
Volume 3, No. 2, March-April 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 292

ISSN No. 0976-5697

A Modified MD5 Algorithm for Wireless Networks

Dr. A.K. Santra
Professor and Dean,

MCA Department, CARE School of Computer Applications,
Tiruchirappalli, Tamil Nadu.
dr.c.n.srinivasan@gmail.com

Nagarajan S *

Research Scholar,
Bharathiar University, Coimbatore and Professor and Head,

The Oxford College of Science,
 Bangalore, Karnataka.

Abstract: The application of technological and related procedures to safeguard the security of various documents while moving on the channel is
an important responsibility in electronic data systems. This paper specifies the modification of the MD5 which may organizations to protect
sensitive data. Protection of data during transmission or while in storage may be necessary to maintain the confidentiality and integrity of the
information represented by the data. The algorithms uniquely define the mathematical steps required to transform data into a cryptographic
cipher and also to transform the cipher back to the original form. The Data Encryption Standard is being made available for use by various
agencies within the context of a total security consisting of physical security procedures, good information management practices, and computer
system/network access controls.

Key words: computer security, data encryption standard, triple data encryption algorithm, Federal

I. MD5 ALGORITHM

A. MD5 Algorithm Description:
MD5 algorithm begin by supposing that it have a b-bit

message as input, and that we wish to find its message
digest. Here b is an arbitrary nonnegative integer; b may be
zero, it need not be a multiple of eight, and it may be
arbitrarily large. Imagine the bits of the message written
down as follows:
m_0 m_1 ... m_{b-1}

The following five steps are performed to compute the
message digest of the message.
Step 1. Append Padding Bits

The message is "padded" (extended) so that its length (in
bits) is congruent to 448, modulo 512. That is, the message
is extended so that it is just 64 bits shy of being a multiple of
512 bits long. Padding is always performed, even if the
length of the message is already congruent to 448, modulo
512. Padding is performed as follows: a single "1" bit is
appended to the message, and then "0" bits are appended so
that the length in bits of the padded message becomes
congruent to 448, modulo 512. In all, at least one bit and at
most 512 bits are appended.
Step 2. Append Length

A 64-bit representation of b (the length of the message
before the padding bits were added) is appended to the result
of the previous step. In the unlikely event that b is greater
than 2^64, then only the low-order 64 bits of b are used.
(These bits are appended as two 32-bit words and appended
low-order word first in accordance with the previous
conventions.). At this point the resulting message (after
padding with bits and with b) has a length that is an exact
multiple of 512 bits. Equivalently, this message has a length
that is an exact multiple of 16 (32-bit) words. Let M[0 ... N-
1] denote the words of the resulting message, where N is a
multiple of 16.
Step 3. Initialize MD Buffer

A four-word buffer (A,B,C,D) is used to compute the
message digest. Here each of A, B, C, D is a 32-bit register.
These registers are initialized to the following values in
hexadecimal, low-order bytes first):

word A: 01 23 45 67
word B: 89 ab cd ef
word C: fe dc ba 98
word D: 76 54 32 10
Step 4. Process Message in 16-Word Blocks

We first define four auxiliary functions that each take as
input three 32-bit words and produce as output one 32-bit
word.
F(X,Y,Z) = XY v not(X) Z
G(X,Y,Z) = XZ v Y not(Z)
H(X,Y,Z) = X xor Y xor Z
I(X,Y,Z) = Y xor (X v not(Z))

In each bit position F acts as a conditional: if X then Y
else Z. The function F could have been defined using +
instead of v since XY and not(X)Z will never have 1’s in the
same bit position.) It is interesting to note that if the bits of
X, Y, and Z are independent and unbiased, the each bit of
F(X,Y,Z) will be independent and unbiased.

