
Volume 3, No. 3, May-June 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 186

ISSN No. 0976-5697

A Priority Based Dynamic Round Robin with Deadline (PBDRRD) Scheduling Algorithm
for Hard Real Time Operating System

Rakesh Mohanty*, Shekhar Chandra Pradhan, Swarup Ranjan Behera
Department of Computer Science and Engineering

Veer Surendra Sai University of Technology
Burla, Odisha, India

rakesh.iitmphd@gmail.com, shekhar.pradhan0@gmail.com, swaruprj.vssut@gmail.com,

Abstract: In this paper, we have made a comprehensive study of variants of Round Robin (RR) scheduling algorithm existing in the literature for
Real Time Operating System (RTOS). As per our knowledge there is no known efficient RR scheduling algorithm for Hard RTOS. Our study has
been focused on a recently developed algorithm, known as Priority Based Dynamic Round Robin (PBDRR) scheduling algorithm. We have
proposed a novel variant of PBDRR algorithm using deadline, which we call as PBDRRD algorithm. This algorithm can be efficiently used for Hard
RTOS. We have made comparative performance evaluation of two algorithms i.e. PBDRR and PBDRRD by considering three cases of the input
data set. We have computed the average turnaround time, average waiting time and number of context switches for both the algorithms using Gantt
chart. Our experimental results show that performance of PBDRRD algorithm is better than that of PBDRR algorithm in all the three cases.

Keywords: Real Time Operating System, Scheduling, Round Robin, Dynamic Time Quantum, Intelligence Time Slice, Deadline.

I. INTRODUCTION

An operating system is a program that effectively and
efficiently manages the hardware and software resources of
a computer system. A program in execution is called a
process. Real Time Operating System (RTOS) is a special
type of operating system in which a fixed time frame is
allotted for the execution of a process. RTOS finds
applications in fire alarm system, flight control system,
embedded computing, space based defense systems, control
of laboratory experiments, process control in industrial
plants, robotics, air traffic control, telecommunications,
military command and control systems.

A. Real Time Operating System:
RTOS can be classified into three types such as - Hard

RTOS, Soft RTOS and Firm RTOS. In Hard RTOS, the
processes must meet their deadlines strictly before
completion of execution, otherwise the system will fail. But
in Soft RTOS, each process is associated with a deadline
with some relaxation. In this case, the system may not fail
even if the deadline is not met, but the system’s quality of
services is degraded. In Firm RTOS, a low probability of
missing a deadline can be accepted without the consequence
of system failure. There are four important characteristics
of RTOS such as determinism, responsiveness, user control
and reliability. Determinism specifies that operations are to
be performed at fixed predetermined times or within
predetermined time intervals. Responsiveness is the time
duration of servicing an interrupt by the operating system
after an acknowledgment. It includes amount of time to
begin execution of the interrupt and the amount of time to
perform the interrupt. User control of an RTOS may
involve activities like specifying priority and specifying
paging. The RTOS must be reliable in the sense that it

should not fail in adverse conditions. Scheduling of process
in an RTOS involves act of selecting the order of allocation
of Central Processing Unit (CPU) to the processes which are
to be executed.

The scheduler is a component of operating system that
has to schedule the processes in such a way that they can
finish their execution before their respective deadlines.
Scheduling algorithms are designed to efficiently schedule
the processes for execution. Scheduling algorithms can be
either pre-emptive or non-preemptive. In a pre-emptive
algorithm, a process is temporarily interrupted during
execution and CPU is allocated to another process. In a non-
preemptive algorithm a process cannot be interrupted until it
completes its execution. Few basic terminologies and
definitions related to operating system of scheduling are
presented below.

B. Basic Terminologies:
Burst Time (TB) is the amount of CPU time a process

independently requires to complete its execution. Ready
queue is a queue where all the processes are entered before
allocation of CPU. Waiting Time (WT) is the amount of
time that a process spends waiting in the ready queue before
execution. Turnaround Time (TAT) is the interval between
the submission of process and its time of completion.
Context Switch (CS) is the process of switching the CPU
between two processes upon interrupt request by performing
a state save of current process and a state restore of other.
Deadline (D) is the strict time constraint before which a
process has to finish its execution.

