
Volume 3, No. 2, March-April 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 262

ISSN No. 0976-5697

Web Snippet Clustering and Labeling using Lingo Algorithm
B.R.Prakash*

Research Scholar, Department of Computer Science &
Applications, Bangalore University,

 Bangalore,India
 brp.tmk@gmail.com

Hanumanthappa.M
Professor, Department of Computer Science &

 Applications, Bangalore University,
 Bangalore, India

hanu6572@hotmail.com

Abstract: A typical search engine’s response to a query is a ranked list of documents along with their partial content (snippets) Search results
clustering problem is defined as an automatic, on-line grouping of similar documents in a search hits list, returned from a search engine. In this paper
we discuss how to cluster the snippets and generate the label for them, further the results of the experimental evaluation of a Lingo algorithm using
singular value decomposition.

Keywords: Clustering; Snippets; Cluster Label; Candidates words; Pre-processing

I. INTRODUCTION

Clustering is an important operation in the exploratory
analysis of large data sets. Given a data set from some domain,
it is sometimes desirable to group data items that are similar to
each other under the same cluster and data items that are
dissimilar from each other under different clusters. As a
consequence, the subdivision of the data set into clusters
makes the latent structure of the data space explicit, and
facilitates further human or automatic analysis. Tools for
clustering the results returned by Web search engines have
recently become a focus of attention in the IR research
community. Real-time clustering technology is a key
ingredient of such systems, since the partition of the search
results into clusters must be generated on-the-fly. Clustering
search results differs significantly from other types of
document clustering. Each matching result (hit) in a list of
results returned by a search engine contains a resource locator
(URL), an optional title, and a short fragment of text called a
snippet [1][6], Two or three best matching spans are joined
and returned as a short block of text providing insight into the
original document for the user. This technique of generating
snippets is called kwic — keyword in context. Figure 1 shows
a typical snippet.

Figure 1: A typical “hit” returned by a search engine: document title on top,

snippet with query terms in the middle and an information line with the
document’s address

II. OVERVIEW OF DESCRIPTION COMES FIRST
APPROACH

The DCF changes the troublesome conventional order of a
typical clustering algorithm (cluster discovery → label

induction) in a way that splits cluster discovery and candidate
label discovery into two independent phases

a. Candidate label discovery is responsible for
collecting all phrases potentially useful as good
cluster labels.

b. Cluster discovery provides a computational data
model of document groups present in the input data.

By splitting the process into these two phases the most
difficult element so far — creating proper cluster description
from a mathematical model—is avoided and replaced by a
problem of selection of appropriate labels for each cluster
found.

The DCF approach tries to decrease this “semantic gap”
between a model of clusters and a set of selected labels by
discarding the model of clusters entirely and building final
groups of documents starting with just the selected cluster
labels. This way the actual model of clusters is used only
internally and can be suitably complex because it never
surfaces to the user interface. On the other hand the candidate
cluster label selection procedure should ensure their
comprehensibility to the user.

B.R.Prakash et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 262-265

© 2010, IJARCS All Rights Reserved 263

Figure 2: Generic elements of DCF and their counterparts in Lingo. svd
decomposition takes place inside cluster label induction phase, it is extracted

here for clarity.

III. OVERVIEW OF THE ALGORITHM

Lingo processes the input in four phases: snippets
preprocessing, frequent phrase extraction, cluster label
induction and content allocation.

A. Input Preprocessing:
In the preprocessing phase the input documents (titles and

snippets) are tokenized and split into terms. Lingo is
implemented as a component embedded in the Carrot2
framework. and uses its infrastructure to perform certain text
preprocessing tasks — stemming, marking stop words and
simple text segmentation heuristics. After tokenization is
complete, a term-document matrix is constructed out of the
terms that exceed a predefined term frequency threshold. After
that, document vectors are weighted using the tf-idf formula
[2].Terms present in document titles are additionally boosted
compared to these appearing in snippets by a predefined
constant because titles are more likely to contain sensible
(human edited) information.

a. D ←input documents (or snippets)
/* Preprocessing */

b. for all d ∈D do
c. perform text segmentation of d; /* Segmentation,

stemming. */
d. if language of d recognized then
e. apply stemming and mark stop-words in d;
f. end if
g. end for