The functions G, H, and I are similar to the function F, in
that they act in "bitwise parallel" to produce their output
from the bits of X, Y, and Z, in such a manner that if the
corresponding bits of X, Y, and Z are independent and
unbiased, then each bit of G(X,Y,Z), H(X,Y,Z), and
I(X,Y,Z) will be independent and unbiased. Note that the
function H is the bit-wise "xor" or "parity" function of its
inputs. This step uses a 64-element table T[1 ... 64]
constructed from the sine function. Let T[i] denote the i-th
element of the table, which is equal to the integer part of
4294967296 times abs(sin(i)), where i is in radians. The
elements of the table are given in the appendix. Do the
following:
/* Process each 16-word block. */
For i = 0 to N/16-1 do
/* Copy block i into X. */
For j = 0 to 15 do
Set X[j] to M[i*16+j].
end /* of loop on j */
/* Save A as AA, B as BB, C as CC, and D as DD. */
AA = A
BB = B
CC = C

Nagarajan S et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 292-297

© 2010, IJARCS All Rights Reserved 293

DD = D
/* Round 1. */
/* Let [abcd k s i] denote the operation
a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA3224]
[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA7228]
[ABCD879][DABC91210][CDAB101711] [BCDA1122 12]
[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15]
[BCDA 15 22 16]
/* Round 2. */
/* Let [abcd k s i] denote the operation
a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD1517] [DABC6918] [CDAB111419][BCDA0 20 20]
[ABCD5521][DABC10922][CDAB151423][BCDA420 24]
[ABCD9525][DABC14926][CDAB31427][BCDA 8 20 28]
[ABCD13529][DABC2930][CDAB71431][BCDA122032]
/* Round 3. */
/* Let [abcd k s t] denote the operation
a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD5433][DABC81134][CDAB111635][BCDA142336]
[ABCD1437][DABC41138][CDAB71639][BCDA102340]
[ABCD13441][DABC01142][CDAB31643][BCDA62344]
[ABCD9445][DABC121146][CDAB151647][BCDA22348]
/* Round 4. */
/* Let [abcd k s t] denote the operation
a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */
/* Do the following 16 operations. */
[ABCD0649][DABC71050][CDAB141551][BCDA52152]
[ABCD12653][DABC31054][CDAB101555][BCDA12156]
[ABCD8657][DABC151058][CDAB61559][BCDA132160]
[ABCD4661][DABC111062][CDAB21563][BCDA92164]
/* Then perform the following additions. (That is increment
each of the four registers by the value it had before this
block was started.) */
A = A + AA
B = B + BB
C = C + CC
D = D + DD
end /* of loop on i */
Step 5. Output

The message digest produced as output is A, B, C, D.
That is, we begin with the low-order byte of A, and end with
the high-order byte of D.

II. PROPOSED MODIFICATION ON DES AND
TRIPPLE DES ALGORITHM

The initial 64 bit key to be generated is generated using
the RSA algorithm. The procedure is described in the
following steps:
Step1: The 256 bit decimal output generated from the RSA
is taken as the initial value to start with.
Step 2: Using random generator algorithm, randomly 64 bits
are extracted from the 256 bit decimal output of the RSA
which becomes the initial key for the DES and triple DES
algorithms.

The proposed random generator algorithm is as shown in
the flow chart below.

III. PROOF OF RESULT

Theorem 1 (Fermat’s Little Theorem) If p is a prime
number, and a is an integer such that (a, p) = 1, then ap−1 =
1(mod p).

Proof: Consider the numbers (a · 1), (a · 2), . . . (a · (p −
1)), all modulo p. They are all different. If any of them were
the same, say a · m = a · n(mod p), then a · (m − n) = 0(mod
p) so m− n must be a multiple of p. But since all m and n are
less than p, m = n. Thus a·1, a·2, . . . , a· (p−1) must be a
rearrangement of 1, 2, . . . , (p −1). So modulo
p, we have: = =ap-1
so ap−1 = 1(mod p).

Figure.1 Proposed DES algorithm

Theorem 2 (Fermat’s Theorem Extension) If (a,m) = 1
then a Φ(m) = 1(mod m),where Φ(m) is the number of
integers less than m that are relatively prime to m. The
number m is not necessarily prime.