C. Scheduling Algorithms for RTOS:
A broad classification of RTOS scheduling algorithms

has been presented in Figure 1.

mailto:shekhar.pradhan0@gmail.com�

Rakesh Mohanty et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,186-191

© 2010, IJARCS All Rights Reserved 187

Figure 1. Classification of RTOS scheduling algorithm

RTOS scheduling algorithms can be classified into static
and priority driven. In static, the scheduling decisions are
made at compile time. A scheduling algorithm is said to be
priority driven if and only if it satisfies a condition based on
priority of processes. Priority driven can be of two types
such as fixed and dynamic. In fixed priority driven
algorithms, once a priority is assigned to a process it cannot
be changed. In dynamic priority driven algorithm priority of
an individual process may vary during execution. There
exist two types of fixed priority driven algorithms such as
Rate Monotonic (RM) and Deadline Monotonic (DM). In
RM, priorities of processes are assigned based on their
periods. The processes having shorter periods have higher
priority than the processes having longer periods. The
processes are sorted in the ready queue such that the period
increases monotonically. In DM, processes are assigned
priority according to their deadlines. The processes with
shorter deadlines are assigned to higher priorities than the
processes with longer deadlines. Dynamic priority driven
algorithms are of two types such as Earliest Deadline First
(EDF) and Least Laxity First (LLF). EDF uses deadline as
the priority i.e. the process with earliest deadline has the
highest priority. LLF algorithm assigns the highest priority
to a process with least laxity. The laxity of a process is the
difference between its deadline and remaining burst time.
Some well-known and recently developed RTOS scheduling
algorithms are presented below.

D. Literature Review:
Various RTOS scheduling algorithms have been

extensively studied in the literature. A survey on
contemporary RTOS has been presented in [1] which
describes the necessary parameters that are required for
designing an RTOS. Some RTOS scheduling algorithms
are compared in [2]. A brief survey of RTOS along with
static and dynamic scheduling has been done in [3].

Round Robin (RR) is one of the most effective
scheduling algorithms for RTOS [4]. Here each process is
assigned with a time slice or time quantum. A process is
executed for that time slice only and then preempted by
another process, which is executed next for its time quantum
and so on. Here the processes are executed in a circular
round robin fashion. Simple RR scheduling algorithms have
few limitations. They can’t be efficiently used in real time

systems since average waiting time and average turnaround
time become more when the time quantum is very small.

The algorithm proposed in [5] overcomes the above
limitation by using variable time quantum, which operates in
three phases. First phase consists of allocation of all
processes to the CPU. These processes are executed by
applying simple RR with initial time quantum. After
completing first cycle, it doubles the time quantum in the
next phase. Then it selects the process with shortest burst
time from the ready queue and CPU is allocated to it. Then
the CPU will be allocated to the next process with next
shorter burst time. In third phase the execution cycle of
phase one and phase two are repeated till the completion of
execution of processes.

A modified version of RR scheduling algorithm has been
proposed in [6] which introduces a concept called smart
time slicing (STS). STS depends on three aspects such as
priority, burst time and context switch avoidance time. Here
the processes are arranged in increasing order of burst times
which correspond to decreasing order of priorities. STS also
depends on number of processes in the ready queue. The
smart time slice is equal to the burst time of the middle
process when numbers of processes are odd. If numbers of
process are even then we consider the smart time slice
according to the average CPU burst of all the running
processes.

