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Abstract: A typical search engine’s response to a query is a ranked list of documents along with their partial content (snippets) Search results 
clustering problem is defined as an automatic, on-line grouping of similar documents in a search hits list, returned from a search engine. In this paper 
we discuss how to cluster the snippets and generate the label for them, further the results of the experimental evaluation of a Lingo algorithm using 
singular value decomposition. 
 
Keywords: Clustering; Snippets; Cluster Label; Candidates words; Pre-processing  

I. INTRODUCTION  

Clustering is an important operation in the exploratory 
analysis of large data sets. Given a data set from some domain, 
it is sometimes desirable to group data items that are similar to 
each other under the same cluster and data items that are 
dissimilar from each other under different clusters. As a 
consequence, the subdivision of the data set into clusters 
makes the latent structure of the data space explicit, and 
facilitates further human or automatic analysis. Tools for 
clustering the results returned by Web search engines have 
recently become a focus of attention in the IR research 
community. Real-time clustering technology is a key 
ingredient of such systems, since the partition of the search 
results into clusters must be generated on-the-fly. Clustering 
search results differs significantly from other types of 
document clustering. Each matching result (hit) in a list of 
results returned by a search engine contains a resource locator 
(URL), an optional title, and a short fragment of text called a 
snippet [1][6], Two or three best matching spans are joined 
and returned as a short block of text providing insight into the 
original document for the user. This technique of generating 
snippets is called kwic — keyword in context. Figure 1 shows 
a typical snippet.  

 
Figure 1: A typical “hit” returned by a search engine: document title on top, 

snippet with query terms in the middle and an information line with the 
document’s address 

II. OVERVIEW OF DESCRIPTION COMES FIRST 
APPROACH  

The DCF changes the troublesome conventional order of a 
typical clustering algorithm (cluster discovery → label  

 
 

induction) in a way that splits cluster discovery and candidate 
label discovery into two independent phases  

a. Candidate label discovery is responsible for 
collecting all phrases potentially useful as good 
cluster labels. 

b. Cluster discovery provides a computational data 
model of document groups present in the input data. 

By splitting the process into these two phases the most 
difficult element so far — creating proper cluster description 
from a mathematical model—is avoided and replaced by a 
problem of selection of appropriate labels for each cluster 
found.  

The DCF approach tries to decrease this “semantic gap” 
between a model of clusters and a set of selected labels by 
discarding the model of clusters entirely and building final 
groups of documents starting with just the selected cluster 
labels. This way the actual model of clusters is used only 
internally and can be suitably complex because it never 
surfaces to the user interface. On the other hand the candidate 
cluster label selection procedure should ensure their 
comprehensibility to the user.  
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Figure 2: Generic elements of DCF and their counterparts in Lingo. svd 
decomposition takes place inside cluster label induction phase, it is extracted 

here for clarity. 

III. OVERVIEW OF THE ALGORITHM  

Lingo processes the input in four phases: snippets 
preprocessing, frequent phrase extraction, cluster label 
induction and content allocation.  

A. Input Preprocessing: 
In the preprocessing phase the input documents (titles and 

snippets) are tokenized and split into terms. Lingo is 
implemented as a component embedded in the Carrot2 
framework. and uses its infrastructure to perform certain text 
preprocessing tasks — stemming, marking stop words and 
simple text segmentation heuristics. After tokenization is 
complete, a term-document matrix is constructed out of the 
terms that exceed a predefined term frequency threshold. After 
that, document vectors are weighted using the tf-idf formula 
[2].Terms present in document titles are additionally boosted 
compared to these appearing in snippets by a predefined 
constant because titles are more likely to contain sensible 
(human edited) information. 

a. D ←input documents (or snippets)  
/* Preprocessing */ 

b. for all d ∈D do 
c. perform text segmentation of d; /* Segmentation, 

stemming. */ 
d. if language of d recognized then 
e. apply stemming and mark stop-words in d; 
f. end if 
g. end for 

