
Volume 3, No. 2, March-April 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 207

ISSN No. 0976-5697

Maintainability Measurement in Object Oriented Paradigm

Yajnaseni Dash*
Department of Computer Science & Engineering,

 Amity School of Engineering & Technology,
Amity University, Sec-125, Noida, U.P., 201301, India

yajnasenidash@gmail.com

Sanjay Kumar Dubey
Department of Computer Science & Engineering,

Amity School of Engineering & Technology,
Amity University, Sec-125, Noida,U.P., 201301, India

skdubey1@amity.edu

Ajay Rana
Department of Computer Science & Engineering, Amity

School of Engineering & Technology,
Amity University, Sec-125, Noida, U.P., 201301, India

ajay_rana@amity.edu

Abstract: Software quality is an integral aspect of development scheme that determines the degree to which the software in use will meet the
expectations of the customer. Maintainability has obtained its significance as an attribute of software quality. However in spite of the importance,
there are no definite criteria to measure it. Hence great research interest is required for developing and applying sophisticated techniques to estimate
software maintenance effort. As the object-oriented systems use a large number of small methods, a unique maintenance problem is associated with
it. The relationship between OO metrics and software maintenance effort is complex and non linear. This paper surveys the different studies
regarding software maintainability on object-oriented paradigm which provide further assistance in succeeding researches.

Keywords: maintainability; maintenance; object-oriented; measurement; metrics; software quality

I. INTRODUCTION

Generally it is very difficult to accomplish a good software
design because of its error prone nature. The presence of
defects in software compromises its quality. According to
McCall’s [1] there are 11 quality attributes and among which
maintainability has its own significance. However,
maintainability is the most costly activity in the whole
lifecycle of software development and much effort is needed
to complete this phase. Design errors during development
have a negative impact on maintainability. Hence
identification of these blemishes and solving these issues is an
essential concern for enhancing the software quality.

Object-oriented (OO) systems are also associated with
bugs. So production of good software by large scale legacy
system written in OO language is a cumbersome process.
Although the syntaxes and the concepts of this language are
known, these legacy systems are monolithic, not flexible and
difficult to maintain. Either perfect OO system follows the
rules and design heuristics or requires proper quantification
for controlling the quality. De Marco [2] justified that good
design rules cannot be expressed in a quantifiable manner.
Assessing maintainability accurately not only helps the
developer to improve the design and coding but also increases
the performances of the system by reducing the complexity.
Hence estimating maintainability with novel techniques leads
to enhancement of quality of software system.

II. SOFTWARE MAINTENANCE

A. Maintenance:
Maintenance is the act of keeping an entity in an accessible

state of repair or validating it to protect from failures.
Maintenance process is needed to modify the software product
after the delivery procedure for rectification of the existing
faults, enhancement of the system performance and adaption
of the software to the newer environment. Boehm [3]
suggested three steps of maintenance process (Fig. 1).

Figure 1: Steps of Maintenance

Step 2

Implement
The change

Step 3

Validate The
Modified
System

Step 1

Understand
Existing
System

Software

Maintenance

Yajnaseni Dash et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 207-213

© 2010, IJARCS All Rights Reserved 208

B. Maintenance Types:
Most researchers categorize maintenance as adaptive,

corrective, perfective and preventive [4-5].

a. Adaptive Maintenance:
The necessity of using this environment-driven

maintenance occurs if there are alterations in hardware,
operating systems, files, or compilers which has impact on the
system.

b. Corrective Maintenance:
This error-driven activity is similar to the debugging

process and takes place after the system is placed in operation.
During the complete life cycle of a system corrective
maintenance is required as software programs are error prone
in nature. requirements. The bulk of maintenance behaviors
are of this kind.

c. Preventative Maintenance:
It is used to make the software more maintainable by

updating the documents. The changes made to modify the
software product after delivery for detection and correction of
latent faults.

According to the recent studies 90% of the maintenance is
carried out in either corrective or perfective ways whereas
corrective alone corresponds to 70% of all modifications [6].
Thus corrective maintenance is also called as ‘traditional
maintenance’ and the other forms are referred as ‘software
evolution’.

III. MAINTAINABILITY

Maintainability is the ease with which the process of
maintenance is carried out. It has previously been described in
two ways, either informally or as a function of directly
measurable attributes. There are many text descriptions
available, which are in essence very similar.

According to the IEEE standard glossary of software
engineering terminology, maintainability is defined as “the
ease with which a software system or component can be
modified to correct faults, improve performance or other
attributes, or adapt to a changed environment” [7].