 /* Frequent Phrase Extraction */
h. concatenate all documents;
i. Pc ← discover complete phrases;
j. Pf ←p : {p ∈Pc ∧frequency(p) > term frequency

threshold};
 /* Cluster Label Induction */

k. A← term-document matrix of terms not marked as
stop-words and with frequency higher than the Term
Frequency Threshold;

l. S,U,V ←SVD(A); /* Product of SVD decomposition
of A */

m. k ←0; /* Start with zero clusters */
n. n←rank(A);
o. repeat
p. k ←k +1;
q. q ←(°°Sk°°F /kSkF);
r. until q < Candidate Label Threshold;
s. P ← phrase matrix for Pf ;
t. for all columns of UT

k
P do

u. find the largest component mi in the column;
v. add the corresponding phrase to the Cluster Label

Candidates set;
w. labelScore←mi ;
x. end for
y. calculate cosine similarities between all pairs of

candidate labels;

z. identify groups of labels that exceed the Label
Similarity Threshold;

aa. for all groups of similar labels do
bb. select one label with the highest score; /* cluster

description */
cc. end for

 /* Cluster Content Discovery */
dd. for all L ∈ Cluster Label Candidates do
ee. create cluster C described with L;
ff. add to C all documents whose similarity to C exceeds

the Snippet Assignment Theshold;
gg. end for
hh. put all unassigned documents in the “Others” group;

/* Final Cluster Formation */
ii. for all clusters do
jj. clusterScore←labelScore×kCk;
kk. end for
ll. Sort final clusters.

Algorithm 1: Pseudo-code of the Lingo algorithm.

B. Frequent Phrase Extraction:
The aim of this step is to discover a set of cluster label

candidates — phrases (but also single terms) that can
potentially become cluster labels later. Lingo extracts frequent
phrases using a modification of an algorithm presented in the
SHOC algorithm [3]. A word-based suffix array is constructed
and extended with an auxiliary data structure — the LCP
(Longest Common Prefix). This allows the algorithm to
identify all frequent complete phrases in O(n) time, n being the
total length of all input snippets. The frequent phrase extraction
algorithm ensures that the discovered labels fulfill the
following conditions:

a. appear in the input at least a given number of times (it
is a tuning threshold);

b. not cross sentence boundaries; sentence markers
indicate a topical shift, therefore a phrase extending
beyond one sentence is unlikely to be meaningful;

c. be a complete frequent phrase (the longest possible
phrase that is still frequent); compared to partial
phrases, complete phrases should allow clearer
description of clusters

d. neither begin nor end with a stop word; stop words
that appear in the middle of a phrase should not be
discarded.

C. Cluster Label Induction:
During the cluster label induction phase, Lingo identifies

the abstract concepts (or dominant topics in the terminology
used in DCF) that best describe the input collection of snippets.
There are two steps to this: abstract concept discovery, phrase
matching and label pruning.

In abstract concept discovery, singular value decomposition
(SVD) is applied to the term document matrix A, breaking it
into three matrices: U, S and V in such a way that A = USV T .
An interesting property of SVD is that the first r columns of
matrix U, r being the rank of A, form an orthogonal basis for
the term space of the input matrix A [4]. It is commonly
believed that base vectors of the decomposed term-document
matrix represent an approximation of “topics” —collections of
terms connected with an obscure net of latent relationships.

B.R.Prakash et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 262-265

© 2010, IJARCS All Rights Reserved 264

Although this fact is difficult to prove, singular decomposition
is widely used in text processing, for example in Latent
Semantic Indexing (LSI). From Lingo’s point of view, basis
vectors (column vectors of matrix U) contain exactly what it
has set out to find — a vector representation of the abstract
concepts.

The most significant k base vectors of matrix U are
determined by selecting the Frobenius norms (measuring the
difference between two matrices) of the term-document matrix
A and its k-rank approximation AK . Let threshold q be a
percentage-expressed value that determines to what extent the
k-rank approximation should retain the original information in
matrix A. We hence define k as the minimum value that
satisfies the following condition:

||AK||F/||A||F≥q
Where the symbol ||X||F denotes the Frobenius norm of

matrix X. Clearly, the larger the value of q the more cluster
candidates will be induced. The choice of the optimal value for
this parameter ultimately depends on the preferences of users,
so we make it one of Lingo’s control thresholds — Candidate
Label Threshold.

