
Volume 3, No. 2, March-April 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 237

ISSN No. 0976-5697

Performance Analysis of Particle Swarm Optimization Algorithms for Jobs Scheduling in
Data Warehouse

S.Krishnaveni*
Ph.D (CS) Research Scholar

Karpagam University, Coimbatore
Tamil Nadu, India

sss.veni@gmail.com

M.Hemalatha
Prof. & Head, Dept. Software Systems & Research

Karpagam University, Coimbatore
Tamil Nadu, India

ehma.bioinf@gmail.com

Abstract: The Enterprise Information System contains data warehouses frequently residing in the number of machines in at least one data center.
Many jobs run to bring data into the data warehouses. Jobs are scheduled by dependency basis. Data processing jobs in the data warehouse system
involve many resources, so it is necessary to find the best job-scheduling methodology. Particle Swarm Optimization (PSO) is used to find solutions
easily and fruitfully, so it is employed in several optimization and search problems. Improved PSO, Hybrid Improved PSO (Improved with simulated
annealing (SA)) and Hybrid PSO (three neighborhood SA algorithms are designed and combined with PSO) are used to achieve better solutions than
PSO. This paper shows the use of hybrid improved PSO to scheduling multiprocessor tasks, Hybrid PSO to minimize the makespan of job-shop
scheduling problem for each best solution that particle find. Algorithms are demonstrated by applying in benchmark job-shop scheduling problems.
The superior results indicate the successful incorporation of PSO and SA. This survey results shows the optimal scheduling algorithm to reduce
runtime and optimize usage of resources.

Keywords: HPSO, Hybrid ImPSO, ImPSO, Job Scheduling, Particle Swarm Algorithm, Simulated Annealing

I. INTRODUCTION

In Enterprise Information System, scheduling is most
important one. It’s used in various fields like production
planning, transportation, logistics, communications and
information processing. In operating system, job scheduling
is an optimization problem and the jobs are assigned to
resources at particular time which minimizes the total length
of the schedule.

Multiprocessing is the use of two or more central
processing units within a single computer system and refers
to the ability of the system to support more than one
processor and/or the ability to allocate tasks between them.
The multiprocessor scheduling problem is identified to be
Non-deterministic Polynomial (NP) complete except in
some cases [1]. Figure (1) shows the representation of job
scheduling in a multiprocessor. Here each request is a job or
process [2]. A job scheduling policy uses the information
associated with requests to decide which request should be
serviced next. Waiting requests are kept in a pending request
lists. Scheduler examines the pending requests and selects
one for servicing at the time of performance. This request is
handled over to server. A request leaves the server when it
completes or when it is preempted by the scheduler, in
which case it is put back into the list of pending requests. In
either situation, scheduler performs scheduling to select the
next request to be serviced. The scheduler records the
information concerning each job in its data structure and
maintains it all through the life of the request in the system.

Figure 1. A Schematic of Job scheduling in a multiprocessor

In a multiprocessor architecture, the job scheduling
problem is partitioning the jobs between different processors
by achieving minimum finishing and waiting times
concurrently. If ‘n’ different jobs and ‘m’ different
processors are considered, the search space is given by
 (m × n)!
Size of search space =
 (m!)n

Longest Processing Time (LPT), Shortest Processing
Time (SPT) and traditional optimization algorithms were
used for solving this type of scheduling problems [3], [1] &
[4]. When all the jobs are in ready queue and their
respective time slice is determined, LPT selects the longest
job and SPT selects the shortest job, thereby having shortest
waiting time. Thus SPT is minimizes the waiting time. The
total finishing time is defined as the total time taken for the
processor to complete its job and the waiting time is defined
as the average of time that each job waits in ready queue. In
manufacturing, makespan is defined as the time variation
between the start and finish of a series of jobs or tasks.