It is observed that a fixed time slice for all the processes

during different cycles cannot improve the performance of a
RR scheduling algorithm. Hence a new concept of
intelligence time slice (ITS) has been proposed in [7]. ITS
of each process is computed using different parameters like
original time slice (OTS), priority component (PC),
shortness component (SC) and context switch component
(CSC). The OTS is the time slice given to any process if it
deserves no special consideration. The PC value is 1 for the
process having highest priority and 0 for the rest. The SC is
computed based on the difference between the burst time of
current process and the burst time of its previous process. If
the difference is less than 0, then SC is assigned 1, otherwise
SC is assigned to 0. For calculation of Context Switch
Component (CSC) of a process, the parameters like PC, SC
and OTS are added and then this result is subtracted from
the burst time of that process. If the resulting value is less
than OTS, then the same value is considered as CSC
otherwise value of CSC is considered as 0.

Priority Based Dynamic Round Robin (PBDRR)

algorithm has been proposed in [8]. It computes the ITS for
each process as mentioned above and also uses the dynamic
time quantum concept.

As per our knowledge, there is no efficient scheduling

algorithm proposed in the literature for Hard RTOS. The
deadline parameter plays a vital role in designing scheduling
algorithms for Hard RTOS. Here our objective is to design
an improved variant of PBDRR algorithm with deadline for
Hard RTOS.

 RTOS scheduling algorithms

 Fixed Priority

Rate
Monotonic

 Dynamic Priority

 Static Priority Driven

Deadline
Monotonic

Earliest
Deadline First

Least Laxity
First

Rakesh Mohanty et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,186-191

© 2010, IJARCS All Rights Reserved 188

E. Our Contribution:
In our work, we have proposed a novel variant of the

PBDRR algorithm using deadline which we call as
PBDRRD. We have presented the pseudocode of our
proposed PBDRRD algorithm as shown in Figure 2 and
flowchart in Figure 3. We have made a comparative
performance evaluation of two algorithms i.e. PBDRR and
PBDRRD by considering three cases of the data set. We
have computed the average TAT, average WT and number
of CS for both the algorithms using Gantt chart. Our
experimental results show that performance of PBDRRD
algorithm is better than that of PBDRR algorithm.

F. Organization of Pape:r
Section I contains the Introduction along with literature

review. The pseudo code, flowchart and illustrations of our
proposed PBDRRD algorithm are given in section II.
Section III contains the experimental results and
performance comparisons of PBDRRD and PBDRR
algorithm. Finally concluding remarks have been presented
in section IV.

II. OUR PROPOSED PBDRRD ALGORITHM

Our proposed algorithm is based on deadline parameter
which is more significant for Hard RTOS. The process with
earlier deadlines is given higher priority over processes with
lower priorities. The pseudo code and flow chart of
PBDRRD are presented in Figure 2 and Figure 3
respectively.

We have assumed that arrival time of all the process are

the same. The priority is static in nature and assigned by the
user. Deadline of each of the processes must be greater than
or equal to the maximum burst time.

We have used the following notations in our pseudo

code.

Notations:
Let n  number of processes in the ready queue.
 Pi  process id, where i = 1, 2, 3,… n
 TBi burst time of Pi
Tqr (Pi)  time quantum of Pi for round r
D(Pi)  deadline of Pi
Pr(Pi)  priority of Pi
TRB (Pi)  Remaining burst time of Pi

1. For i= 1, 2, 3 ….n, Calculate SC, PC, CSC and ITS of all Pi.
2.While(ready queue != null)
 For i=1 to n do
 if(i ==1) then
 if(SC==0)then
 Tq(Pi) =0.5 *ITS;
 Else
 Tq(Pi) =ITS;
 End if
 Else
 If(SC==0)then
 Tq(Pi) = Tq(Pi-1) + 0.5* Tq(Pi-1) ;
 else
 Tq(Pi) = 2 * Tq(Pi-1) ;
 End if
 TRB(Pi) = TB(Pi) – Tq(Pi);
 If (TRB(Pi) <= 2) then
 Tq(Pi)= TRB(Pi);
 End for
 End while
3. Sort the processes Pi such that Pi < P j iff D(Pi) < D(Pj) for each i!=j
4. Assign CPU to P1 and execute the first process Pi for i=1 with its time quantum
for round one Tq1(P1).
5. j = i+1
 Select the next process Pj from the sorted list of processes
6. if (TBi+Tqr(Pj))> D(Pi)
 Go to step 5
 Else
 Execute process with Pj with Tqr(Pj)
7. if (ready queue != null)
 Go to step 5
 Else
 Stop