Proof: Same idea as above. Suppose Φ (m) = n. Then
suppose that the n numbers less than m that are relatively
prime to m are: a1, a2, a3, . . . , an. Then a · a1, a · a2, . . . , a
an are also relatively prime to m, and must all be different,
so they must just be a rearrangement of the a1, . . . , an in
some order. Thus: = =an
modulo m, so an = 1(mod m).

Nagarajan S et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 292-297

© 2010, IJARCS All Rights Reserved 294

Theorem 3 (Chinese Remainder Theorem) Let p and q
be two numbers (not necessarily primes), but such that (p, q)
= 1. Then if a = b(mod p) and a = b(mod q) we have a =
b(mod pq).

Proof: If a = b(mod p) then p divides (a − b). Similarly,
q divides (a − b). But p and q are relatively prime, so pq
divides (a − b). Consequently, a = b(mod pq). (This
is a special case with only two factors of what is usually
called the Chinese remainder theorem .)

A. Proof of the Main Result:
Based on the theorems above, here is why the RSA

encryption scheme works. Let p and q be two different
(large) prime numbers, let 0 M < pq be a secret message1,
let d be an integer (usually small) that is relatively prime to
(p − 1)(q − 1), and let e be a number such that de = 1(mod (p
− 1)(q − 1)). The encoded message is C = Me(mod pq), so
we need to show that the decoded message is given byM =
Cd(mod pq).

Proof: Since de = 1(mod (p−1)(q −1)), de = 1+k(p−1)(q
−1) for some integer k. Thus: Cd = Mde = M1+k(p−1)(q−1)
= M · (M(p−1)(q−1))k. If M is relatively prime to p, then
Mde = M · (Mp−1)k(q−1) = M·(1)k(q−1) = M(mod p)

By the extension of Fermat’s Theorem giving Mp−1 =
1(mod p) followed by a multiplication of both sides byM.
But ifM is not relatively prime to p, thenM is a multiple of
p, so equation 1 still holds because both sides will be zero,
modulo p. By exactly the same reasoning, Mde = M ·Mq−1 =
M(mod q). If we apply the Chinese remainder theorem to
equations 1 and 2, we obtain the result we want: Mde =
M(mod pq). Finally, given the integer d, we will need to be
able to find another integer e such that
de=1(mod(p−1)(q−1)). To do so we can use the extension of
Fermat’s theorem to get dΦ((p−1)(q−1)) = 1(mod (p−1)(q−1)), so
dΦ((p−1)(q−1))−1(mod (p−1)(q−1)) is a suitable value for e.

IV. MATHEMATICAL PROOF OF THE RSA

8.1 Algorithm Key generation for RSA public-key
encryption

Each entity creates an RSA public key and a corresponding
private key. Each entity A should do the following:

a) Generate two large random (and distinct) primes p and
q, each roughly the same size.

b) Compute n = pq and Φ = (p — l) (q — 1). (See Note
8.5.)

c) Select a random integer e, 1 < e < Φ, such that gcd(e,
Φ) = 1.

d) Use the extended Euclidean algorithm to compute the
unique integer d,1 < d < Φ, such that ed = 1 (mod
Φ).

e) A’s public key is (n, e); A’s private key is d.
The integers e and d in RSA key generation are called the

encryption exponent and the decryption exponent,
respectively, while n is called the modulus.

A. RSA public-key encryption:

B encrypts a message m for A, which A decrypts.
a. Encryption. B should do the following:

a) Obtain A’s authentic public key (n, e).
b) Represent the message as an integer m in the interval [0,

n—1].

c) Compute c = me mod n.
d) Send the ciphertext c to A.
b. Decryption. To recover plaintext m from c, A should do

the following:
i. Use the private key d to recover m = cd mod n. Proof

that decryption works. Since ed = 1 (mod Φ), there exists
an integer k such that ed = 1 + k Φ. Now, if gcd(m,p) = 1
then by Fermat’s theorem mp-1 =
1 (mod p). Raising both sides of this congruence to the
power k(q — 1) and then multiplying both sides by m
yields ml+k(P-l)(q-l) = m (mod p)
On the other hand, if gcd (m, p) = p, then this last

congruence is again valid since each side is congruent to 0
modulo p. Hence, in all cases m ed = m (mod p).By the
same argument, m ed =m(mod q). Finally, since p and
q are distinct primes, it follows that m ed = m (mod n), and,
hence, c d = (me)d = m (mod n).

