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Abstract: The application of technological and related procedures to safeguard the security of various documents while moving on the channel is 
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I. MD5 ALGORITHM 

A. MD5 Algorithm Description: 
MD5 algorithm begin by supposing that it have a b-bit 

message as input, and that we wish to find its message 
digest. Here b is an arbitrary nonnegative integer; b may be 
zero, it need not be a multiple of eight, and it may be 
arbitrarily large. Imagine the bits of the message written 
down as follows: 
m_0 m_1 ... m_{b-1} 

The following five steps are performed to compute the 
message digest of the message.  
Step 1. Append Padding Bits 

The message is "padded" (extended) so that its length (in 
bits) is congruent to 448, modulo 512. That is, the message 
is extended so that it is just 64 bits shy of being a multiple of 
512 bits long. Padding is always performed, even if the 
length of the message is already congruent to 448, modulo 
512. Padding is performed as follows: a single "1" bit is 
appended to the message, and then "0" bits are appended so 
that the length in bits of the padded message becomes 
congruent to 448, modulo 512. In all, at least one bit and at 
most 512 bits are appended.  
Step 2. Append Length 

A 64-bit representation of b (the length of the message 
before the padding bits were added) is appended to the result 
of the previous step. In the unlikely event that b is greater 
than 2^64, then only the low-order 64 bits of b are used. 
(These bits are appended as two 32-bit words and appended 
low-order word first in accordance with the previous 
conventions.). At this point the resulting message (after 
padding with bits and with b) has a length that is an exact 
multiple of 512 bits. Equivalently, this message has a length 
that is an exact multiple of 16 (32-bit) words. Let M[0 ... N-
1] denote the words of the resulting message, where N is a 
multiple of 16. 
Step 3. Initialize MD Buffer  

A four-word buffer (A,B,C,D) is used to compute the 
message digest. Here each of A, B, C, D is a 32-bit register. 
These registers are initialized to the following values in 
hexadecimal, low-order bytes first): 

 
word A: 01 23 45 67 
word B: 89 ab cd ef 
word C: fe dc ba 98 
word D: 76 54 32 10 
Step 4. Process Message in 16-Word Blocks 

We first define four auxiliary functions that each take as 
input three 32-bit words and produce as output one 32-bit 
word. 
F(X,Y,Z) = XY v not(X) Z 
G(X,Y,Z) = XZ v Y not(Z) 
H(X,Y,Z) = X xor Y xor Z 
I(X,Y,Z) = Y xor (X v not(Z)) 

In each bit position F acts as a conditional: if X then Y 
else Z. The function F could have been defined using + 
instead of v since XY and not(X)Z will never have 1’s in the 
same bit position.) It is interesting to note that if the bits of 
X, Y, and Z are independent and unbiased, the each bit of 
F(X,Y,Z) will be independent and unbiased. 