 /* Frequent Phrase Extraction */ 
h. concatenate all documents; 
i. Pc ← discover complete phrases; 
j. Pf ←p : {p ∈Pc ∧frequency(p) > term frequency 

threshold}; 
 /* Cluster Label Induction */ 

k. A← term-document matrix of terms not marked as 
stop-words and with frequency higher than the Term 
Frequency Threshold; 

l. S,U,V ←SVD(A); /* Product of SVD decomposition 
of A */ 

m. k ←0; /* Start with zero clusters */ 
n. n←rank(A); 
o. repeat 
p. k ←k +1; 
q. q ←(°°Sk°°F /kSkF ); 
r. until q < Candidate Label Threshold; 
s. P ← phrase matrix for Pf ; 
t. for all columns of UT  

k  
P do 

u. find the largest component mi in the column; 
v. add the corresponding phrase to the Cluster Label 

Candidates set; 
w. labelScore←mi ; 
x. end for 
y. calculate cosine similarities between all pairs of 

candidate labels; 

z. identify groups of labels that exceed the Label 
Similarity Threshold; 

aa. for all groups of similar labels do 
bb. select one label with the highest score; /* cluster 

description */ 
cc. end for 

 /* Cluster Content Discovery */ 
dd. for all L ∈ Cluster Label Candidates do 
ee. create cluster C described with L; 
ff. add to C all documents whose similarity to C exceeds 

the Snippet Assignment Theshold; 
gg. end for 
hh. put all unassigned documents in the “Others” group; 

/* Final Cluster Formation */ 
ii. for all clusters do 
jj. clusterScore←labelScore×kCk; 
kk. end for 
ll. Sort final clusters. 

Algorithm 1: Pseudo-code of the Lingo algorithm. 

B. Frequent Phrase Extraction: 
The aim of this step is to discover a set of cluster label 

candidates — phrases (but also single terms) that can 
potentially become cluster labels later. Lingo extracts frequent 
phrases using a modification of an algorithm presented in the 
SHOC algorithm [3]. A word-based suffix array is constructed 
and extended with an auxiliary data structure — the LCP 
(Longest Common Prefix). This allows the algorithm to 
identify all frequent complete phrases in O(n) time, n being the 
total length of all input snippets. The frequent phrase extraction 
algorithm ensures that the discovered labels fulfill the 
following conditions: 

a. appear in the input at least a given number of times (it 
is a tuning threshold); 

b. not cross sentence boundaries; sentence markers 
indicate a topical shift, therefore a phrase extending 
beyond one sentence is unlikely to be meaningful; 

c. be a complete frequent phrase (the longest possible 
phrase that is still frequent); compared to partial 
phrases, complete phrases should allow clearer 
description of clusters  

d. neither begin nor end with a stop word; stop words 
that appear in the middle of a phrase should not be 
discarded. 

C. Cluster Label Induction: 
During the cluster label induction phase, Lingo identifies 

the abstract concepts (or dominant topics in the terminology 
used in DCF) that best describe the input collection of snippets. 
There are two steps to this: abstract concept discovery, phrase 
matching and label pruning. 

In abstract concept discovery, singular value decomposition 
(SVD) is applied to the term document matrix A, breaking it 
into three matrices: U, S and V in such a way that A = USV T . 
An interesting property of SVD is that the first r columns of 
matrix U, r being the rank of A, form an orthogonal basis for 
the term space of the input matrix A [4]. It is commonly 
believed that base vectors of the decomposed term-document 
matrix represent an approximation of “topics” —collections of 
terms connected with an obscure net of latent relationships. 



B.R.Prakash et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 262-265 

© 2010, IJARCS All Rights Reserved    264 

Although this fact is difficult to prove, singular decomposition 
is widely used in text processing, for example in Latent 
Semantic Indexing (LSI). From Lingo’s point of view, basis 
vectors (column vectors of matrix U) contain exactly what it 
has set out to find — a vector representation of the abstract 
concepts.  

