
Volume 3, No. 2, March-April 2012

International Journal of Advanced Research in Computer Science

REVIEW ARTICLE

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 73

ISSN No. 0976-5697

A Comparison With Five Java Sorting Algorithms for Ubuntu and Seven 32 Bits
Operating Systems

Gualter, Ana*
Saint Joseph University

Rua de Londres 16, NAPE - Macau, China
ana.gualter@usj.edu.mo

Negreiros, João
Saint Joseph University

Rua de Londres 16, NAPE - Macau, China
joao.garrot@usj.edu.mo

Abstract: The aim of an algorithm is to resolve a specific problem based on a predefined set of individuals steps. In this article, we intend to use five
sorting algorithms (Merge, Insertion, Bubble, Quick and Heap) as a tool for performance comparison between two 32 bits operating systems
(Ubuntu® Linux and Windows® 7 Ultimate) and, implicitly, their Java compilers (BlueJ® environment). Analogous, we introduce the state-of-the-art
on logarithmic complexity, present Java sort algorithms for both operating systems (OS) and display our results experiments.

Keywords: Linux Ubuntu®, Windows® 7, Benchmark, Java Sorting Algorithms.

I. ALGORITHMIC COMPLEXITY:
INTRODUCTION

Algorithms are part of our daily life and reflected, for
instance, in management operations research, Web access or
optimization problems. Generally, an algorithm is viewed as a
sequence of executable actions to obtain a solution for a given
problem. In measuring the performance of an algorithm, it is
common to define a cost function of complexity, f(t,s,n), where
t and s represent the time and RAM memory space required to
perform a sequence of steps for solving a problem of
dimension n (the number of input values). Thus, it is necessary
to distinguish three scenarios to measure performance [2]: (A)
Best case – It corresponds to the shorter execution time over all
possible size input of n; (B) Worst case – It corresponds to the
longer execution time run; (C) Mean case – It is the time
average of all inputs of size n. Of course, the algorithm
response time can be quite diverse and, therefore, the analysis
of the probability distribution behavior over the whole input
becomes difficult to estimate [4].

For a small value of n, any algorithm presents a small cost
to run, even for inefficient ones. Yet, the algorithm choice is
crucial for a large data input, the O(n) asymptotic analysis.
Regardless of the paradigm closely associated with algorithms
(induction, recursion, trial and error, divide and conquer,
balancing, dynamic programming, greedy algorithms and
approximate), the O(n) complexity function can be classified in
distinctive classes according to its complexity [3]:
a. Constant f(n)=O(1): The time resolution of the algorithm

is independent of the input amount.
b. Logarithmic f(n)=O(log(n)): The algorithm execution time

varies relatively small with a significant increase of the
records number entry.

c. Linear f(n)=O(n): The response time depends directly on
the amount of data.

d. Linear logarithmic f(n)=O(n×log(n)): The problem
solution is linearly complex but more sharply as the input
grows on.

e. Quadratic f(n)=O(n2): Whenever data input duplicates, the

time factor quadruples.
f. Cubic f(n)=O(n3): Whenever the amount of input doubles,

the total running time is multiplied by 8.
g. Exponential f(n)=O(2n): When the input doubles, the

overall running time is squared.
h. Factorial f(n)=O(n!): The worst of the problems to solve

because it requires a virtually infinite time to obtain the
optimal solution.

Imagine such a problem with an input of n=50. The
response time would be 3.0414E64 time units in a factorial
context. [1] presents the following table showing the growth
rate of complexity functions for different sizes of input.

Table I. The running time varies between milliseconds and hundreds of
centuries.

Cost function of
input size n

10 30

n 0.00001s 0.00003s
n2 0.0001s 0.0009s
n3 0.64s 0.008s
n5 0.1s 24.3s
2n 1s 17.9 min

Another interesting appraisal hosted by [4] is the effect
caused by an increased speed capacity of computers on the
resolution of algorithms. For an increased complexity of 1000
times, for instance, the speed of computing should be increased
by 10 times faster in the presence of an algorithm of
complexity O(2n).

Table II. Influence of increased computing time speed to solve problems
belonging to different three classes.

Function of Time
Cost

Actual Time 100 Times Fast Computer

N t1 t1/100
n2 t2 t2/10
n3 t3 t3/4.6
Function of Time
Cost

Actual Time 100 Times Fast Computer

N t1 t1/100

Gualter, Ana et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 73-77

© 2010, IJARCS All Rights Reserved 74

Quite often, users inquire the classic “which sort algorithm
is best?” question. As the results will show, it is not a
straightforward answer. The speed of sorting depends heavily
on the Windows operating system (OS) is used, computer
language, the types of data are sorted and the distribution of
them. Under this writing, Windows 7 and Ubuntu (both 32 bits
OSs), Java code and integer values presented in a descending
way (according to several vectors size) were the chosen
environment, respectively. Sorting linked lists or string data
accessed from the hard disk will display different results, for
instance. In spite of this present narrow scope of conditions, the
authors believe that it is possible to find trends and
testify/refute other studies originated by the same question.
This key issue happens because all flights, banks accounts or
shopping huge databases, for instance, need to address this
algorithm approach in order to get faster answers from the
system, particular on a Web context.