The other way of defining maintainability is “the capability
of the software product to be modified”. Modifications may
include corrections, improvements or adoptions of the
software to changes in environment, and in requirements and
functional specifications [8].

A. Maintainability Measurement:
Regardless of the immanency of any exertion for

measuring maintainability, immense effort has been exercised
to construct formulas for depicting maintainability.

Maintainability can be described as a function of instantly
computable attributes from A1 to An, such as, M = f (A1, A2,
…, An). Informally this approach is somewhat interesting, as
it is instinctive that a maintainable system must be simple and
reliable. Conversely, there may be complications to measure
the attributes, to weigh them opposing to each other and to
merge them in a function f. However such an aspiration is
relatively inadequate to certain contexts namely kind of
system, category of project, programming language, the skill
and knowledge of people concerned for drawing conclusions.
According to IEEE-1219 [9] explicit measures of software
maintenance are analyzability, changeability, stability and
testability.

B. Usage of Software Metrics in Measuring
Maintainability:

The need of measurement arises not only to reduce cost,
effort and schedule but also to amplify the system
performance. Certain measures of the maintainability of
software can be obtained by the use of available commercial
tools. However maintainability can be measured by using
software metrics. Software metrics is defined as, “The
continuous application of measurement-based techniques to
the software development process and its products to supply
meaningful and timely management information, together with
the use of those techniques to improve that process and its
products” [10].

Many researchers have tried to enumerate maintainability
by using different types of measures. Chidamber & Kemerer
(C&K) [11-13] also explored some of the OO design metrics
for computing maintainability effort. These metrics includes
WMC, DIT, NOC, CBO, RFC and LCOM. ‘Syntactic
complexity family of metrics’ statically analyzes source code
to measure maintenance effort and constitutes Mccabe’s
cyclomatic complexity (CC) [14] and Halstead Volume (HV)
metric [15]. HV in turn is a combined metric based on the
distinct number of operators and operands in source code.
Effort metrics is commonly used to estimate the maintenance
effort by calculating the Mean Time To Change (MTTC) [16].

Among all measurement methods, probably the most
appreciable is the Maintainability Index (MI) [17-18]. They
have proposed to objectively determine the maintainability of
software systems based on the status of the corresponding
source code. MI is a composite number, based on several
different metrics for a software system, such as the HV metric,
the CC metric, the average number of lines of code per
module (LOC), and optionally the percentage of comment
lines per module (COM). Software maturity index is based on
measuring the stability of the product [19]. The metrics used
to measure maintainability are described in Table 1.

Yajnaseni Dash et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 207-213

© 2010, IJARCS All Rights Reserved 209

Table 1: Measuring metrics

Measuring Metrics Author Year Reference Description Drawbacks

Mccabe’s cyclomatic
complexity number

Mccabe 1976 [14] Graphically measure the number of
independent paths in a program.
V(G) = E – N + 2P

It is impossible to specify the total paths.
Higher cyclomatic complexity V(G) has
a negative impact on changing the
system.

Halsted volume M.H.
Halsted

1977 [15] Used to predict maintenance effort and mean
number of faults in programs.

Between the lexical complexities of
code, there exist weak logical
associations.

Effort metrics Pressman 1982 [16] The lower value of Mean Time To Change
(MTTC) leads to more maintainable
product.

Lack of prediction capability and
dependency on skill of maintainer.

Maintainability Index
(MI)

Oman et al,
and
Coleman et
al

1992,
1994

[17-18] Derivation is from source code. Effectively
analyzes many systems by making MI
comparisons.

Identification of high risk modules
provides outstanding insight into the
source code. Hence there is no major
drawback.

Software Maturity Index
(SMI)

IEEE 982.1 1998,
2005

[19] If SMI becomes 1.0 then the product does
not require modifications and stabilized.
SMI= (MT - (Fa + Fc + Fd))/MT

Module measurement is not associated
with product stability and difficult
interpretation of negative values.

IV. LITERATURE SURVEY OF MAINTAINABILITY
AND OO SYSTEM

Rombach [20] reported the results of a controlled
experiment for studying the maintainability of the distributed
software partially in the object-oriented language LADY, a
Language for Distributed systems. He summarized the
findings by concluding that the software that was written in
object-oriented language is more maintainable than software
written in a conventional language. The author also explored
that complexity metrics could estimate maintenance and
understand the consequent code measures. Some of the
measures were applicable as early as the end of architectural
design. Johnson and Foote found the use of numerous small
methods which influence excellent programming style of
object-oriented system [21]. According to Moreau [22-24]
conventional metrics are not suitable for OO systems for many
causes. Firstly, the hypothesis related to program size and
programmer productivity in structured systems need not be
applied directly to OO systems. Secondly, the conventional
metrics not accomplish the structural features of OO systems.
Thirdly, the calculation of complexity of the system which is
the same as the summation of the complexity of the
components is not proper for OO systems. Moreau [23] also
stated that the existing traditional software metrics might be
efficient in a specific method within an object. However, there
is no empirical evidence present to support these statements.