a. (RSA encryption with artificially small
parameters)

Key generation. Entity A chooses the primes p = 2357, q
= 2551, and computes n = pq = 6012707 and Φ = (p —1)(q —
1) = 6007800. A chooses e = 3674911 and, using the
extended Euclidean algorithm, finds d = 422191 such that
ed = 1 (mod <p). A’s public key is the pair (n = 6012707, e
= 3674911), while A’s private key is d = 422191.
Encryption. To encrypt a message m = 5234673, B uses an
algorithm for modular exponentiation (e.g., Algorithm
2.143) to compute c= me mod n = 52346733674911 mod
6012707 = 3650502, and sends this to A. Decryption.
To decrypt c, A computes cd mod n = 3650502422191 mod
6012707 = 5234673. (universal exponent) The number λ =
lcm(p — l,q— 1), sometimes called the universal exponent of
n, may be used instead of Φ=(p—1)(q—1) in RSA key
generation. Observe that λ is a proper divisor of Φ. Using λ
can result in a smaller decryption exponent d, which may
result in faster decryption. However, if p and q are chosen at
random, then gcd(p —1, q— 1) is expected to be small, and
consequently Φ and λ will be roughly of the same size.

B. 4.2 Security of RSA:
This subsection discusses various security issues related to

RSA encryption. Various attacks which have been studied in
the literature are presented, as well as appropriate measures
to counteract these threats.

a. Relation to factoring:
The task faced by a passive adversary is that of recovering

plaintext m from the corresponding ciphertext c, given the
public information (n, e) of the intended receiver A. This is
called the RSA problem (RSAP).There is no efficient algo-
rithm known for this problem.

One possible approach which an adversary could employ
to solving the RSA problem is to first factor n, and then
compute Φ and d . Once d is obtained, the adversary can
decrypt any ciphertext intended for A.

On the other hand, if an adversary could somehow
compute d, then it could subsequently factor n efficiently as
follows. First note that since ed = 1 (mod Φ), there is an
integer k such that ed — 1 = k Φ. Hence, aeti_1 = 1 (mod n)
for all a Є Z*. Let ed — 1 = 2st, where t is an odd integer.
Then it can be shown that there exists an i Є [l,s] such that
a2i-1t ≠±1 (mod n) anda2it = 1 (mod n) for at least half of all a

Nagarajan S et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 292-297

© 2010, IJARCS All Rights Reserved 295

Є Zn; if a and i are such integers then gcd(a—1, n) is a non-
trivial factor of n. Thus the adversary simply needs to
repeatedly select random a ЄZ* and check if an i Є [1, s]
satisfying the above property exists; the expected number of
trials before a non-trivial factor of n is obtained is 2. This
discussion establishes the following.

The problem of computing the RSA decryption exponent
d from the public key (n, e), and the problem of factoring n,
are computationally equivalent. Then generating RSA keys,
it is imperative that the primes p and q be selected in such a
way that factoring n = pq is computationally infeasible.

b. Small Encryption Exponent e:
In order to improve the efficiency of encryption, it is

desirable to select a small encryption exponent e such as e =
3. A group of entities may all have the same encryption
exponent e, however, each entity in the group must have its
own distinct modulus. If an entity A wishes to send the same
message m to three entities whose public moduli are n1, n2,
n3 and whose encryption exponents are e = 3, then A would
send Ci = m3 mod n; for i = 1,2,3. Since these moduli are
most likely pairwise relatively prime, an eavesdropper
observing c1, C2,C3 can use Gauss’s algorithm to find a
solution x, 0≤ x < n1n2n3, to the three congruences x = c1
(mod n1) x =C2(mod n2) x=C3(mod n3). Since m3 < n1n2n3,
by the Chinese remainder theorem, it must be the case that x =
m3. Hence, by computing the integer cube root of x, the
eavesdropper can recover the plaintext m. Thus a small
encryption exponent such as e = 3 should not be used if the
same message, or even the same message with known
variations, is sent to many entities. Alternatively, to prevent
against such an attack, a pseudorandomly generated bitstring
of appropriate length should be appended to the plaintext
message prior to encryption; the pseudorandom bit-string
should be independently generated for each encryption. This
process is sometimes referred to as salting the message.