A new neighborhood search algorithm developed by
Wang et al., 2005[5] for the job shop problem. A dynamic

S.Krishnaveni et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 237-241

© 2010, IJARCS All Rights Reserved 238

integrated algorithm proposed by Song et al., 2010[6] for
production scheduling. Sun et al., 2010[7] proposed genetic
algorithm for the job shop problem. Most of the researches
use PSO for job shop scheduling problem, like Xia et al.,
2006 [8], Ge et al., 2005 [9] and Pan et al., 2007[10], etc.

II. OPTIMIZATION TECHNIQUES

There are several well known meta heuristics like
Genetic Algorithm, Ant colony optimization and Tabu
search has been applied to the earlier problem. In this paper,
the hybrid algorithms based on the PSO and SA are studied
and applied to the scheduling problems. The PSO as an
evolutionary algorithm, it merges coarse global search
capability and local search ability. SA as a neighborhood
search algorithm, it has strong local search ability and can
employ certain probability and can to avoid becoming
trapped in a local optimum. The Hybrid Particle Swarm
Optimization (HPSO) is a combination of three SA
algorithms and PSO. In HPSO, PSO is used to find the
particle’s each best solution and SA is used to find its best
neighbor solution. So HPSO is a viable and effective
approach for the job-shop scheduling problem.

Improved PSO (ImPSO) having better optimization
result than PSO by splitting the cognitive component of the
PSO into two different component. (i) Good experience
component - the previously visited best position similar to
the general PSO method. (ii) Bad experience component – a
particle’s previously visited worst position.

A. Particle Swarm Optimization (PSO):
In 1995, Kennedy and Eberhart introduced PSO which

had the fish or birds feeding style. PSO includes a particles’
population, each particle consists of a potential solution to
the problem and a velocity [3]. Each particle moves around
in the D dimensional space with the velocity and constantly
adjusted velocity according to the experience of its own and
its neighbors’.

a. The description of the PSO:
Xi = (xi,1, xi,2,..., xi,d) - the position of the ith particle
Vi = (νi,1, νi,2, …., νi,d) - the velocity of the ith particle
Pbesti = (pi,1, pi,2,..., pi,d) - the best position that the ith
particle found
gbest = (g1, g2,..., gd) - the best position that all the particles
found

The concept of the PSO involves to update the velocity
and position of each particle towards the best position of the
D-dimensional space according to its best Position Pbesti
and the best particle of all gbest in each iteration, the
equation is illustrates as Eqs.(1) and Eqs.(2).
vi,d(t+1)=w×vi,d(t)+c1×r1×(gbest(t)-xi,d(t))+c2×r2×
(pbesti,d(t)-x i,d(t)) (1)
xi,d (t+1) = xi, d(t) + vi,d(t+1) (2)
Here w is the inertia weight: constant in the interval [0, 1]
c1 and c2 are learning rate: non-negative constants
r1 and r2 are random variable in the interval [0, 1]
vi,d ∈ [vmax, vmax], The termination for iteration is determined
by the maximum generation or a designated value of the
fitness.

B. Improved PSO (ImPSO):
To calculate the new velocity, the bad experience of the

particle also taken into consideration [2]. On including the
characteristics of Pbest and Pworst in the velocity updating
process along with the difference between the present best
particle and current particle respectively, the convergence
towards the solution is found to be faster and an optimal
solution is reached in comparison ith conventional PSO
approaches. This infers that including the good
experience and bad experience component in the velocity
updating also reduces the time taken for convergence.

a. Algorithmic steps for ImPSO:
Step1: Select the number of particles, generations, tuning
accelerating coefficients C1g, C1b, and C2 and random
numbers r1, r2 and r3 to start the optimal solution searching
Step2: Initialize the particle position and velocity.
Step3: Select particles individual best value for each
generation.
Step4: Select the particles global best value, i.e. particle
near to the target among all the particles is obtained by
comparing all the individual best values.
Step5: Select the particles individual worst value, i.e.
particle too away from the target.
Step6: Update particle individual best (pbest), global best
(gbest), particle worst (Pworst) in the velocity equation (3)
and obtain the new velocity.
vi = w×vi+C1g×r1(Pbesti-Si)×Pbesti+C1b×r2×(Si-Pworsti)×
Pworsti+C2×r3×(Gbesti-Si) (3)
Step7: Update new velocity value and obtain the position
of the particle.
Step8: Find the optimal solution with minimum ISE by the
updated new velocity and position.