Moreau [24] again employed the traditional metrics for
comparing two implementations of a graphics editor. One of
them is a traditional implementation in C and other one is the
object-oriented implementation in C++. Mancl and Havanas
[25] presented a case study of the impact of the C++
programming language and object oriented design on the
maintenance phase of a software development project. The
result had shown that while using the object-oriented design,
there is variation in terms of improvement in reusability and
decrease in complexity of software. This study attempted to
assess the differences between object-oriented programming
and conventional structured programming. The measurements
identified some of the places where object-oriented
programming had a significant impact on increasing

productivity. They have applied ‘the number of lines of code
modified per maintenance task’ as a measure of the
maintenance effort. Inheritance and polymorphism methods
not only strengthen the object-oriented systems but also make
the process of program understanding and analysis difficult.
Wilde and Huitt [26] described several maintenance issues
which are unique to object-oriented systems. They have taken
instances from a PC smalltalk environment and two real world
systems. They also have analyzed difficulties associated to
dynamic binding, object dependencies, dispersed program
structure, control of polymorphism, high-level understanding
and detailed code understanding. Li and Henry [27] have
studied the applicability of OO complexity metrics (proposed
by C&K) with reference to the maintenance in two
commercial systems. They concluded that these metrics in
general can be used as predictors of maintenance effort;
however, two of the metrics were not as good as expected.

C&K [11-13] experimentally analyzed the OO design
metrics for the purpose of evaluating whether or not these
metrics are useful for predicting the probability of detecting
faulty classes. It is clear that the definitions of these metrics
are not language independent. Basili et al. [28] as a
consequence, had slightly adjusted some of C&K’s metrics in
order to reflect the specificities of C++ language. Although,
the weakness related to this study is that, the authors had used
‘the number of lines changed per classes’ as a measure of the
maintenance effort. Li and Henry [27] also defined some
additional metrics. Abreu and Melo [29] also experimentally
studied that they have got their MOOD metrics for correlating
with the system reliability and maintainability. Harrison et al.
[30] defined the usefulness of a design metric (the number of
test cases) to predict the testing time. Binkley and Schach [31]
applied class coupling method to validate the coupling
dependency metrics as a predictor of run time failures and
maintainability measures by the usage of C++ system (patient
core management), 113cls, 82KLOC, file transfer facility, 29
java classes and 6 KLOC measures. Tang et al. [32]
empirically studied the object-oriented metrics by using C &
K metrics, but they have not considered the LCOM and LOC
methods as variables.

Yajnaseni Dash et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 207-213

© 2010, IJARCS All Rights Reserved 210

Muthanna et al. [33] investigated the use of software
design metrics to statistically estimate the maintainability of
large software systems, and to identify error prone modules.
The fact that the usage of metrics in the analysis and design of
OO software can help designers make better decisions in
gaining relevance in software measurement arena. Polo et al.
[34] reported code metrics for prediction of maintenance of
legacy programs as a case study by applying logistic
regression, MANTEMA a methodology for maintenance.
Moreover, the necessity of having early indicators of external
quality attributes depends on maintainability. In addition to
this, the aim is to show how early metrics, which measure
internal attributes, such as structural complexity and size of
UML class diagrams, can be used as early class diagram
maintainability indicators. For this purpose, Genero et al. [35]
presented a controlled experiment and its replication, which
was carried out to gather the empirical data. Subramanyam
and Krishnan [36] conducted an experimental analysis on
subset of C & K metrics suite in determining software defects.
Hayes et al. [37] proposed a metrics-based software
maintenance effort model by the use of validated datasets.
They applied COCOMO (constructive cost estimation Model),
SLIM, AMEffMo(Adaptive Maintenance Effort Model) and
Regression Analysis methods for computing the effort.
Kiewkanya et al. [38] constructed maintainability model of
object oriented design by applying methods like association,
aggregation, generalization and classification.