Phrase matching and label pruning step, where group
descriptions are discovered, relies on an important observation
that both abstract concepts and frequent phrases are expressed
in the same vector space — the column space of the original
term-document matrix A. This enables us to use the cosine
distance to calculate how “close” a phrase or a single term is to
an abstract concept. Let us denote by P a matrix of size t × (p +
t), where t is the number of frequent terms and p is the number
of frequent phrases. P can be easily built by treating phrases as
pseudo-documents and using one of the term weighting
schemes. Having the P matrix and the i -th column vector of
the SVD’s U matrix, a vector mi of cosines of the angles
between the i -th abstract concept vector and the phrase vectors
can be calculated as:

mi=Ui T P.
The phrase that corresponds to the maximum component of

the mi vector should be selected as the human-readable
description of i -th abstract concept. Additionally, the value of
the cosine (similarity) becomes the score of the cluster label
candidate. A similar process for a single abstract concept can
be extended to the entire Uk matrix —a single matrix
multiplication M =UkT P yields the result for all pairs of
abstract concepts and frequent phrases. The final step of label
induction is to prune overlapping labels. Let V be a vector of
cluster label candidates and their scores. We create another
term-document matrix Z, where cluster label candidates serve
as documents. After column length normalization we calculate
ZT Z, which yields a matrix of similarities between cluster
labels. For each row we then pick columns that exceed the
Label Similarity Threshold and discard all but one cluster label
candidate with the maximum score which becomes the
description of a future cluster.

IV. CLUSTER CONTENT ALLOCATIONS

The process of cluster content allocation very much
resembles document retrieval based on plain VSM model. The
only difference is that instead of one query, the input snippets

are matched against a series of queries, each of which is a
single cluster label. Thus, if for a certain query-label, the
similarity between a document and the label exceeds a
predefined threshold, it will be allocated to the corresponding
cluster. Note that from the point of view of DCF traditional
Vector Space Model used for comparisons is not ideal — the
label’s word order and proximity is not taken into account. Let
us define matrix Q, in which each cluster label is represented as
a column vector. Let C =QT A, where A is the original term-
document matrix for input documents. This way, element Ci j
of the C matrix indicates the strength of membership of the j th
document to the i -th cluster. A document is added to a cluster
if Ci j exceeds the Snippet Assignment Threshold, yet another
control parameter of the algorithm. Documents not assigned to
any cluster end up in an artificial cluster called “Other
documents”.

V. FINAL CLUSTER FORMATION

Finally, clusters are sorted for display based on their score,
calculated using the following formula:

Cscore = label score×||C||,
Where ||C|| is the number of documents assigned to cluster

C. The scoring function, although simple, prefers well-
described and relatively large groups over smaller ones.

A. An Illustrative Example:
Let the input collection of documents contain d = 7

documents. We omit the preprocessing stage and assume t = 5
terms and p = 2 phrases are given (these appear more than once
and thus will be treated as frequent). The input is shown in
below.
The t = 5 terms
T1: Information
T2: Singular
T3: Value
T4: Computations
T5: Retrieval
The p = 2 phrases
P1: Singular Value
P2: Information Retrieval
The d = 7 documents
D1: Large Scale Singular Value Computations
D2: Software for the Sparse Singular Value Decomposition
D3: Introduction to Modern Information Retrieval
D4: Linear Algebra for Intelligent Information Retrieval
D5: Matrix Computations
D6: Singular Value Analysis of Cryptograms
D7: Automatic Information Organization

Figure 5.3: Input documents, frequent terms and phrases

We now preprocess the input term document matrix — tf-
idf weighting and normalization results in matrix Atf-idf, SVD
decomposition of that matrix yields matrix U containing
abstract concepts.

