatial objects (e.g., points) and an R-tree structure that
indexes them. R-trees can efficiently process main spatial
query types, including spatial range queries, nearest neighbor
queries, and spatial joins. Given a spatial region W, a spatial
range query retrieves from R the objects that intersect W. For
instance, consider a range query that asks for all objects within
distance 3 from q, corresponding to the shaded area in Figure
2. Starting from the root of the tree, the query is processed by
recursively following entries, having MBRs that intersect the
query region. For instance, e1 does not intersect the query
region, thus the sub-tree pointed by e1 cannot contain any
query result. In contrast, e2 is followed by the search
algorithm and the points in the corresponding node are
examined recursively to find the query result p7.

A nearest neighbor (NN) query takes as input a query
object q and returns the closest object in D to q. For instance,
the nearest neighbor of q in Figure 2 is p7. Its generalization is
the k-NN query, which returns the k closest objects to q, given
a positive integer k. NN (and k-NN) queries can be efficiently
processed using the bestfirst (BF) algorithm of [4], provided
that D is indexed by an R-tree. A min-heap H which organizes
R-tree entries based on the (minimum) distance of their MBRs
to q is initialized with the root entries. In order to find the NN
of q in Figure 2, BF first inserts to H entries e1, e2, e3, and
their distances to q. Then the nearest entry e2 is retrieved from
H and objects p1; p7; p8 are inserted to H. The next nearest
entry in H is p7, which is the nearest neighbor of q. In terms of
I/O, the BF algorithm is shown to be no worse than any NN
algorithm on the same R-tree [4]. The aggregate R-tree (a R-
tree) [10] is a variant of the R-tree, where each non-leaf entry
augments an aggregate measure for some attribute value
(measure) of all points in its subtree. As an example, the tree
shown in Figure 2 can be upgraded to a MAX a R-tree over
the point set, if entries e1; e2; e3 contain the maximum
measure values of sets fp2; p3g; fp1; p8; p7g; fp4; p5; p6g,
respectively. Assume that the measure values of p4; p5; p6 are
0:2; 0:1; 0:4, respectively. In this case, the aggregate measure
augmented in e3 would be maxf0:2; 0:1; 0:4g = 0:4. In this
paper, we employ MAX a R-trees for indexing the feature
datasets (e.g., restaurants), in order to accelerate the
processing of top-k spatial preference queries.

Given a feature dataset F and a multi-dimensional region
R, the range top-k query selects the tuples (from F) within the
region R and returns only those with the k highest qualities.
Hong et al. [11] indexed the dataset by a MAX aR-tree and
developed an efficient tree traversal algorithm to answer the

Murali Krishna M et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012, 276-279

© 2010, IJARCS All Rights Reserved 278

query. Instead of finding the best k qualities from F in a
specified region, our (rangescore) query considers multiple
spatial regions based on the points from the object dataset D,
and attempts to find out the best k regions (based on scores
derived from multiple feature datasets Fc).

III. PROBLEM FORMULATION

Given an object dataset O and a set of c feature datasets
{Fi | i € [1, c]}, the top-k spatial preference query returns the k
data objects {p1,p2,p3…pk} from O with the highest score. The
score of a data object p € O is defined by the scores of feature
objects t € Fi in its spatial neighbourhood. Each feature object
t is associated with a non-spatial score w(t) that indicates the
goodness (quality) of t and its domain of values is the range
[0, 1].
The range (rng) score of p , given a radius r :

The nearest neighbour (nn) score of p:

IV. MAPPING TO DISTANCE SCORE SPACE

Top-k spatial preference queries return a ranked set of
spatial data objects. The main difference to traditional top-k
queries is that the score of each data object p € O is obtained
by the feature objects in its spatial neighbourhood. Thus,
determining the partial score of a data object p based on the
feature set Fi requires that the pairs of objects (p, t) with t € Fi
need to be examined. Consequently, the search space that
needs to be explored to determine the partial score is the
Cartesian product between O and Fi. As the total number of
pairs with respect to all feature datasets is significantly larger
than the cardinality of dataset O processing top-k spatial
preference queries is particularly challenging.

In this section, we formally define the search space of the
top-k spatial preference queries by defining a mapping of the
data objects O and any feature dataset Fi to a distance-score
space. Then, we prove that only a subset of the pairs (p, t),
where p € O and t € Fi, are sufficient to answer all top-k spatial
preference queries. This drastically reduces the search space
for any given query, thereby saving computational costs
significantly. In addition, we prove that this subset of pairs is
the minimal subset of pairs necessary.

Figure.1. Mapping to the distance score space.

In a pre processing step, the subset of pairs is computed
and stored using a multi-dimensional index. As a result, we
avoid computing pairs of the Cartesian product on-the-fly
during query processing, leading to an efficient algorithm for
processing top-k spatial preference queries. ing

V. QUERY PROCESSING

In this section, we present the Skyline Feature Algorithm
(SFA) for processing top-k spatial preference queries. First, we
present an algorithm that exploits the distance-score space and
returns the data objects in descending order of their partial
scores. Then, we present the algorithmic details of SFA, which
produces the result of the top-k spatial preference query by
coordinating access to the partial scores of data objects. For
ease of presentation, in the following, we refer to a pair (p, t),
where p € O and t € Fi, as a data point indexed by .Access
to Partial Scores. During query processing, the data points in

 are retrieved sorted in descending order of their partial
scores. Furthermore, only node entries of the R-tree that
satisfy the spatial constraint are processed. First, we present in
details our algorithm for retrieving data points sorted based on
the range score (Flowchart). Then, we describe the necessary
modifications for supporting the influence and nearest
neighbour scores.