The functions G, H, and I are similar to the function F, in 
that they act in "bitwise parallel" to produce their output 
from the bits of X, Y, and Z, in such a manner that if the 
corresponding bits of X, Y, and Z are independent and 
unbiased, then each bit of G(X,Y,Z), H(X,Y,Z), and 
I(X,Y,Z) will be independent and unbiased. Note that the 
function H is the bit-wise "xor" or "parity" function of its 
inputs. This step uses a 64-element table T[1 ... 64] 
constructed from the  sine function. Let T[i] denote the i-th 
element of the table, which is equal to the integer part of 
4294967296 times abs(sin(i)), where i is in radians. The 
elements of the table are given in the appendix. Do the 
following: 
/* Process each 16-word block. */ 
For i = 0 to N/16-1 do 
/* Copy block i into X. */ 
For j = 0 to 15 do 
Set X[j] to M[i*16+j]. 
end /* of loop on j */ 
/* Save A as AA, B as BB, C as CC, and D as DD. */ 
AA = A 
BB = B 
CC = C 
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DD = D 
/* Round 1. */ 
/* Let [abcd k s i] denote the operation 
a = b + ((a + F(b,c,d) + X[k] + T[i]) <<< s). */ 
/* Do the following 16 operations. */ 
[ABCD 0 7 1] [DABC 1 12 2] [CDAB 2 17 3] [BCDA3224] 
[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7] [BCDA7228] 
[ABCD879][DABC91210][CDAB101711] [BCDA1122 12] 
[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15] 
[BCDA 15 22 16] 
/* Round 2. */ 
/* Let [abcd k s i] denote the operation 
a = b + ((a + G(b,c,d) + X[k] + T[i]) <<< s). */ 
/* Do the following 16 operations. */ 
[ABCD1517] [DABC6918] [CDAB111419][BCDA0 20 20] 
[ABCD5521][DABC10922][CDAB151423][BCDA420 24] 
[ABCD9525][DABC14926][CDAB31427][BCDA 8 20 28] 
[ABCD13529][DABC2930][CDAB71431][BCDA122032] 
/* Round 3. */ 
/* Let [abcd k s t] denote the operation 
a = b + ((a + H(b,c,d) + X[k] + T[i]) <<< s). */ 
/* Do the following 16 operations. */ 
[ABCD5433][DABC81134][CDAB111635][BCDA142336] 
[ABCD1437][DABC41138][CDAB71639][BCDA102340] 
[ABCD13441][DABC01142][CDAB31643][BCDA62344] 
[ABCD9445][DABC121146][CDAB151647][BCDA22348] 
/* Round 4. */ 
/* Let [abcd k s t] denote the operation 
a = b + ((a + I(b,c,d) + X[k] + T[i]) <<< s). */ 
/* Do the following 16 operations. */ 
[ABCD0649][DABC71050][CDAB141551][BCDA52152] 
[ABCD12653][DABC31054][CDAB101555][BCDA12156] 
[ABCD8657][DABC151058][CDAB61559][BCDA132160] 
[ABCD4661][DABC111062][CDAB21563][BCDA92164] 
/* Then perform the following additions. (That is increment 
each of the four registers by the value it had before this 
block was started.) */ 
A = A + AA 
B = B + BB 
C = C + CC 
D = D + DD 
end /* of loop on i */ 
Step 5. Output 

The message digest produced as output is A, B, C, D. 
That is, we begin with the low-order byte of A, and end with 
the high-order byte of D. 

II. PROPOSED MODIFICATION ON DES AND 
TRIPPLE DES ALGORITHM 

The initial 64 bit key to be generated is generated using 
the RSA algorithm. The procedure is described in the 
following steps: 
Step1: The 256 bit decimal output generated from the RSA 
is taken as the initial value to start with. 
Step 2: Using random generator algorithm, randomly 64 bits 
are extracted from the 256 bit decimal output of the RSA 
which becomes the initial key for the DES and triple DES 
algorithms.  

The proposed random generator algorithm is as shown in 
the flow chart below. 

 

III. PROOF OF RESULT 

Theorem 1 (Fermat’s Little Theorem) If p is a prime 
number, and a is an integer such that (a, p) = 1, then ap−1 = 
1(mod p). 

Proof: Consider the numbers (a · 1), (a · 2), . . . (a · (p − 
1)), all modulo p. They are all different. If any of them were 
the same, say a · m = a · n(mod p), then a · (m − n) = 0(mod 
p) so m− n must be a multiple of p. But since all m and n are 
less than p, m = n. Thus a·1, a·2, . . . , a· (p−1) must be a 
rearrangement of 1, 2, . . . , (p −1). So modulo 
p, we have: =  =ap-1  
so ap−1 = 1(mod p). 
 

 
Figure.1 Proposed DES algorithm 

Theorem 2 (Fermat’s Theorem Extension) If (a,m) = 1 
then a Φ(m) = 1(mod m),where Φ(m) is the number of 
integers less than m that are relatively prime to m. The 
number m is not necessarily prime. 

Proof: Same idea as above. Suppose Φ (m) = n. Then 
suppose that the n numbers less than m that are relatively 
prime to m are: a1, a2, a3, . . . , an. Then a · a1, a · a2, . . . , a 
an are also relatively prime to m, and must all be different, 
so they must just be a rearrangement of the a1, . . . , an in 
some order. Thus: =  =an  
modulo m, so an = 1(mod m). 
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Theorem 3 (Chinese Remainder Theorem) Let p and q 
be two numbers (not necessarily primes), but such that (p, q) 
= 1. Then if a = b(mod p) and a = b(mod q) we have a = 
b(mod pq). 