Atfidf =























0 0 0 0.83 0.83 0 0
0 0 1 0 0 0 0.72
0 0.71 0 0 0 0.71 0.49
0 0.71 0 0 0 0.71 0.49
1 0 0 0.56 0.56 0 0

B.R.Prakash et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 262-265

© 2010, IJARCS All Rights Reserved 265

 U =






















−

0 0.75 0 0.66 0
0 0 0.92 0 0.39
0.71 0 -0.28 0 0.65

0.71 0 -0.28 0 0.65
0 -0.66 0 0.75 0

Now we look for the value of k — the estimated number of

clusters. Let us define quality threshold q = 0.9. Then the
process of estimating k is as follows:

k = 0 → q = 0.62, k = 1 → q = 0.856,

k = 2 → q = 0.959
And the number of expected clusters is k = 2.

To find relevant descriptions of our clusters (k = 2 columns
of matrix U), we calculate similarity between candidate phrases
and concept vectors as matrix M =Uk T P, where P is a
synthetic term-document matrix created out of our frequent
phrases and terms (values in matrix P are again weighted using
tf-idf and normalized):

P =























1 0 0 0 0 0.83 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0.71
0 0 0 1 0 0 0.71
0 0 0 0 1 0.56 0

M =









0.66 0 0 0 0.75 0.97 0
0 0.39 0.65 0.65 0 00.92

Rows of matrix M represent clusters, columns — their

descriptions. For each row we select the column with
maximum value. The two selected labels are: Singular Value
(score: 0.92) and Information Retrieval (score: 0.97). We skip
label pruning as it is not necessary in this example. Finally,
documents are allocated to clusters by applying matrix Q,
created out of cluster labels, back to the original matrix bAtf-
idf. The final result is shown below. Note the fifth column in
matrix C, representing unassigned document D5.

Q =



















0.83 0
0 0
0 0.71

0.56 0

C = 







0.56 0 0 1 1 0 0
0 1 0 0 0 1 0.69

Information Retrieval [score: 1.0]
D3: Introduction to Modern Information Retrieval
D4: Linear Algebra for Intelligent Information Retrieval
D7: Automatic Information Organization
Singular Value [score: 0.95]
D2: Software for the Sparse Singular Value Decomposition
D6: Singular Value Analysis of Cryptograms
D1: Large Scale Singular Value Computations
Other: [unassigned]
D5: Matrix Computations

VI. CONCLUSION

The motivation for creating Lingo was to come up with an
algorithm for clustering search results capable to discover
diverse groups of documents and at the same time keep cluster
labels sensible. The work on Lingo must be credited to
Stanisław Osi ´nski who worked on the algorithm under
supervision of Jerzy Stefanowski [5] and later contributed a
great deal of effort to the Carrot2 framework. The aim of this
paper is to show how Lingo fits in the general scheme
introduced by the DCF. The algorithm is an example of DCF’s
application to the domain of search results clustering and
several elements of its implementation are designed
specifically to deal with this type of input data.

VII. REFERENCES

[1]. Stanisław Osi ´nski, Jerzy Stefanowski, and Dawid Weiss.
Lingo: Search Results Clustering Algorithm Based on Singular
Value Decomposition. In Proceedings of the International
Intelligent Information Processing and Web Mining Conference,
Zakopane, Poland, Advances in Soft Computing, pages 359–
368. Springer, 2004.

[2]. Gerard Salton. Automatic Text Processing — The
Transformation, Analysis, and Retrieval of Information by
Computer. Addison-Wesley, 1989.

[3]. Zhang Dong. Towards Web Information Clustering. PhD thesis,
Southeast University, Nanjing, China, 2002.

[4]. Gene H. Golub and Charles F. Van Loan. Matrix Computations.
The Johns Hopkins University Press, London, third edition,
1996.

[5]. Stanisław Osi ´nski and Dawid Weiss. A Concept-Driven
Algorithm for Clustering Search Results. IEEE Intelligent
Systems, 20(3):48–54, 2005.

[6]. W. Aisha Banu, Dr. P. Sheikh Abdul KaderA “Hybrid Context
based Approach for Web Information” Retrieval International
Journal of Computer Applications (0975 – 8887) Volume 10–
No.7, November 2010.

	INTRODUCTION
	OVERVIEW OF DESCRIPTION COMES FIRST APPROACH
	OVERVIEW OF THE ALGORITHM
	Input Preprocessing:
	Frequent Phrase Extraction:
	Cluster Label Induction:

	CLUSTER CONTENT ALLOCATIONS
	FINAL CLUSTER FORMATION
	An Illustrative Example:

	CONCLUSION
	REFERENCES