The ImPSO approach was applied to the multiprocessor
scheduling problem. The good experience component and
the bad experience component are included in the process of
velocity updating and the finishing time and waiting time
computed.

C. Simulated Annealing (SA):
In 1953, Metropolisin proposed SA algorithm. It starts

from an initial solution‘s’, engenders a new solution S’ in
the locality of the original solution S. The objective
function’s change of value is calculated by, △=f(S’)–f(s).
For a minimization problem, if △<0, the transition to the
new solution is accepted. If △>0, the transition to the new
solution is accepted with probability, usually denoted by the
function, exp (-△/T), where T is a control parameter
(temperature). SA algorithm starts from a high temperature
and then the temperature is progressively lowered. At each
state, a search is carried out for the epoch length. The
algorithm will stop, when the termination condition is
satisfied.SA can also be used to search for the optimum
solution of the problems by properly determining the initial
(high) and final (low) effective temperatures which are used
in place of kT (where k is a Boltzmann's constant) in the
acceptance checking and deciding what constitutes a Monte
Carlo step [11], [12] & [13].

S.Krishnaveni et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 237-241

© 2010, IJARCS All Rights Reserved 239

a. Structure of SA:
Design SA algorithms SA1, SA2 and SA3 by the use of

different kinds of neighborhood structures, which are named
Swap, Insert1, and Insert2, respectively. The description of
SA1 as follows (SA2 and SA3 similar with SA1).
For Pbest of particle X(i)
Step1: Initialize T0, λ and L, Tk=T0, P=Pbest
Step2: computation
while (Tk>Tend) i=1
while i<=L
Create a neighbor solution Pnew of P busing swap
neighborhood structure Calculate the fitness of Pnew
If △=f(Pnew)-f(Pbest)<0 then Pbest=Pnew
elseif(exp(-△/Tk)>random[0,1]) then P=Pnew
endif i=i+1
wend
Tk=λ×Tk wend
here parameter T0 - initial temperature, λ - decreasing rate
(value less than 1)
L - epoch length (the number of moves made at the same
temperature)
Tend - termination temperature.

The performance of SA algorithm is influenced by the
neighborhood. A large number of candidate solutions in
rich neighborhood will increase the chance of finding good
solutions; the computation time will also increase.

D. HPSO:
PSO algorithm is relevant to a given problem, so it is

problem-independent and fitness costing for each solution.
This makes PSO more robust than other search algorithms.
By the use of PSO we cannot find the required optima. SA
has strong local search ability. By designing the
neighborhood structure we can avoid individuals being
trapped in local optimum more efficiently. Thus, a hybrid of
PSO and SA is proposed and named as Hybrid PSO (HPSO)
for Job Shop Problem [14].

a. Description of HPSO:
Step 1: Initialize
a) Initialize the parameters such pop, Itermax, wmax, wmin,

c1max, c1min, c2, initialize the selection probability ρ1,ρ2
and ρ3 of three SA algorithms.

b) Initialize particles and velocities in the D-dimensional
problem space.

c) Evaluate the fitness of each particle in the population,
record the best particle as gbest of swarm and record
the local best solution Pbest respectively.

Step2: Computation
Iter = 1
while Iter < Itermax
j=1
While j≤ pop
Update the velocity and position of the particle X j
(Iter1+1) according to Eqs.(1) and (2) respectively.
Evaluation fitness of Xj (Iter+1),
If f (Xj(Iter+1) > f (pbestj) then
pbestj = Xj(Iter+1) and randomly select one of the three SA
and execute it on Pbest.

endif
If (f(pbestj)>f(gbest)), then gbest=Xj(Iter+1)
endif
j=j+1
wend
Iter = Iter+1
Step3: Determine. If the solution of gbest do not achieve the
target, the select a SA algorithm and update the parameter
and execute it on gbest of swarm,
Step4: Output the sufficiently good fitness value or a
specified number of generations.