Figure 2. Pseudo code for PBDRRD

Figure 3. Flowchart for PBDRRD

Rakesh Mohanty et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,186-191

© 2010, IJARCS All Rights Reserved 189

Illustration of PBDRRD Algorithm:
Suppose there are 3 processes P1, P2 and P3 with burst

times 6, 13, and 10 respectively. The user priorities of the
processes are 2, 1 and 3 respectively. Their corresponding
deadlines are 10, 20, and 30. OTS is taken as 3. The PCS
are calculated as 0, 1, and 0. The SCs are found to be 0, 0
and 1. The CSCS values are calculated as 0, 0 and 0. ITSs
are calculated as 3, 4, and 4. In the first round, the processes
having SC as 1 are assigned time quantum same as ITS
whereas the processes having SC as 0 are given the time
quantum equal to the ceiling of the half of the ITS. So the
processes P1, P2, P3 are assigned time quantum as 2, 2 and
4 respectively.

In next round, the processes having SC as 1 are assigned
double the time slice of its previous round whereas the
processes with SC equals to 0 are given the time quantum
equal to the sum of previous time quantum and ceiling of the
half of the previous time quantum. So for the second round
the time quantum for three processes P1, P2 and P3 are 4, 3
and 6 respectively. Similarly time quantum is assigned to
each process available in each round for execution.

After second round processes P1 and P3 have already
completed so in third and fourth round the time quantum of
P2 are 5 and 3 respectively. Then processes are sorted with
increasing order of their deadline. So the final sequence is
P1, P2 and P3 (here the sequence remains same).
Subsequently P1 with time quantum value 2 is executed.
Then P2 is executed with time quantum value 2. If we
choose P3 as the next process to be executed then P1 is
exceeding its deadline so P3 cannot be selected and again P1
is executed. Similarly the processes are executed in the
order P2, P2, P2, P3 and P3.

III. EXPERIMENTS AND RESULTS

A. Data Set:
We have performed the experiments by taking three

cases of input data set. The data set is based on increasing
or decreasing or random order of burst times and deadlines
of the processes. We have computed the average turnaround
time and average waiting time of our proposed algorithm
PBDRRD and PBDRR using Gantt chart.

B. Experiments Performed:
In our experiments we have taken five processes for case

1 and case 2 and four processes for case 3. In case 1, the 5
processes are taken in random order of burst time and
deadlines. In case 2, we have taken 5 processes in
decreasing order of burst time. In case 3, four processes are
taken with random order of burst time and deadline. For
simplicity we have taken either 5 or 4 processes for our
experiments, though the algorithms are expected to show
similar results for higher number of processes.
 Case-1

We have taken 5 processes P1, P2, P3, P4 and P5 with
burst times 12, 10, 15, 7 and 21 respectively. The priorities

and deadlines associated with these processes are 3, 4, 1, 2,
5 and 30, 47, 20, 37, 65 respectively.

Table 1. Computation of ITS
Process BT P DT PC SC CSC ITS

P1 12 3 30 0 0 0 4
P2 10 4 47 0 1 0 5

P3 15 1 20 1 0 0 5

P4 7 2 37 0 1 2 7
P5 21 5 65 0 0 0 4

Here OTS is taken as 4. Here PC, SC, CSC and ITS for

different processes are computed as per their definitions.
Case 1 results are represented in Table 1, Table 2, Table 3
and Figure 4, Figure 5.