Small encryption exponents are also a problem for small
messages m, because if m< n1/e, then m can be recovered
from the ciphertext c = me mod n simply by computing the
integer eth root of c; salting plaintext messages also
circumvents this problem.

c. Forward Search Attack:
If the message space is small or predictable, an adversary

can decrypt a ciphertext c by simply encrypting all possible
plaintext messages until c is obtained. Salting the message
as described above is one simple method of preventing such
an attack.

d. Small Decryption Exponent d:
As was the case with the encryption exponent e, it may

seem desirable to select a small decryption exponent d in
order to improve the efficiency of decryption.x However, if gcd
(p—1, q—1) is small, as is typically the case, and if d has up
to approximately one-quarter as many bits as the modulus n,
then there is an efficient algorithm (referenced on page 313)
for computing d from the public information (n, e). This
algorithm cannot be extended to the case where d is
approximately the same size as n. Hence, to avoid this attack,
the decryption exponent d should be roughly the same size
as n.

e. Multiplicative Properties:
Let m1 and m2 be two plaintext messages, and let C1 and

C2 be their respective RSA encryptions. Observe that (m1m2)e
= m1

em2
e = C1C2 (mod n).In other words, the ciphertext

corresponding to the plaintext m = m1m2 mod n is c = c1c2
mod n; this is sometimes referred to as the homomorphic
property of RSA. This observation leads to the following
adaptive chosen-ciphertext attack on RSA encryption.

Suppose that an active adversary wishes to decrypt a
particular ciphertext c = me mod n intended for A. Suppose
also that A will decrypt arbitrary ciphertext for the
adversary, other than c itself. The adversary can conceal c by
selecting a random integer x Є Zn* and computing c- = cxe
mod n. Upon presentation of c-, A will compute for the
adversary m- = (c-)d mod n. Since m- = (c-) d = cd (xe)d =
mx (mod n), the adversary can then compute m =m-x-1 mod
n.

This adaptive chosen-ciphertext attack should be
circumvented in practice by imposing some structural
constraints onplaintext messages. If a ciphertext c is decrypted
to a message not possessing this structure, then c is rejected
by the decryptor as being fraudulent. Now, if a plaintext
message m has this (carefully chosen) structure, then with
high probability mx mod n will not for xЄ Zn*. Thus the
adaptive chosen-ciphertext attack described in the previous
paragraph will fail because A will not decrypt c for the
adversary.

f. Common Modulus Attack:
The following discussion demonstrates why it is

imperative for each entity to choose its own RSA modulus n.
It is sometimes suggested that a central trusted authority
should select a single RSA modulus n, and then distribute a
distinct encryption/decryption exponent pair (ei, di) to each
entity in a network. However, as shown in (i) above,
knowledge of any (ei, di) pair allows for the factorization of
the modulus n, and hence any entity could subsequently deter-
mine the decryption exponents of all other entities in the
network. Also, if a single message were encrypted and sent to
two or more entities in the network, then there is a technique
by which an eavesdropper (any entity not in the network)
could recover the message with high probability using only
publicly available information.