E. Hybrid Improved PSO (Hybrid ImPSO):
The ImPSO algorithm is problem independent so they

gained results can be further improved with the SA. The
probability of getting trapped in a local minimum can be SA
and called as Hybrid Improved Particle Swarm Optimization
Hybrid ImPSO [7].

a. Steps involved in Hybrid ImPSO:
Step1: Initialize temperature T to a particular value.
Step2: Initialize the number of particles n and its value
may be generated randomly. Initialize swarm with random
positions and velocities.
Step3: Compute the finishing time for each and every
particle using the objective function and also find the
“pbest“
i.e., If current fitness of particle is better than “pbest” the set
“pbest” to current value.
If “pbest” is better than “gbest then set “gbest” to current
particle fitness value.
Step4: Select particles individual “pworst” value i.e.,
particle moving away from the solution point.
Step5: Update velocity and position of particle as per
equation (3).
Step6: If best particle is not changed over a period of time,
find a new particle using temperature.
Step7: Accept the new particle as best with probability as
exp-(ΔE/T). ΔE is the difference between current best
particles fitness and fitness of the new particle.
Step8: Reduce the temperature T.
Step 9: Terminate the process if maximum number of
iterations reached or optimal value is obtained, else go to
step 3.

III. RESULTS AND DISCUSSION

The instances designed by Lawrence (1984) are taken
form web ftp://mscmga.ms.ic.ac.uk/pub/jobsgop1.txt.
Results are compared with some existing literature works
[15], [16] and [17]. The 1.86 GHz Pentium 4 desktop
computer with 512 MB RAM was used to do this work.

Table (1) summarizes the results of the instances. Table
shows that HPSO can yields best solution and solves the job
scheduling problems efficiently. The contents in the table
are the name of each instance, the scale of the instance (Size
(n × m) (number of jobs ’n’, number of machines ‘m’)), the
value of the best known solution for each instance (C*), the
value of the best solution found by using HPSO, the best
results in other research works are Tabu Search algorithm

S.Krishnaveni et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 237-241

© 2010, IJARCS All Rights Reserved 240

(TSA), An effective PSO and AIS-based Hybrid Intelligent
algorithm (HIA) and Filter-and-Fan (F&F) approach.

Table 1. Benchmark Instances’ Results
Inst
ance

Size
(n,m) C* HPSO TSA HIA F&F

LA1 10,10 945 946 945 945 945
LA2 10,10 845 848 845 845 850
LA3 20,10 1216 1225 1216 1216 1225
LA4 20,10 1152 1168 1160 1168 1170
LA5 15,15 1268 1279 1268 1268 1276
LA6 15,15 1397 1423 1407 1411 1418
LA7 15,15 1222 1236 1229 1233 1228

Figure (2) shows the comparison chart of instances with

the values of the best solutions for the various algorithms.
This chart concludes that, HPSO can yields best solution
and solves the job scheduling problems efficiently, because
of the combination of SA which is used to increase the local
search ability and speedup the convergence rate of PSO.

Figure 2. Chart for Instances’ Best Solutions

The PSO, ImPSO and Hybrid ImPSO algorithms were
applied to the same set of processors with the assigned
number of jobs, as done in case of genetic algorithm (GA).
The number of particles are100, number of generations are
250, the values of c1=c2=1.5 and ω=0.5. Hybrid ImPSO
algorithm is applied to the multiprocessor scheduling
algorithm and the temperature T as 5000. The Intel Pentium
2 core processors with 1GB RAM were used to do this
work.

Table (2) shows the completed finishing time of the
relevant number of processors and jobs exploiting PSO,
ImPSO and Hybrid ImPSO. The ImPSO has been reduced in
association with GA and PSO, because of bad experience
and good experience component in the velocity updating
process. In case of Hybrid ImPSO, there is a severe decline
in the finishing time, because combining the effects of the
SA and ImPSO; finally better solutions have been achieved.