The most significant k base vectors of matrix U are 
determined by selecting the Frobenius norms (measuring the 
difference between two matrices) of the term-document matrix 
A and its k-rank approximation AK  . Let threshold q be a 
percentage-expressed value that determines to what extent the 
k-rank approximation should retain the original information in 
matrix A. We hence define k as the minimum value that 
satisfies the following condition:  

||AK||F/||A||F≥q 
Where the symbol ||X||F  denotes the Frobenius norm of 

matrix X. Clearly, the larger the value of q the more cluster 
candidates will be induced. The choice of the optimal value for 
this parameter ultimately depends on the preferences of users, 
so we make it one of Lingo’s control thresholds — Candidate 
Label Threshold. 

Phrase matching and label pruning step, where group 
descriptions are discovered, relies on an important observation 
that both abstract concepts and frequent phrases are expressed 
in the same vector space — the column space of the original 
term-document matrix A. This enables us to use the cosine 
distance to calculate how “close” a phrase or a single term is to 
an abstract concept. Let us denote by P a matrix of size t × (p + 
t), where t is the number of frequent terms and p is the number 
of frequent phrases. P can be easily built by treating phrases as 
pseudo-documents and using one of the term weighting 
schemes. Having the P matrix and the i -th column vector of 
the SVD’s  U matrix, a vector mi of cosines of the angles 
between the i -th abstract concept vector and the phrase vectors 
can be calculated as: 

mi=Ui T P. 
The phrase that corresponds to the maximum component of 

the mi vector should be selected as the human-readable 
description of i -th abstract concept. Additionally, the value of 
the cosine (similarity) becomes the score of the cluster label 
candidate. A similar process for a single abstract concept can 
be extended to the entire Uk matrix —a single matrix 
multiplication M =UkT P yields the result for all pairs of 
abstract concepts and frequent phrases. The final step of label 
induction is to prune overlapping labels. Let V be a vector of 
cluster label candidates and their scores. We create another 
term-document matrix Z, where cluster label candidates serve 
as documents. After column length normalization we calculate 
ZT Z, which yields a matrix of similarities between cluster 
labels. For each row we then pick columns that exceed the 
Label Similarity Threshold and discard all but one cluster label 
candidate with the maximum score which becomes the 
description of a future cluster.  

IV. CLUSTER CONTENT ALLOCATIONS 

The process of cluster content allocation very much 
resembles document retrieval based on plain VSM model. The 
only difference is that instead of one query, the input snippets 

are matched against a series of queries, each of which is a 
single cluster label. Thus, if for a certain query-label, the 
similarity between a document and the label exceeds a 
predefined threshold, it will be allocated to the corresponding 
cluster. Note that from the point of view of DCF traditional 
Vector Space Model used for comparisons is not ideal — the 
label’s word order and proximity is not taken into account. Let 
us define matrix Q, in which each cluster label is represented as 
a column vector. Let C =QT A, where A is the original term-
document matrix for input documents. This way, element Ci j 
of the C matrix  indicates the strength of membership of the j th 
document to the i -th cluster. A document is added to a cluster 
if Ci j exceeds the Snippet Assignment Threshold, yet another 
control parameter of the algorithm. Documents not assigned to 
any cluster end up in an artificial cluster called “Other 
documents”. 