Proof: If a = b(mod p) then p divides (a − b). Similarly, 
q divides (a − b). But p and q are relatively prime, so pq 
divides (a − b). Consequently, a = b(mod pq). (This 
is a special case with only two factors of what is usually 
called the Chinese remainder theorem .) 

A. Proof of the Main Result: 
Based on the theorems above, here is why the RSA 

encryption scheme works. Let p and q be two different 
(large) prime numbers, let 0  M < pq be a secret message1, 
let d be an integer (usually small) that is relatively prime to 
(p − 1)(q − 1), and let e be a number such that de = 1(mod (p 
− 1)(q − 1)). The encoded message is C = Me(mod pq), so 
we need to show that the decoded message is given byM = 
Cd(mod pq).  

Proof: Since de = 1(mod (p−1)(q −1)), de = 1+k(p−1)(q 
−1) for some integer k.  Thus: Cd = Mde = M1+k(p−1)(q−1) 
= M · (M(p−1)(q−1))k. If M is relatively prime to p,   then 
Mde = M · (Mp−1)k(q−1) = M·(1)k(q−1) = M(mod p)  

By the extension of Fermat’s Theorem giving Mp−1 = 
1(mod p) followed by a multiplication of both sides byM. 
But ifM is not relatively prime to p, thenM is a multiple of 
p, so equation 1 still holds because both sides will be zero, 
modulo p. By exactly the same reasoning, Mde = M ·Mq−1 = 
M(mod q). If we apply the Chinese remainder theorem to 
equations 1 and 2, we obtain the result we want: Mde = 
M(mod pq). Finally, given the integer d, we will need to be 
able to find another integer e such that  
de=1(mod(p−1)(q−1)). To do so we can use the extension of 
Fermat’s theorem to get dΦ((p−1)(q−1)) = 1(mod (p−1)(q−1)), so 
dΦ((p−1)(q−1))−1(mod (p−1)(q−1)) is a suitable value for e. 

IV. MATHEMATICAL PROOF OF THE RSA 

8.1 Algorithm Key generation for RSA public-key 
encryption 

Each entity creates an RSA public key and a corresponding 
private key. Each entity A should do the following: 

a) Generate two large random (and distinct) primes p and 
q, each roughly the same size. 

b) Compute n = pq and Φ = (p — l ) (q  — 1). (See Note 
8.5.) 

c) Select a random integer e, 1 < e < Φ, such that gcd(e, 
Φ) = 1. 

d) Use the extended Euclidean algorithm  to compute the 
unique integer d,1 < d < Φ, such that ed = 1 (mod 
Φ). 

e) A’s public key is (n, e); A’s private key is d. 
The integers e and d in RSA key generation are called the 

encryption exponent and the decryption exponent, 
respectively, while n is called the modulus. 

A. RSA public-key encryption: 

B encrypts a message m for A, which A decrypts. 
a. Encryption. B should do the following: 

a) Obtain A’s authentic public key (n, e). 
b) Represent the message as an integer m in the interval [0, 

n—1]. 

c) Compute c = me mod n. 
d) Send the ciphertext c to A. 
b. Decryption. To recover plaintext m from c, A should do 

the following: 
i. Use the private key d to recover m = cd mod n. Proof 

that decryption works. Since ed = 1 (mod Φ), there exists 
an integer k such that ed = 1 + k Φ. Now, if gcd(m,p) = 1 
then by Fermat’s theorem                                        mp-1 = 
1 (mod p). Raising both sides of this congruence to the 
power k(q — 1) and then multiplying both sides by m 
yields ml+k(P-l)(q-l) = m (mod p) 
On the other hand, if gcd (m, p) = p, then this last 

congruence is again valid since each side is congruent to 0 
modulo p. Hence, in all cases m ed   = m (mod p).By the 
same argument,            m ed =m(mod q). Finally, since p and 
q are distinct primes, it follows that m ed = m (mod n), and, 
hence, c d  = (me)d   = m (mod n). 

a. (RSA encryption with artificially small 
parameters) 