Table 2. Finishing Time for Job Scheduling

Figure (3) shows the difference in finishing time for the

assigned number of jobs and processors using PSO, ImPSO
and Hybrid ImPSO. It is observed, that the Hybrid ImPSO

had variation in finishing time for the assigned number of
jobs and processors.

Figure 3. Finishing time for jobs in multiprocessor

Table (3) shows the completed waiting time of the
appropriate number of processors and jobs exploiting with
PSO, ImPSO and Hybrid ImPSO. The Hybrid ImPSO is a
drastic reduction in the waiting time while compared with
PSO and ImPSO. Finally better solutions have been
achieved in Hybrid ImPSO.

Table 3. Waiting Time for Job Scheduling

Processors 2 3 3 4 5

No.of jobs 20 20 40 30 45

PSO 30.1 45.92 42.1 30.7 34.91

Imp PSO 29.12 45 41 29.7 33.65

Hybrid Imp PSO 25.61 40.91 38.45 26.5 30.12

Figure (4) shows the variation in waiting time for the

allocated number of jobs and processors using PSO, ImPSO
and Hybrid ImPSO. It is concluded that the Hybrid ImPSO
had discrepancy in waiting time for the assigned number of
jobs and processors.

Figure 4. Waiting time for jobs in multiprocessor

IV. CONCLUSION & FUTURE WORK

This paper deals with the PSO, HPSO, ImPSO and
Hybrid ImPSO algorithms which are useful to solve the job
shop scheduling problems and reduces the finishing and
waiting time of the multiprocessors. In HPSO algorithm,
PSO may fail to locate optima, then SA employs certain
prospects, but the serial execution made is less competent.
So PSO and SA were combined and the approach yields
good solution than other algorithms. The greater results
specify the merging of PSO and SA. ImPSO algorithm is
used for finding good and bad experience component in the
velocity renews and shrink the time taken for convergence.
In multiprocessor job shop scheduling, Hybrid ImPSO is
applied to partition the tasks in the processors by conquering

Processors 2 3 3 4 5

No.of jobs 20 20 40 30 45

PSO 60.52 56.49 70 72.2 70.09

Imp PSO 57.34 54.01 69 71 69.04

Hybrid Imp PSO 54.23 50.62 65.4 66.3 66.43

S.Krishnaveni et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 237-241

© 2010, IJARCS All Rights Reserved 241

minimum finishing, waiting time and quick processing time.
Finally, Hybrid ImPSO algorithm has attained better results.

Depending upon literature survey, no one worked with
optimal scheduling algorithms in distributed data
warehouse. Future work can be done for new optimal
scheduling algorithm that will give fruitful result to reduce
the number of executors and runtime in distributed data
warehouse.

V. ACKNOWLEDGEMENT

I thank the Karpagam University and my guide
Dr.M.Hemalatha for the Motivation and Encouragement to
make this research work as successful one.

VI. REFERENCES

[1] Gur Mosheiov and Uri Yovel, “Comments on Flow-Shop
and Open-Shop Scheduling with a Critical Machine and
Two Operations Per Job,” European Journal of Operational
Research (Elsevier), 2004.

[2] K. Thanushkodi and K.Deeba, “A Comparative Study of
Proposed Improved PSO Algorithm with Proposed Hybrid
Algorithm for Multiprocessor Job Scheduling,”
International Journal of Computer Science and Information
Security, vol. 9(6), 2011, pp. 221-228.

[3] Ali Allahverdi, C.T. Ng, T.C.E. Cheng, Y. Mikhail and Y.
Kovalyov, “Survey of Scheduling Problems with Setup
Times or Costs,” European Journal of Operational
Research (Elsevier), 2006.

[4] Gur Mosheiov and Daniel Oron, “Open-Shop Batch
Scheduling with Identical Jobs,” European Journal of
Operations Research (Elsevier), 2006.

[5] Lei Wang and Wenqi Huang, “A New Neighborhood
Search Algorithm for Job-Shop Scheduling Problem,”
Computer Journal, vol. 28(5), 2005, pp. 809-815.