Besides the present introduction, this paper addresses the
basic theory and Java code of five sorting algorithms in section
two whilst section three focus on the analysis comparison
among them. As expected, the last section draws the main
conclusion.

II. SORTING ALGORITHMS

Theoretically, the sorting methods are classified into two
groups: (A) Internal (if the file structure to be sorted resides in
RAM); (B) External (if the file is stored on disk, DVD or
magnetic tape). The algorithms considered here focus on the
first group, only. Meanwhile, the next five sub-sections
summarize the five sorting methods and its Java code to serve
as a testing tool.

A. Heap:
This algorithm works with a complete binary tree (each

node has only two children) and coping with the following
three specific order properties: (A) All descendant nodes of a
given node N are less or equal than the content of N; (B) All
ancestors of N are greater or equal than the contents of N; (C)
Consequently, all nodes are smaller than the root of the binary
tree. An appealing feature of this methodology relies in its
vector representation: the children of node i are located in
position (2i) and (2i+1) whilst the father of the same node i is
at position ((int) i/2).

Table III. Main Java code of Heap sort by Mohr
(www.augustana.ab.ca/~jmohr/courses

/2004.winter/csc310/source/HeapSort.java.htm).

public class HeapSort{
 public HeapSort(int[] anArray){
 a=anArray;}
 public void sort(){
 sort(a.length-1);}
 public void sort(int end){
 for (int i=end/2;i>=0;i--)
 fixHeap(i,end,a[i]);
 for (int i=end;i>0;i--){
 swap(0,i);
 fixHeap(0,i-1,a[0]);}
 }
 private void fixHeap(int root,int end, int key){
 int child=2root;
 if (child<end && a[child]<a[child+1])

 child++;
 if (child<=end && key<a[child]){
 a[root]=a[child];
 fixHeap(child,end,key);
 }
 else
 a[root]=key;
 }
 private void swap(int i, int j){
 int temp=a[i];
 a[i]=a[j];
 a[j]=temp;
 }
 private int[] a;}

B. Insertion:
This methodology involves a sequential vector element-by-

element scanning, moving it and placing it in any position
whenever need it. Every insertion removes an element from the
input data, inserting it into the correct position in the already
sorted list, until no input elements remain. As expected, the
choice of which element to remove from the input is arbitrary.

Table IV. Main Java code of Insertion sort
(faculty.kfupm.edu.sa/ics/lahouari/Teaching/Sorting-1.ppt)

public class InsertionSort {
 public InsertionSort(int[] anArray){
 a=anArray;}
 public void sort(){
 for (int i=1;i<a.length;i++){
 int next=a[i];
 int j=i;
 while (j>0 && a[j-1]>next){
 a[j]=a[j-1];
 j--; }
 a[j] = next;
 for (int i=1;i<a.length;i++){
 int j;
 int next=a[i];
 for (j=i-1; (j>=0) && (a[j]<next);j--){
 a[j+1]=a[j];}
 a[j+1]=next;}
 }
 private int[] a;}

C. Bubble:
Also known as the sinking sort, it is a plain algorithm that

works by repeatedly stepping through the list to be sorted,
comparing each pair of adjacent items and swapping them if
they are in the wrong order. This heavy overstep through the
whole list is repeated until no swaps are needed, which
suggests that the list is already sorted.

Table V. Main Java code of Bubble sort
(mathbits.com/mathbits/Java/arrays/Bubble.htm).

public class BubbleSort{
 public BubbleSort(int[] anArray){
 a=anArray; }
 public void sort() {
 int i,j,t=0;
 for(i=0;i<a.length;i++){
 for(j=1;<(a.length-i); j++){
 if(a[j-1]>a[j]){
 t=a[j-1];
 a[j-1]=a[j];
 a[j]=t;}
 }
 for(i=1;i<a.length;i++) {
 for(j=0;j<(a.length-i);j++){
 if(a[j]<a[j+1]){

Gualter, Ana et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 73-77

© 2010, IJARCS All Rights Reserved 75

 t=a[j];
 a[j]=a[j+1];
 a[j+1]=t;}
 }
 }
 }
 private int[] a;
}

D. Quick:
Given a vector of elements, T[n], this algorithm choose

arbitrarily a pivot x such that all elements smaller than x are on
the left side of the vector while the remaining ones are on the
right side. Typically, this pivot is usually the median or the
average number of elements in order to achieve a balanced
performance. In computer terms, this process goes through the
following operations: (A) Walking the vector T from the left
until T[i]>=x; (B) Walking the vector from the right until
T[j]<=x; (C) Replace T[i] with T[j]; (D) Continue this process
until i and j indices intersect.