Alain et al. [39] proposed prediction of maintainability by
the use of regression analysis and DC ratio methods. Bocco et
al. [40] assessed the capability of internal metrics as early
indicators of maintenance effort through experimentation. The
usefulness of measures for the analysis and design of object-
oriented software is increasingly being recognized in the field
of software engineering research. In particular, recognition of
the need for early indicators of external quality attributes is
increasing. Genero et al. [41] investigated through
experimentation, whether a collection of UML class diagram
measures could be excellent predictors of two main sub
distinctiveness of the maintainability of class diagrams namely
understandability and modifiability. Results obtained from a
controlled experiment supports valuable prediction models for
building these features as an early measure. Particularly, the
measures were capturing structural complexity through
associations and generalizations. Likewise, these measures

have been clearly correlated with the subjective perception of
the subjects about the complexity of the diagrams. This fact
showed that to some extent, objective measures capture the
same features as the subjective ones. Breesam [42] empirically
formalized a set of metrics with the intention of using them for
the quality measurement of an OO design with consideration
of class inheritance. Neelamegan and Punithavalli [43]
surveyed four OO quality metrics and they found that these
metrics focuses on measurements when apply them to the
class and design characteristics.

Sastry and Saradhi [44] attempted to implement software
metrics with assistance of GUI and also examined
relationships of metrics for determination of quality. The
quantity of software attributes estimated by observing the life
cycle of object oriented software development. Amjan Shaik
et al. [45] have statistically analyzed the OO software metrics
on C&K metric collections by verifying the data put together
from the projects of some students. Fast feedback for software
designers and managers were provided by applying metrics
data. They examined minutely that proper use of these metrics
directly reduce the cost of the overall execution and
enhancement of quality of the ultimate product. Rizvi and
Khan [46] proposed MEMOOD model that caused an
improvement of the maintainability or understandability of
class diagram and also enhanced the maintainability in final
software. Thapaliyal and Garima [47] have empirically
analyzed the software defects and object oriented metrics.
They evaluated two metrics weighted method per class
(WMC) and coupling between object classes (CBO) of C&K
metrics suite. They investigated whether the metrics taken are
linked to defects or not by the usage of 50 samples of Java
classes of different projects. Dubey and Rana [48] used
metrics approach to assess utility of object-oriented software
to develop successful software applications. Gautam and Kang
[49] described that the compound MEMOOD model is better
to determine the maintainability of class diagram in terms of
their understandability, modifiability, scalability and level of
complexity. Malhotra and Jain [50] reviewed software fault
prediction for OO system and used logistic regression method.
Shaik et al. [51] suggested a metric approach for evaluating
the system test cases in OO system. They have used regression
CR tool architecture method for the estimation process. The
detailed survey is summarized in Table 2.

Table 2: Studies on maintainability and object-oriented systems
Sr.
No.

Author Year Reference Description

1 Rombach 1987 [20] Controlled experiment on LADY, a Language for Distributed systems to study maintainability. Summarized that
the software written in object-oriented language is more maintainable than software written in a traditional
language.

2 Johnson and Foote 1988 [21] Found utilization of ample number of tiny methods persuades outstanding programming style of object-oriented
system.

3 Moreau 1987,
1989,
1990

[22]
[23]
[24]

Unsuitability of traditional metrics for OO systems are due to program size and programmer productivity,
conventional metrics and complexity of the system.

4 Mancl and
Havanas

1990 [25] Explained the impact of maintainability in OO design as a case study. Measure of the maintenance effort is
computed by the number of lines of code modified per maintenance task. Found improved software reuse and
decreased complexity of software differs in object-oriented design.

Yajnaseni Dash et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 207-213

© 2010, IJARCS All Rights Reserved 211

5 Wilde and Huitt 1992 [26] Illustrated some unique maintenance issues of OO systems and evaluated the difficulties linked to it.
6 Li and Henry 1993 [27] Considered the applicability of OO complexity metrics in two commercial systems and summarized that these

metrics can predict of maintenance effort.

7 Chidamber and
Kemerer

1994 [12] Explored some of the OO design metrics for computing maintainability effort such as WMC, DIT, NOC, CBO,
RFC and LCOM.

8 Basili et al. 1996 [28] Slightly adjusted a few of Chidamber & Kemerer’s metrics to imitate the specialness of C++ language.
9 Abreu and Melo 1996 [29] Studied the MOOD metrics to correlate it with the system reliability and maintainability.
10 Harrison and

Samaraweera
1996 [30] Explained the usefulness of a design metric (the number of test cases) to predict the testing time.

11 Chidamber et al. 1998 [13] Evaluated whether or not the above metrics are useful for predicting the probability of detecting faulty classes
12 Binkley and

Schach
1998 [31] Validated class coupling method and found the coupling dependency metrics as a forecaster of run time failures

and maintainability measures of C++ system.
13 Tang et al. 1999 [32] Studied the OO metrics by using C & K metrics but not used the LCOM and LOC methods as variable.