V. FINAL CLUSTER FORMATION 

Finally, clusters are sorted for display based on their score, 
calculated using the following formula: 

Cscore = label score×||C||,  
Where ||C|| is the number of documents assigned to cluster 

C. The scoring function, although simple, prefers well-
described and relatively large groups over smaller ones.  

A. An Illustrative Example: 
Let the input collection of documents contain d = 7 

documents. We omit the preprocessing stage and assume t = 5 
terms and p = 2 phrases are given (these appear more than once 
and thus will be treated as frequent). The input is shown in 
below.  
The t = 5 terms 
T1: Information 
T2: Singular 
T3: Value 
T4: Computations 
T5: Retrieval 
The p = 2 phrases 
P1: Singular Value 
P2: Information Retrieval 
The d = 7 documents 
D1: Large Scale Singular Value Computations 
D2: Software for the Sparse Singular Value Decomposition 
D3: Introduction to Modern Information Retrieval 
D4: Linear Algebra for Intelligent Information Retrieval 
D5: Matrix Computations 
D6: Singular Value Analysis of Cryptograms 
D7: Automatic Information Organization 

Figure 5.3: Input documents, frequent terms and phrases 

We now preprocess the input term document matrix — tf-
idf weighting and normalization results in matrix Atf-idf, SVD 
decomposition of that matrix yields matrix U containing 
abstract concepts. 

 

Atfidf =























0 0 0 0.83 0.83 0 0
0 0 1 0 0 0 0.72
0 0.71 0 0 0 0.71 0.49
0 0.71 0 0 0 0.71 0.49
1 0 0 0.56 0.56 0 0
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       U =






















−

0 0.75 0 0.66 0
0 0 0.92 0 0.39
0.71 0 -0.28 0 0.65

0.71 0 -0.28 0 0.65
0 -0.66 0 0.75 0

     

 
Now we look for the value of k — the estimated number of 

clusters. Let us define quality threshold q = 0.9. Then the 
process of estimating k is as follows: 

 
k = 0 → q = 0.62, k = 1 → q = 0.856, 

k = 2 → q = 0.959 
And the number of expected clusters is k = 2. 

To find relevant descriptions of our clusters (k = 2 columns 
of matrix U), we calculate similarity between candidate phrases 
and concept vectors as matrix M =Uk T P, where P is a 
synthetic term-document matrix created out of our frequent 
phrases and terms (values in matrix P are again weighted using 
tf-idf and normalized): 

 

P =























1 0 0 0 0 0.83 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0.71
0 0 0 1 0 0 0.71
0 0 0 0 1 0.56 0

 

 
M =









0.66 0 0 0 0.75 0.97 0
0 0.39 0.65 0.65 0 00.92  

 
Rows of matrix M represent clusters, columns — their 

descriptions. For each row we select the column with 
maximum value. The two selected labels are: Singular Value 
(score: 0.92) and Information Retrieval (score: 0.97). We skip 
label pruning as it is not necessary in this example. Finally, 
documents are allocated to clusters by applying matrix Q, 
created out of cluster labels, back to the original matrix bAtf-
idf. The final result is shown below. Note the fifth column in 
matrix C, representing unassigned document D5. 

 

Q =



















0.83        0
0           0
0      0.71

0.56         0

 

 

C = 







0.56 0 0 1 1 0 0
0 1 0 0 0 1 0.69

 

Information Retrieval [score: 1.0] 
D3: Introduction to Modern Information Retrieval 
D4: Linear Algebra for Intelligent Information Retrieval 
D7: Automatic Information Organization 
Singular Value [score: 0.95] 
D2: Software for the Sparse Singular Value Decomposition 
D6: Singular Value Analysis of Cryptograms 
D1: Large Scale Singular Value Computations 
Other: [unassigned] 
D5: Matrix Computations 

VI. CONCLUSION 

The motivation for creating Lingo was to come up with an 
algorithm for clustering search results capable to discover 
diverse groups of documents and at the same time keep cluster 
labels sensible. The work on Lingo must be credited to 
Stanisław Osi ´nski who worked on the algorithm under 
supervision of Jerzy Stefanowski [5] and later contributed a 
great deal of effort to the Carrot2 framework. The aim of this 
paper is to show how Lingo fits in the general scheme 
introduced by the DCF. The algorithm is an example of DCF’s 
application to the domain of search results clustering and 
several elements of its implementation are designed 
specifically to deal with this type of input data. 
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