g. Cycling Attac#ks:
Let c = me mod n be a ciphertext. Let k be a positive

integer such that cek=c(mod n); since encryption is a
permutation on the message space {0,1,... , n — 1} such an
integer k must exist. For the same reason it must be the case
that ck-1 = m (mod n). This observation leads to the following
cycling attack on RSA encryption. An adversary computes ce
mod n, ce2 mod n, ce3 mod n,... until c is obtained for the first
time. If cek mod n =c, then the previous number in the cycle,
namely c ek-1 mod n, is equal to the plaintext m. A
generalized cycling attack is to find the smallest positive
integer u such that f =gcd(ce—c,n) > 1. If ce=c (mod p)
and ce ≠ c (mod q) then f = p. Similarly, if ce ≠ c (mod p)
and ce = c (mod q (8.2) then 1 = q. In either case, n has
been factored, and the adversary can recover d and then m.
On the other hand, if both c =c (mod p) and c =c
(mod q),(8.3) then f = n and ce = c (mod n). In fact, u must
be the smallest positive integer k for which ce = c (mod n).
In this case, the basic cycling attack has succeeded and so
7n = c mod n can be computed efficiently. The generalized
cycling attack usually terminates before the cycling attack
does. For this reason, the generalized cycling attack can be

Nagarajan S et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 292-297

© 2010, IJARCS All Rights Reserved 296

viewed as being essentially an algorithm for factoring n.
Since factoring n is assumed to be intractable, these cycling
attacks do not pose a threat to the security of RSA encryption.

h. Message Concealing:
A plaintext message m, 0 < m < n—1, in the RSA public-

key encryption scheme is said to be unconcealed if it
encrypts to itself; that is, me = m (mod n). There are always
some messages which are unconcealed (for example m = 0,
m = 1, and m = n—1). In fact, the number of unconcealed
messages is exactly [1 + gcd(e—l , p —1)] • [1 + gcd(e—1,q—
1)]. Since e — l,p—l and q — 1 are all even, the number of
unconcealed messages is always at least 9. If p and q are
random primes, and if e is chosen at random (or if e is
chosen to be a small number such as e = 3or e = 216 + l =
65537), then the proportion of messages which are
unconcealed by RSA encryption will, in general, be negligibly
small, and hence unconcealed messages do not pose a threat
to the security of RSA encryption in practice.

C. RSA Encryption in Practice:
There are numerous ways of speeding up RSA encryption

and decryption in software and hardware implementations.
Some of these techniques are covered in Chapter 14, includ-
ing fast modular multiplication, fast modular
exponentiation, and the use of the Chinese remainder
theorem for faster decryption. Even with these im-
provements, RSA encryption/decryption is substantially
slower than the commonly used symmetric-key encryption
algorithms such as DES. In practice, RSA encryption is most
commonly used for the transport of symmetric-key
encryption algorithm keys and for the encryption of small
data items.

The RSA cryptosystem has been patented in the U.S. and
Canada. Several standards organizations have written, or are
in the process of writing, standards that address the use of the
RSA cryptosystem for encryption, digital signatures, and key
establishment. For discussion of patent and standards issues
related to RSA.

(recommended size of modulus) Given the latest progress
in algorithms for factoring integers , a 512-bit modulus n
provides only marginal security from concerted attack. As of
1996, in order to foil the powerful quadratic sieve and
number field sieve factoring algorithms, a modulus n of at
least 768 bits is recommended. For long-term security, 1024-
bit or larger moduli should be used.

a. (selecting primes):
a) The primes p and q should be selected so that factoring

n = pq is computationally infeasible. The major
restriction onp and q in order to avoid the elliptic curve
factoring algorithm is that p and q should be about the
same bitlength, and sufficiently large. For example, if a
1024-bit modulus n is to be used, then each of p and q
should be about 512 bits in lengt.

b) Another restriction on the primes p and q is that the
difference p—q should not be too small. If p—q is
small, then p ≈q and hence p ≈√n. Thus, n could be
factored efficiently simply by trial division by all odd
integers close to √n. If p and q are chosen at random,
then p—q will be appropriately large with
overwhelming probability.

c) In addition to these restrictions, many authors have
recommended that p and q be strong primes. A prime p

is said to be a strong prime if the following three
conditions are satisfied:

a) p—1 has a large prime factor, denoted r;
b) p + 1 has a large prime factor; and
c) r—1 has a large prime factor.