Once again, the vector T[Left…Right] is divided such that:
(A) The values T[Left], T[Left+1],...,T[j] are less than or equal
x; (B) The values T[i], T[i+1],...,T[Right] is greater than or
equal to x (with i=j+1). By using the divide and conquer
strategy, the available vector, T[n]=T[Left…Right], will be
split in two ones such that T[n]=T[Left...Right]=T[Left…j]
+T[i…Right]. When the cardinality of the domain [Left...j] is
zero or one, then the first condition is accomplished. Similarly,
when T[i...Right] becomes zero or one, the second condition is
verified, meaning that this branch of the vector has been sorted.

Table VI. Main Java code of Quick sort by Cay Horstmann.

public class QuickSort {
 public QuickSort(int[] anArray) {
 a = anArray; }
 public void sort() {
 sort(0, a.length - 1);}
 public void sort(int low, int high){
 if (low >= high) return;
 int p = partition(low, high);
 sort(low, p);
 sort(p + 1, high); }
 private int partition(int low, int high) {
 int pivot = a[low];
 int middle = (low + high) / 2;
 int pivot = a[middle];
 int i = low- 1;
 int j = high + 1;
 while (i < j) {
 i++; while (a[i] > pivot) i++;
 j--; while (a[j] < pivot) j--;
 if (i < j) swap(i, j); }
 return j;
 }
 private void swap(int i, int j){
 int temp = a[i];
 a[i] = a[j];
 a[j] = temp;
 }
 private int [] a;
}

E. Merge:
Conceptually, the merge sort works as follows: If the

present list is of length 0 or 1, then it is already sorted.
Otherwise, divide the unsorted list into two sub-lists of about
half of its size and sort each sub-list recursively by re-applying

the merge sort. At last, merge the two sub-lists back into one
sorted vector.

Table VII. Main Java code of Merge sort
(faculty.kfupm.edu.sa/ics/lahouari/Teaching/Sorting-2.ppt).

public class MergeSort {
 public MergeSort(int[] anArray) {
 a= anArray;}
 public void sort() {
 if (a.length<=1) return;
 int[] first=new int[a.length / 2];
 int[] second=new int[a.length-first.length];
 System.arraycopy(a, 0, first, 0, first.length);
 System.arraycopy(a, first.length, second, 0,
 second.length);
 MergeSort firstSorter = new MergeSort(first);
 MergeSort secondSorter = new MergeSort(second);
 firstSorter.sort();
 secondSorter.sort();
 merge(first, second);
 }
private void merge(int[] first, int[] second){
 int iFirst=0;
 int iSecond=0;
 int j=0;
 while (iFirst<first.length && iSecond <second.length) {
 if (first[iFirst]>second[iSecond]){
 a[j]=first[iFirst];
 iFirst++;}
 else {
 a[j]=second[iSecond];
 iSecond++;}
 j++;}
 System.arraycopy(first, iFirst, a, j, first.length- iFirst);
 System.arraycopy(second, iSecond, a, j, second.length - iSecond);}
private int[] a;
}

III. COMPARATIVE ANALYSIS

The present procedure will consider the response time of
the sort methodology in question as the critical factor. As the
records number to sort within the vector plays a major
component in this benchmark, theoretically, the relevant
complexity measured by the different schemes are the number
of comparisons between keys, C(n), and the number of
movements of items within the vector, M(n). Clearly, the
economic use of RAM memory is also a primary requirement
regarding internal ordering.

This section expects to compare the previous five sorting
methods with different dimensions vectors (from ten thousand
to twenty million elements) and according to two OS:
Windows® 7 Ultimate (released in 2009) and Ubuntu® 11
Linux (a Debian version and released in 2011). It is considered
that both OS have the minimum internal services for being
operational. The hardware computer (2.3GHz AMD® Athlon
64 X2 Dual Core Processor BE-2400, 2GB DDR2 PC2-5300
667 MHz, 500GB SATA drive and NVIDIA® GeForce 6150SE
graphic card) for this benchmark is identical. The same
situation happens with the Java code of the five algorithms
(presented in section two) and generated by BlueJ®. No Java
threads were used, as well. To facilitate this analysis, all
vectors were order in a descending way. The aim is an
ascending sort.