NextObject takes as input the radius r that defines the range
constraint and a heap H that contains node entries and data
points in descending order of partial score (). Initially, the
heap H contains the root of . Each time, the entry e at the
top of the heap H, i.e., with maximum partial score, is
retrieved (lines 3, 10). As long as e is not a data point (line 4),
NextObject inserts in the heap H (line 7) the children entries
of e whose distance is smaller or equal to the radius r (line 6).

Figure.2. Flowchart for query processing

When the next entry is a data point, it is returned as the
data point with the highest partial score () in .

VI. EXPERIMENTAL EVALUATION

This section, we compare the efficiency of the proposed
algorithms using real and synthetic datasets. Each dataset is
indexed by a R-tree with 4K bytes page size. We used an LRU
memory buffer whose default size is set to 0.5% of the sum of
tree sizes (for the object and feature trees used). Our
algorithms were implemented in C++ and experiments were
run on a Pentium IV 2.3GHz PC with 512 MB of RAM. In all

Murali Krishna M et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,276-279

© 2010, IJARCS All Rights Reserved 279

experiments, we measure only the I/O cost (i.e., number of age
faults) of the algorithms as their

A. Experimental Setting:
We used both real and synthetic data for the experiments.

For each synthetic dataset, the coordinates of points are
random values uniformly and independently generated for
different dimensions. By default, an object dataset contains
200K points and a feature dataset contains 100K points. The
real datasets are described in Table 1. All of them are
geographical datasets of China, available at the Digital Chart
of the World.

Table 1: Rane of Parameter Values

Parameter Values
Buffer size 0.1,0.2,0.5,1,2,5,10
Object data size 100,200,400,800,1600
Feautre data size 50,100,200,400,800
Quality skewness 1,2,4,8,16,32,64
Number of results,k 1,2,4,8,16,32,64
Number of features,m 1,2,3,4,5
Query range 10,20,50,100,200

Figure 3: Effect of buffer size, range scores.

Figure 3 compares the cost of the algorithms with respect
to the object data size |D|. Since the cost of FJ is dominated by
the cost of joining feature datasets, it is insensitive to |D|. On
the other hand, the cost of the other methods (SP, GP, BB)
increases with |D|, as score computations need to be performed
for more objects in D.

VII. CONCLUSION

In this paper, we studied a top-k spatial preference query,
which provides a novel type of ranking for spatial objects
based on qualities of features in their neighbourhood. We
presented several algorithms for processing top-k spatial
preference queries. First, we introduced a baseline algorithm
SP that computes the scores of every object by performing
spatial queries on feature datasets. SP is optimized by an
incremental computation technique that reduces the number of
component score computations for the objects. Next, we
presented the GP, a variant of SP that reduces I/O cost by
computing scores of objects in the same leaf node
concurrently. Based on GP, we developed algorithm BB,
which prunes non-leaf entries in the object tree that cannot
lead to better results. For this, we developed techniques for

deriving upper bound scores for non-leaf entries in the object
tree by accessing feature trees. Finally, we propose algorithm
FJ, which performs a multi-way join on feature trees to obtain
combinations of feature points that commonly affect a spatial
region and then search for the objects (in the object tree)
affected by these combinations.

Our experimental results show that BB outperforms SP and
GP, since SP and GP examine every object in the object tree,
whereas BB applies pruning techniques to reduce the number
of objects to be examined (and thus their score computations).
FJ is more efficient than BB for two or less feature sets,
because FJ effectively discovers combinations of features that
may lead to results with high scores. BB and FJ mainly access
object data and feature data, respectively. Thus, BB is the best
method when the object dataset is small whereas FJ is the best
algorithm when there are few and small feature datasets. Apart
from the problem variants discussed in Section 5, in the future,
we plan to design a cost model for BB and FJ so that the query
optimizer is able to decide the best query algorithm (either BB
or FJ) for a particular problem input. Another interesting
research direction is to investigate efficient processing of top-k
spatial preference queries on non indexed data

VIII. REFERENCES

[1] M. L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis, “Top-k
Spatial Preference Queries,” in ICDE, 2007.

[2] N. Bruno, L. Gravano, and A. Marian, “Evaluating Top-k
Queries over Web-accessible Databases,” in ICDE, 2002.

[3] A. Guttman, “R-Trees: A Dynamic Index Structure for
Spatial Searching,” in SIGMOD, 1984.

[4] G. R. Hjaltason and H. Samet, “Distance Browsing in Spatial
Databases,” TODS, vol. 24(2), pp. 265–318, 1999.

[5] R. Weber, H.-J. Schek, and S. Blott, “A quantitative anaysis
and performance study for similarity-search methods in
highdimensional spaces.” in VLDB, 1998.

[6] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft,
“When is “nearest neighbor” meaningful?” in ICDT, 1999.

[7] R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation
Algorithms for Middleware,” in PODS, 2001.

[8] I. F. Ilyas, W. G. Aref, and A. Elmagarmid, “Supporting Top-
k Join Queries in Relational Databases,” in VLDB, 2003.

[9] N. Mamoulis, M. L. Yiu, K. H. Cheng, and D. W.
Cheung,“Efficient Top-k Aggregation of Ranked Inputs,”
ACM TODS, vol. 32, no. 3, p. 19, 2007.

[10] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao, “Efficient
OLAP Operations in Spatial Data Warehouses,” in SSTD,
2001.

[11] S. Hong, B. Moon, and S. Lee, “Efficient Execution of Range
Topk Queries in Aggregate R-Trees,” IEICE Transactions,
vol. 88-D,no. 11, pp. 2544–2554, 2005..

	INTRODUCTION
	BACKGROUND AND RELATED WORK
	PROBLEM FORMULATION
	MAPPING TO DISTANCE SCORE SPACE
	QUERY PROCESSING
	EXPERIMENTAL EVALUATION
	CONCLUSION
	REFERENCES