The reason for condition (a) is to foil Pollard’s p—1
factoring algorithm which is efficient only if n has a prime
factor p such that p—1 is smooth. Condition (b) foils the p +
1 factoring algorithm mentioned, which is efficient only if n
has a prime factor p such that p + 1 is smooth. Finally,
condition (c) ensures that the cycling attacks will fail. If the
prime p is randomly chosen and is sufficiently large, then both
p—1 and p+1 can be expected to have large prime factors. In
any case, while strong primes protect against the p—1 and
p+1 factoring algorithms, they do not protect against their
generalization. The latter is successful in factoring n if a
randomly chosen number of the same size as p has only
small prime factors. Additionally, it has been shown that the
chances of a cycling attack succeeding are negligible if p and
q are randomly chosen. Thus, strong primes offer little
protection beyond that offered by random primes. Given the
current state of knowledge of factoring algorithms, there is no
compelling reason for requiring the use of strong primes in
RSA key generation. On the other hand, they are no less
secure than random primes, and require only minimal
additional running time to compute; thus there is little real
additional cost in using them.

b. (small encryption exponents):
If the encryption exponent e is chosen at random, then

RSA encryption using the repeated square-and-multiply
algorithm takes k modular squarings and an expected k/2
(less with optimizations) modular multiplications, where k is
the bitlength of the modulus n. Encryption can be sped up by
selecting e to be small and/or by selecting e with a small
number of 1 ’s in its binary representation. The encryption
exponent e = 3 is commonly used in practice; in this case, it
is necessary that neither p—1 nor q—1 be divisible by 3. This
results in a very fast encryption operation since encryption only
requires 1 modular multiplication and 1 modular squaring.
Another encryption exponent used in practice is e = 216 + 1
= 65537. This number has only two 1’s in its binary
representation, and so encryption using the repeated square-
and-multiply algorithm requires only 16 modular squarings
and 1 modular multiplication. The encryption exponent e =
216 + 1 has the advantage over e = 3 in that it resists the kind
of attack , since it is unlikely the same message will be sent to
216 +1 recipients.

V. CONCLUSION

In this paper the proposal is to modify the MD5
algorithm to improve the hashing information exchanged
between any two nodes on the network. In its present form it
can be broken. By the proposed modification the purpose is
to enhance the time to break so that with the timestamp for
the transfer of the frame the information would have already
reached the destination and action accordingly taken as
needed. This enhances the performance of the MD5
algorithm to a large extent. It is very clear with the proof
given above. For future research on this, the inclusion of the
knowledge of some of the other theorems of number theory
can be use to further enhance the performance of the MD5
algorithm.

Nagarajan S et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 292-297

© 2010, IJARCS All Rights Reserved 297

VI. REFERENCES

[1]. "Cryptographic Algorithms for Protection of Computer Data
During Transmission and Dormant Storage," Federal Register
38, No. 93 (May 15, 1973).

[2]. Data Encryption Standard, Federal Information Processing
Standard (FIPS) Publication 46, National Bureau of
Standards, U.S. Department of Commerce, Washington D.C.
(January 1977).

[3]. Carl H. Meyer and Stephen M. Matyas, Cryptography: A
New Dimension in Computer Data Security, John Wiley &
Sons, New York, 1982.

[4]. Dorthy Elizabeth Robling Denning, Cryptography and Data
Security, Addison-Wesley Publishing Company, Reading,
Massachusetts, 1982.

[5]. D.W. Davies and W.L. Price, Security for Computer

Networks: An Introduction to Data Security in
Teleprocessing and Electronics Funds Transfer, Second
Edition, John Wiley & Sons, New York, 1984, 1989.

[6]. Miles E. Smid and Dennis K. Branstad, "The Data
Encryption Standard: Past and Future," in Gustavus J.
Simmons, ed., Contemporary Cryptography: The Science of
Information Integrity, IEEE Press, 1992.

[7]. Douglas R. Stinson, Cryptography: Theory and Practice,
CRC Press, Boca Raton, 1995.

[8]. Bruce Schneier, Applied Cryptography, Second Edition, John
Wiley & Sons, New York, 1996.

[9]. Alfred J. Menezes, Paul C. van Oorschot, and Scott A.
Vanstone, Handbook of Applied Cryptography, CRC Press,
Boca Raton, 1997.

10.

	10.