[6] Song Cunli, Liu Xiaobing, Wang Wei and Huang Ming,
“Dynamic Integrated Algorithm for Production Scheduling
Based on Iterative Search,” Journal of Convergence
Information Technology, vol. 5(10), 2010, pp. 159-166.

[7] Sun Liang, Cheng Xiaochun and Liang Yanchun,”Solving
Job-Shop Scheduling Problem using Genetic Algorithm
with Penalty Functions,” Journal of Next Generation
Information Technology, vol. 1(1), 2010, pp. 65-77.

[8] Xia Wenjun and Wu Zhiming, “A Hybrid Particle Swarm
Optimization Approach for the Job-Shop Scheduling
Problem,” Internal Journal Advanced Manufacture
Technology, vol. 29(1), 2006, pp. 360-366.

[9] Ge Hongwei and Liang Yanchun, “A Particle Swarm
Optimization-Based Algorithm for Job-Shop Scheduling
Problem,” Journal of Computational Method, vol. 2(1),
2005, pp. 419-430.

[10] Quanke Pan, Wang Hongwen, Zhu Jianying and Zhao
Baohua, “A Hybrid Scheduling Algorithm Based on
Particle Swarm Optimization and Variable Neighborhood

Search,” Chinese journal of Computer Integrated
Manufacturing System, vol. 13(1), 2007, pp. 323-328.

[11] W. Bozejko, J. Pempera and C. Smuntnicki, “Parallel
Simulated Annealing for the Job-Shop Scheduling
Problem, Lecture notes in Computer Science,” Proceedings
of 9th International Conference on Computational Science,
vol. 5544, 2009, pp. 631-640.

[12] H.W. Ge, W. Du and F. Qian, “A Hybrid Algorithm Based
on Particle Swarm Optimization and Simulated Annealing
for Job-Shop Scheduling,” Proceedings of 3rd International
Conference on Natural Computation, vol. 3, 2007, pp. 715–
719.

[13] Weijun Xia and Zhiming Wu, “An Effective Hybrid
Optimization Approach for Multi-Objective Flexible Job-
Shop Scheduling Problems,” Journal of Computers &
Industrial Engineering, vol. 48(2), 2005, pp. 409-425.

[14] Song Cunli, Liu Xiaobing, Wang Wei, Bai Xin, A Hybrid
Particle Swarm Optimization Algorithm for Job-Shop
Scheduling Problem, International Journal of
Advancements in Computing Technology, 3(4), 2011, 79-
88.

[15] Pezzella Ferdinando and Merelli Emanuela, “A Tabu
Search Method Guided by Shifting Bottleneck for Job-
Shop Scheduling Problem,” European Journal of
Operational Research, vol. 120(2), 2000, pp. 297-310.

[16] Ge Hongwei, Sun Liang, Liang Yanchun and Qian Feng,
“An Effective PSO and AIS Based Hybrid Intelligent
Algorithm for Job-Shop Scheduling,” IEEE Transactions
on systems, Man, and Cybernetics-Part A: Systems and
Humans, vol. 38(2), 2008, pp. 358-368.

[17] Rego César and Duarte Renato, “A Filter-and-Fan
Approach to the Job-Shop Scheduling Problem,” European
Journal of Operational Research, vol. 194(3), 2009, pp.
650-662.

Short Bio Data for the Author

S.Krishnaveni completed MCA, M.Phil., and currently
pursuing Ph.D. in computer science at Karpagam University
under the guidance of Dr.M.Hemalatha, Head, Dept. of
Software System and Research, Karpagam University,
Coimbatore. Published four papers in International Journals
and also presented one paper in International Conference.
Area of Research is Data Mining and Data Warehousing.

Dr.M.Hemalatha completed MCA M.Phil., Ph.D. in
Computer Science and currently working as a Professor and
Head, Dept. Software Systems and Research in Karpagam
University. Twelve years of experience in teaching and
published ninety papers in International Journals and also
presented eighty one papers in various National and
International Conferences. Area of research is Data Mining,
Software Engineering, Bioinformatics, and Neural Network.
She is a Reviewer in several National and International
Journals.