Key generation. Entity A chooses the primes p = 2357, q 
= 2551, and computes n = pq = 6012707 and Φ = (p —1)(q — 
1) = 6007800. A chooses e = 3674911 and, using the 
extended Euclidean algorithm, finds d = 422191 such that 
ed = 1 (mod <p). A’s public key is the pair (n = 6012707, e 
= 3674911), while A’s private key is d = 422191. 
Encryption. To encrypt a message m = 5234673, B uses an 
algorithm for modular exponentiation (e.g., Algorithm 
2.143) to compute c= me mod n = 52346733674911 mod 
6012707 = 3650502, and sends this to A. Decryption.                
To decrypt c, A computes cd mod n =  3650502422191 mod 
6012707 = 5234673.  (universal exponent) The number λ = 
lcm(p — l,q— 1), sometimes called the universal exponent of 
n, may be used instead of Φ=(p—1)(q—1) in RSA key 
generation. Observe that λ is a proper divisor of Φ. Using λ 
can result in a smaller decryption exponent d, which may 
result in faster decryption. However, if p and q are chosen at 
random, then gcd(p —1, q— 1) is expected to be small, and 
consequently Φ and λ will be roughly of the same size. 

B. 4.2 Security of RSA: 
This subsection discusses various security issues related to 

RSA encryption. Various attacks which have been studied in 
the literature are presented, as well as appropriate measures 
to counteract these threats. 

a. Relation to factoring: 
The task faced by a passive adversary is that of recovering 

plaintext m from the corresponding ciphertext c, given the 
public information (n, e) of the intended receiver A. This is 
called the RSA problem (RSAP).There is no efficient algo-
rithm known for this problem. 

One possible approach which an adversary could employ 
to solving the RSA problem is to first factor n, and then 
compute Φ and d . Once d is obtained, the adversary can 
decrypt any ciphertext intended for A. 

On the other hand, if an adversary could somehow 
compute d, then it could subsequently factor n efficiently as 
follows. First note that since ed = 1 (mod Φ), there is an 
integer k such that ed — 1 = k Φ. Hence, aeti_1 = 1 (mod n) 
for all a Є Z*. Let ed — 1 = 2st, where t is an odd integer. 
Then it can be shown that there exists an i Є [l,s] such that 
a2i-1t ≠±1 (mod n) anda2it = 1 (mod n) for at least half of all a 
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Є Zn; if a and i are such integers then gcd(a—1, n) is a non-
trivial factor of n. Thus the adversary simply needs to 
repeatedly select random a ЄZ* and check if an i Є [1, s] 
satisfying the above property exists; the expected number of 
trials before a non-trivial factor of n is obtained is 2. This 
discussion establishes the following. 

The problem of computing the RSA decryption exponent 
d from the public key (n, e), and the problem of factoring n, 
are computationally equivalent. Then generating RSA keys, 
it is imperative that the primes p and q be selected in such a 
way that factoring n = pq is computationally infeasible. 

b. Small Encryption Exponent e: 
In order to improve the efficiency of encryption, it is 

desirable to select a small encryption exponent e such as e = 
3. A group of entities may all have the same encryption 
exponent e, however, each entity in the group must have its 
own distinct modulus. If an entity A wishes to send the same 
message m to three entities whose public moduli are n1, n2, 
n3 and whose encryption exponents are e = 3, then A would 
send Ci = m3 mod n; for i = 1,2,3. Since these moduli are 
most likely pairwise relatively prime, an eavesdropper 
observing c1, C2,C3 can use Gauss’s algorithm to find a 
solution x, 0≤ x < n1n2n3, to the three congruences x = c1 
(mod n1) x =C2(mod n2)   x=C3(mod n3). Since m3 < n1n2n3, 
by the Chinese remainder theorem, it must be the case that x = 
m3. Hence, by computing the integer cube root of x, the 
eavesdropper can recover the plaintext m. Thus a small 
encryption exponent such as e = 3 should not be used if the 
same message, or even the same message with known 
variations, is sent to many entities. Alternatively, to prevent 
against such an attack, a pseudorandomly generated bitstring 
of appropriate length should be appended to the plaintext 
message prior to encryption; the pseudorandom bit-string 
should be independently generated for each encryption. This 
process is sometimes referred to as salting the message. 