Table 2. Computation of time quantum for different rounds
Process BT DT Round

1st 2nd 3rd 4th 5th

P3 15 20 3 5 7 0 0

P1 12 30 2 3 7 0 0

P4 7 37 7 0 0 0 0

P2 10 47 5 5 0 0 0

P5 21 65 2 3 5 8 3

Here the processes are arranged according to the

increasing order of their deadlines. The time quantum for
different rounds is calculated as shown in Table 2.
PBDRR

P1 P2 P3 P4 P5 P1 P2 P3 …
 0 2 7 10 17 19 22 27 32

… P5 P1 P3 P5 P5 P5

 32 35 42 49 54 62 65

Figure 4. Gantt chart for PBDRR of case 1

PBDRRD

P3 P1 P5 P3 P3 P1 P1 P4 …
 0 3 5 7 12 19 22 29 36

… P2 P2 P5 P5 P5 P5

 36 41 46 49 54 62 65

Figure 5. Gantt chart for PBDRRD of case 1

Table 3. Computation between PBDRR and PBDRRD
Method Avg. WT Avg. TAT

PBDRR 27.6 40

PBDRRD 26.4 39

A comparison of average WT and average TAT is given

in Table 3. Here the numbers of context switches are remain
same.

Rakesh Mohanty et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,186-191

© 2010, IJARCS All Rights Reserved 190

Case-2
We have taken 5 processes P1, P2, P3, P4 and P5 with

burst times 15, 10, 8, 5 and 3 respectively. The priorities and
deadlines associated with these processes are 2, 1, 4, 5, 3
and 42, 25, 12, 27, 14 respectively. Here OTS value is taken
as 3. Case 2 results are represented in Table 4, Table 5,
Table 6 and Figure 6, Figure 7.

Table 4. Computation of ITS

Table 5. Computation of time quantum for different rounds
Process BT DT Round

1st 2nd 3rd 4th

P3 8 12 4 4 0 0

P5 3 14 3 0 0 0

P2 10 25 5 5 0 0

P4 5 27 5 0 0 0

P1 15 42 2 3 5 5

PBDRR

P1 P2 P3 P4 P5 P1 P2 P3 P1 P1

 0 2 7 11 16 19 22 27 31 36 41

Figure 6. Gantt chart for PBDRR of case 2

PBDRRD

P3 P5 P3 P2 P2 P4 P1 P1 P1 P1

 0 4 7 11 16 21 26 28 31 36 41

Figure 7. Gantt chart for PBDRRD of case 2

Table 6. Computation between PBDRR and PBDRRD

Method Avg. WT
Avg. TAT

PBDRR 19.6 26.8

PBDRRD 13 21.2

Case-3
We have taken 5 processes P1, P2, P3 and P4 with burst

times 8, 17, 10, and 12 respectively. The priorities and
deadlines associated with these processes are 2, 3, 1, 4, and
10, 50, 23, 35 respectively. Here OTS is taken as 3. . Case
3 results are represented in Table 7, Table 8, Table 9 and
Figure 8, Figure 9.

Table 7. Computation of ITS
Process BT P DT PC SC CSC ITS

P1 8 2 10 0 0 0 3

P2 17 3 50 0 0 0 3

P3 10 1 23 1 1 0 5

P4 12 4 35 0 1 0 3

Table 8. Computation of time quantum for different rounds

Process BT DT Round

1st 2nd 3rd 4th

P1 8 10 2 3 3 0

P3 10 23 5 5 0 0

P4 12 35 2 3 7 0

P2 17 50 2 3 5 7

PBDRR

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P4 P2

 0 2 4 9 11 14 17 22 25 28 33 40 47

Figure 8. Gantt chart for PBDRR of case 3

PBDRRD

P1 P4 P1 P1 P3 P4 P3 P4 P2 P2 P2 P2

0 2 4 7 10 15 18 23 30 32 35 40 47

 Figure 9. Gantt chart for PBDRRD of case 3

Table 6. Computation between PBDRR and PBDRRD
Method Avg. WT Avg. TAT

PBDRR 22.5 34.25

PBDRRD 15.75 27.5

Figure10. Comparison of Avg. waiting time of PBDRR and PBDRRD

Process BT P DT PC SC CSC ITS

P1 15 2 42 0 0 0 3

P2 10 1 25 1 1 0 5

P3 8 4 12 0 1 0 4

P4 5 5 27 0 1 1 5

P5 3 3 14 0 1 1 3

Rakesh Mohanty et al, International Journal of Advanced Research in Computer Science, 3 (3), May –June, 2012,186-191