Gualter, Ana et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 73-77

© 2010, IJARCS All Rights Reserved 76

Table VIII. Elapsed consuming time of each sort method per OS
and array size in a tabular context.

 Windows 7 Linux Ubuntu

Merge Sort

Array Size(n) Elapsed Time
(milliseconds)

Elapsed Time
(milliseconds)

10000 0 63

100000 46 115

1000000 390 370

10000000 3806 3492

20000000 49687 6779

Insertion Sort

Array Size(n) Elapsed Time
(milliseconds)

Elapsed Time
(milliseconds)

10000 125 77

100000 14133 7047

1000000 1970165 1220783

10000000 213086732 181750608

20000000 - -

Bubble Sort

Array Size(n) Elapsed Time
(milliseconds)

Elapsed Time
(milliseconds)

10000 281 219

100000 33977 24143

1000000 3682330 2705360

10000000 357617355 276336651

20000000 - -

Quick Sort

Array Size(n) Elapsed Time
(milliseconds)

Elapsed Time
(milliseconds)

10000 0 35

100000 15 46

1000000 93 170

10000000 874 876

20000000 1809 1748

Heap Sort

Array Size(n) Elapsed Time
(milliseconds)

Elapsed Time
(milliseconds)

10000 0 36

100000 31 59

1000000 281 347

10000000 3369 3765

20000000 7036 7870

Some comments can be drawn by table eight and nine:
a. The time sorting resolution is lower for the Ubuntu®

environment when Insertion and Bubble is applied (the
speed ratio between Windows® and Linux® varies between
0.5 and 0.8). However, Windows® 7 performs best with

Merge, Quick (the speed ratio decreases from 1.9 to 1.1)
and Heap, particularly with low vector sizes.

b. With Insertion and Bubble methods, the response time
difference between Ubuntu® and Seven® increases directly
with the amount of input considered. With Merge and
Heap, this pattern can also be found for Seven®.

c. Inexplicably, Quick reveals a strange behavior, that is,
until ten million records, Windows® presents lower sorting
times but when the number of records doubles to twenty
million, Linux® beats Windows® clearly, (the speed ratio
decreases from 3 to 0.96). This outlier situation can also be
verified with Merge sort (the same speed ratio decreases
from 2.5 to 0.13).

d. By exploring the next ten images of table nine, there is a
general drift for a positive linear response time for all
algorithms. Yet, this response time grows exponentially
when the input size vector increases from 10 million to 20
million.

e. Whether the OS considered, Quick and Bubble are the
fastest and slowest sort algorithm, respectively.

Table IX. Elapsed consuming time of each sort method per OS and the
lowest array size (in order to highlight the differences due to the global scale

is quite wide) in a graphical context.

Merge Sort

Insertion Sort

Bubble Sort

Heap Sort

Gualter, Ana et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 73-77

© 2010, IJARCS All Rights Reserved 77

Quick Sort

IV. CONCLUSION

With this practical assessment on the performance of
sorting algorithms but closely dependent on the OS and its Java
compiler, this article does not aim to address which OS
performs best. Although they are direct competitors, both OS
have their own history and context. This evaluation is just

another benchmark analysis to be added to other tests already
performed by other companies and individuals. Whatever it is
the case, the present authors guarantee the impartiality and the
honesty factors of the present outcomes. Fundamentally, this
research clearly suggests that the same Java code becomes
faster both on Linux and on Windows with different sort
methods. Concerning the reason of this dual behavior is a
question that remains open to experts from other subjects such
as compilers or operating systems. Collaterally, with the array
size of 20 million cells, Bubble and Insertion did not achieve
the initial ascending sort goal in a reasonable response time.

V. ACKNOWLEDGMENT

The present authors would like to offer our sincerest
gratitude to FDCT (The Science and Technology Development
Fund) of Macao, China, for supporting this research through
the project number 060/2010/A.

VI. REFERENCES

[1] Garey, M, Johnson, D (1979). Computers and Intractability A
Guide to the Theory of NP-Completeness. Freeman Press.

[2] Ling, L (2006). Data complexity in machine learning and novel
classification algorithms. PhD Thesis, California Institute of
Technology. CaltechETD etd-04122006-114210.

[3] Mohan, C (2008). Design and Analysis of Algorithms. ISBN
978-81-203-3517-2, Prentice Hall.

[4] Ziviani, N (2004). Design of Algorithms. 2nd edition, Pioneer
Thomson Learning.

	ALGORITHMIC COMPLEXITY: INTRODUCTION
	SORTING ALGORITHMS
	Heap:
	Insertion:
	Bubble:
	Quick:
	Merge:

	COMPARATIVE ANALYSIS
	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