Small encryption exponents are also a problem for small 
messages m, because if m< n1/e, then m can be recovered 
from the ciphertext c = me mod n simply by computing the 
integer eth root of c; salting plaintext messages also 
circumvents this problem. 

c. Forward Search Attack: 
If the message space is small or predictable, an adversary 

can decrypt a ciphertext c by simply encrypting all possible 
plaintext messages until c is obtained. Salting the message 
as described above is one simple method of preventing such 
an attack. 

d. Small Decryption Exponent d: 
As was the case with the encryption exponent e, it may 

seem desirable to select a small decryption exponent d in 
order to improve the efficiency of decryption.x However, if gcd 
(p—1, q—1) is small, as is typically the case, and if d has up 
to approximately one-quarter as many bits as the modulus n, 
then there is an efficient algorithm (referenced on page 313) 
for computing d from the public information (n, e). This 
algorithm cannot be extended to the case where d is 
approximately the same size as n. Hence, to avoid this attack, 
the decryption exponent d should be roughly the same size 
as n. 

e. Multiplicative Properties: 
Let m1 and m2 be two plaintext messages, and let C1 and 

C2 be their respective RSA encryptions. Observe that (m1m2)e 
= m1

em2
e  =  C1C2 (mod n).In other words, the ciphertext 

corresponding to the plaintext m = m1m2 mod n is c = c1c2 
mod n; this is sometimes referred to as the homomorphic 
property of RSA. This observation leads to the following 
adaptive chosen-ciphertext attack on RSA encryption. 

Suppose that an active adversary wishes to decrypt a 
particular ciphertext c = me mod n intended for A. Suppose 
also that A will decrypt arbitrary ciphertext for the 
adversary, other than c itself. The adversary can conceal c by 
selecting a random integer x Є Zn* and computing c- = cxe 
mod n. Upon presentation of c-, A will compute for the 
adversary m- = (c-)d   mod n. Since m- =  (c-) d   = cd (xe)d    = 
mx    (mod n), the adversary can then compute m =m-x-1 mod 
n. 

This adaptive chosen-ciphertext attack should be 
circumvented in practice by imposing some structural 
constraints onplaintext messages. If a ciphertext c is decrypted 
to a message not possessing this structure, then c is rejected 
by the decryptor as being fraudulent. Now, if a plaintext 
message m has this (carefully chosen) structure, then with 
high probability mx mod n will not for xЄ Zn*. Thus the 
adaptive chosen-ciphertext attack described in the previous 
paragraph will fail because A will not decrypt c for the 
adversary.  

f. Common Modulus Attack: 
The following discussion demonstrates why it is 

imperative for each entity to choose its own RSA modulus n. 
It is sometimes suggested that a central trusted authority 
should select a single RSA modulus n, and then distribute a 
distinct encryption/decryption exponent pair (ei, di) to each 
entity in a network. However, as shown in (i) above, 
knowledge of any (ei, di) pair allows for the factorization of 
the modulus n, and hence any entity could subsequently deter-
mine the decryption exponents of all other entities in the 
network. Also, if a single message were encrypted and sent to 
two or more entities in the network, then there is a technique 
by which an eavesdropper (any entity not in the network) 
could recover the message with high probability using only 
publicly available information.  