© 2010, IJARCS All Rights Reserved 191

Figure 11. Comparison of Avg. turnaround time of PBDRR and PBDRRD

IV. CONCLUSION

From the experimental results we have observed that our
proposed PBDRRD algorithm performs better than PBDRR
in terms of average waiting time and average turnaround
time. The number of context switches remains the same for
both the algorithms PBDRR and PBDRRD. Though we
have considered same arrival time for all the processes,
different arrival time can be considered for different
processes as a future work to design a more realistic RR
scheduling algorithm.

V. REFERENCES

[1]. S. Baskiyar and N. Meghanathan, “A Survey on
Contemporary Real Time Operating Systems”, Informatica,
29, 233-240, 2005.

[2]. A. Sandhu, “Performance Comparison of RTS scheduling
algorithm”, International Journal of Computer Science and
Technology, Vol 2, 391-396, 2011.

[3]. K. Ghosh, B. Mukherjee and K Schwan, “A Survey of Real
Time Operating System” Technical Report, GIT-CC-93/18,
1994.

[4]. A. Silberschatz, P. B. Galvin and G. Gagne, 2006,
“Operating Systems Concepts”, 7th edition, John Wiley
and Sons, USA, ISBN: 9812-53-176-9, pp. 159-161.

[5]. A. Singh, P. Goyal and S. Batra ,“ An Optimized Round
Robin Scheduling Algorithm for CPU Scheduling”,
International Journal on Computer Science and Engineering
Vol. 02, No. 07,2383-2385, 2010.

[6]. V. K. Dhakad, S. Hiranwal and K.C. Roy, “Adaptive
Round Robin Scheduling using Shortest Burst Approach
Based on Smart Time Slice”, International Journal of
Computer Science and Communication Vol. 02, No. 02,
319-323, 2011.

[7]. C. Yaashuwanth and R. Ramesh ,“ Intelligent Time Slice
for Round Robin in Real Time Operating System”
International Journal of Research and Review in Applied
Science Vol. 02, No. 02, 126-131, 2010.

[8]. Rakesh Mohanty, H. S. Behera, K. Patwari, M. Dash and
M. L. Prasanna, “Priority Based Dynamic Round Robin
(PBDRR) Algorithm with Intelligent Time Slice for Soft
Real Time Systems” , International Journal of Advanced
Computer Science and Application Vol. 02, No. 02,46-60,
2011.

[9]. S. M. Mostafa, S. Z. Rida and S. H. Hamad, “Finding Time
Quantum Of Round Robin CPU Scheduling Algorithm in
General Computing Systems using Integer Programming”,
International Journal of Research and Review in Applied
Science, 2010.

[10]. Rakesh Mohanty, M. Das, M. L. Prasanna and Sudhashree,
“Design and Performance Evaluation of a New Proposed
Fittest Job First Dynamic Round Robin (FJFDRR)
Scheduling Algorithm” in International Journal of
Computing Information System, Vol.2, No. 2, 23-27, 2011.

[11]. C. Yaashuwanth and R. Ramesh, “A New Scheduling
Algorithm for Real Time System”, International Journal of
Computer and Electrical Engineering, Vol.2, No.6, 1104-
1106, 2010.

	INTRODUCTION
	A. Real Time Operating System:
	B. Basic Terminologies:
	C. Scheduling Algorithms for RTOS:
	D. Literature Review:
	E. Our Contribution:
	F. Organization of Pape:r

	OUR PROPOSED PBDRRD ALGORITHM
	Figure 2. Pseudo code for PBDRRD
	Illustration of PBDRRD Algorithm:

	EXPERIMENTS AND RESULTS
	Data Set:
	Experiments Performed:

	CONCLUSION