g. Cycling Attac#ks: 
Let c = me mod n be a ciphertext. Let k be a positive 

integer such that       cek=c(mod n); since encryption is a 
permutation on the message space {0,1,... , n — 1} such an 
integer k must exist. For the same reason it must be the case 
that ck-1 = m (mod n). This observation leads to the following 
cycling attack on RSA encryption. An adversary computes ce 
mod n, ce2 mod n, ce3 mod n,... until c is obtained for the first 
time. If cek mod n =c, then the previous number in the cycle, 
namely c ek-1  mod n, is equal to the plaintext m. A 
generalized cycling attack is to find the smallest positive 
integer u such that f =gcd(ce—c,n) > 1. If ce=c    (mod p) 
and ce ≠ c (mod q) then f = p. Similarly, if ce ≠ c (mod p) 
and ce   = c (mod q (8.2) then 1 = q. In either case, n has 
been factored, and the adversary can recover d and then m. 
On the other hand, if both c    =c    (mod p) and c    =c    
(mod q),(8.3) then f = n and ce = c (mod n). In fact, u must 
be the smallest positive integer k for which ce = c (mod n). 
In this case, the basic cycling attack has succeeded and so 
7n = c mod n can be computed efficiently. The generalized 
cycling attack usually terminates before the cycling attack 
does. For this reason, the generalized cycling attack can be 
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viewed as being essentially an algorithm for factoring n. 
Since factoring n is assumed to be intractable, these cycling 
attacks do not pose a threat to the security of RSA encryption. 

h. Message Concealing: 
A plaintext message m, 0 < m < n—1, in the RSA public-

key encryption scheme is said to be unconcealed if it 
encrypts to itself; that is, me = m (mod n). There are always 
some messages which are unconcealed (for example m = 0, 
m = 1, and m = n—1). In fact, the number of unconcealed 
messages is exactly [1 + gcd(e—l , p —1)] • [1 + gcd(e—1,q—
1)]. Since e — l,p—l and q — 1 are all even, the number of 
unconcealed messages is always at least 9. If p and q are 
random primes, and if e is chosen at random (or if e is 
chosen to be a small number such as e = 3or e = 216 + l = 
65537), then the proportion of messages which are 
unconcealed by RSA encryption will, in general, be negligibly 
small, and hence unconcealed messages do not pose a threat 
to the security of RSA encryption in practice. 

C. RSA Encryption in Practice: 
There are numerous ways of speeding up RSA encryption 

and decryption in software and hardware implementations. 
Some of these techniques are covered in Chapter 14, includ-
ing fast modular multiplication, fast modular 
exponentiation, and the use of the Chinese remainder 
theorem for faster decryption. Even with these im-
provements, RSA encryption/decryption is substantially 
slower than the commonly used symmetric-key encryption 
algorithms such as DES. In practice, RSA encryption is most 
commonly used for the transport of symmetric-key 
encryption algorithm keys and for the encryption of small 
data items. 

The RSA cryptosystem has been patented in the U.S. and 
Canada. Several standards organizations have written, or are 
in the process of writing, standards that address the use of the 
RSA cryptosystem for encryption, digital signatures, and key 
establishment. For discussion of patent and standards issues 
related to RSA. 

(recommended size of modulus) Given the latest progress 
in algorithms for factoring integers , a 512-bit modulus n 
provides only marginal security from concerted attack. As of 
1996, in order to foil the powerful quadratic sieve  and 
number field sieve factoring algorithms, a modulus n of at 
least 768 bits is recommended. For long-term security, 1024-
bit or larger moduli should be used. 

a. (selecting primes): 
a) The primes p and q should be selected so that factoring 

n = pq is computationally infeasible. The major 
restriction onp and q in order to avoid the elliptic curve 
factoring algorithm is that p and q should be about the 
same bitlength, and sufficiently large. For example, if a 
1024-bit modulus n is to be used, then each of p and q 
should be about 512 bits in lengt. 

b) Another restriction on the primes p and q is that the 
difference p—q should not be too small. If p—q is 
small, then p ≈q and hence p ≈√n. Thus, n could be 
factored efficiently simply by trial division by all odd 
integers close to √n. If p and q are chosen at random, 
then p—q will be appropriately large with 
overwhelming probability. 

c) In addition to these restrictions, many authors have 
recommended that p and q be strong primes. A prime p 

is said to be a strong prime  if the following three 
conditions are satisfied: 

a) p—1 has a large prime factor, denoted r; 
b) p + 1 has a large prime factor; and 
c) r—1 has a large prime factor.  

The reason for condition (a) is to foil Pollard’s p—1 
factoring algorithm which is efficient only if n has a prime 
factor p such that p—1 is smooth. Condition (b) foils the p + 
1 factoring algorithm mentioned, which is efficient only if n 
has a prime factor p such that p + 1 is smooth. Finally, 
condition (c) ensures that the cycling attacks will fail. If the 
prime p is randomly chosen and is sufficiently large, then both 
p—1 and p+1 can be expected to have large prime factors. In 
any case, while strong primes protect against the p—1 and 
p+1 factoring algorithms, they do not protect against their 
generalization. The latter is successful in factoring n if a 
randomly chosen number of the same size as p has only 
small prime factors. Additionally, it has been shown that the 
chances of a cycling attack succeeding are negligible if p and 
q are randomly chosen.  Thus, strong primes offer little 
protection beyond that offered by random primes. Given the 
current state of knowledge of factoring algorithms, there is no 
compelling reason for requiring the use of strong primes in 
RSA key generation. On the other hand, they are no less 
secure than random primes, and require only minimal 
additional running time to compute; thus there is little real 
additional cost in using them. 

b. (small encryption exponents): 
If the encryption exponent e is chosen at random, then 

RSA encryption using the repeated square-and-multiply 
algorithm takes k modular squarings and an expected k/2 
(less with optimizations) modular multiplications, where k is 
the bitlength of the modulus n. Encryption can be sped up by 
selecting e to be small and/or by selecting e with a small 
number of 1 ’s in its binary representation. The encryption 
exponent e = 3 is commonly used in practice; in this case, it 
is necessary that neither p—1 nor q—1 be divisible by 3. This 
results in a very fast encryption operation since encryption only 
requires 1 modular multiplication and 1 modular squaring. 
Another encryption exponent used in practice is e = 216 + 1 
= 65537. This number has only two 1’s in its binary 
representation, and so encryption using the repeated square-
and-multiply algorithm requires only 16 modular squarings 
and 1 modular multiplication. The encryption exponent e = 
216 + 1 has the advantage over e = 3 in that it resists the kind 
of attack , since it is unlikely the same message will be sent to 
216 +1 recipients.  

V. CONCLUSION 

In this paper the proposal is to modify the MD5 
algorithm to improve the hashing information exchanged 
between any two nodes on the network. In its present form it 
can be broken. By the proposed modification the purpose is 
to enhance the time to break so that with the timestamp for 
the transfer of the frame the information would have already 
reached the destination and action accordingly taken as 
needed. This enhances the performance of the MD5 
algorithm to a large extent. It is very clear with the proof 
given above. For future research on this, the inclusion of the 
knowledge of some of the other theorems of number theory 
can be use to further enhance the performance of the MD5 
algorithm.  



Nagarajan S et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 292-297 

© 2010, IJARCS All Rights Reserved    297 

VI. REFERENCES 

[1]. "Cryptographic Algorithms for Protection of Computer Data 
During Transmission and Dormant Storage," Federal Register 
38, No. 93 (May 15, 1973).  

[2]. Data Encryption Standard, Federal Information Processing 
Standard (FIPS) Publication 46, National Bureau of 
Standards, U.S. Department of Commerce, Washington D.C. 
(January 1977).  

[3]. Carl H. Meyer and Stephen M. Matyas, Cryptography: A 
New Dimension in Computer Data Security, John Wiley & 
Sons, New York, 1982.  

[4]. Dorthy Elizabeth Robling Denning, Cryptography and Data 
Security, Addison-Wesley Publishing Company, Reading, 
Massachusetts, 1982.  

[5]. D.W. Davies and W.L. Price, Security for Computer 

Networks: An Introduction to Data Security in 
Teleprocessing and Electronics Funds Transfer, Second 
Edition, John Wiley & Sons, New York, 1984, 1989.  

[6]. Miles E. Smid and Dennis K. Branstad, "The Data 
Encryption Standard: Past and Future," in Gustavus J. 
Simmons, ed., Contemporary Cryptography: The Science of 
Information Integrity, IEEE Press, 1992.  

[7]. Douglas R. Stinson, Cryptography: Theory and Practice, 
CRC Press, Boca Raton, 1995.  

[8]. Bruce Schneier, Applied Cryptography, Second Edition, John 
Wiley & Sons, New York, 1996.  

[9]. Alfred J. Menezes, Paul C. van Oorschot, and Scott A. 
Vanstone, Handbook of Applied Cryptography, CRC Press, 
Boca Raton, 1997.  

10. 

 
 
 
 
  


	10.