14 Muthanna et al. 2000 [33] Statistically estimated the maintainability of large software systems, and identified error prone modules. OO
metrics can assist to gain relevance in software measurement arena.

15 Polo et al. 2001 [34] Used code metrics for prediction of maintenance of legacy programs as a case study.
16 Genero et al. 2003 [35] Obtained a controlled experiment and its replication to assemble the empirical data.
17 Subramanyam and

Krishnan
2003 [36] Performed an empirical analysis on subset of C & K metrics suite to resolve software defects.

18 Hayes et al 2004 [37] Computed maintenance effort by using COCOMO, SLIM, AMEffMo and Regression Analysis methods.
19 Kiewkanya et al. 2004 [38] Constructed maintainability model of object oriented design by applying methods like association, aggregation,

generalization and classification.
20 Alain et al. 2005 [39] Predicted maintainability using regression analysis and DC ratio methods.
21 Bocco et al. 2005 [40] Found that internal metrics are early indicators of maintenance effort. Recognized the usefulness of the analysis

and design of OO software.
22 Genero et al. 2007 [41] Investigated a set of UML class diagram measures could be excellent predictors of two main sub distinctiveness

of the maintainability of class diagrams namely understandability and modifiability.
23 Breesam 2007 [42] Formalized a set of metrics with the intention of using them for the quality measurement of an object oriented

design with consideration of class inheritance.
24 Neelamegan and

Punithavalli
2009 [43] Surveyed four object oriented quality metrics and they found that these metrics focuses on measurements when

apply them to the class and design characteristics.
25 Sastry and Saradhi 2010 [44] Attempted to implement software metrics with assistance of GUI. Examined relationships of metrics for

determination of quality.

26 Amjan Shaik et al. 2010 [45] Statistically analyzed the object-oriented software metrics on CK metric collections by verifying data. Examined
appropriate use of these metrics to reduce the cost of execution and improvement of quality of the ultimate
product.

27 Rizvi and Khan 2010 [46] Proposed MEMOOD model which improves the maintainability of class diagram and consequently the
maintainability of final software.

28 Thapaliyal et al. 2010 [47] Analyzed the software defects and object oriented metrics. Evaluated two metrics WMC and CBO of C and K
metrics Suite.

29 Dubey and Rana 2010 [48] Metrics approach was used to precisely define the qualitative characteristics of the software system.

30 Gautam and Kang 2011 [49] Observed compound MEMOOD model is better than MEMOOD model to determine the maintainability of class
diagram in terms of their understandability, modifiability, scalability and level of complexity.

31 Malhotra and Jain 2011 [50] Predicted software inaccuracy for object oriented system by applying logistic regression method.

32 Shaik et al. 2011 [51] Evaluated the system test cases in OO system by regression CR tool architecture method. Applied carving and
replaying methods to find the degree of differences in unit test cases.

V. CONCLUSION

It is concluded by various researchers that maintainability
is a critical concern in the OO design as it uses a large number
of small methods. Therefore OO paradigm must be chosen to
solve its complexity of measuring the maintainability. This
survey is the expected outcome of different researches that are
carried out to overcome the issues of maintainability
estimation in object-oriented systems. The multitude methods
of maintainability summarized in this paper will be a key
guide to develop an efficient and cost effective way of
maintaining the object-oriented systems leading to the
betterment of software quality.

VI. REFERENCE

[1] J.A. Mccall, P.K. Richards, and G.F. Walters, Factors in
software quality, Vols I-III, Rome Air Development Centre,
Italy, 1977

[2] T. DeMarco Controlling Software Projects; Management,
Measurement and Estimation. Yourdan Press, New Jersey,
1982.

[3] B. Boehm, Software Engineering Economics, Englewood
Cliffs, NJ:Prentice-Hall, ISBN 0-13-822122-7, 1981.

Yajnaseni Dash et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 207-213

© 2010, IJARCS All Rights Reserved 212

[4] ISO/IEC 14764:2006 Software Engineering — Software Life
Cycle Processes — Maintenance.

[5] E. Burt Swanson, The dimensions of maintenance.
Proceedings of the 2nd international conference on Software
engineering, San Francisco, 1976, pp. 492 — 497.

[6] S. R. Schach, B. Jin, D.R. Wright, G.Z. Heller, J. Offutt
Quality Impacts of Clandestine Common Coupling, Software
Quality Journal, 11, 2003, pp. 211-218.

[7] IEEE, IEEE Standard Glossary of Software Engineering
Terminology, report IEEE Std 610.121990, IEEE, 1990.

[8] ISO/IEC, Information technology - Software product quality
- Part 1: Quality model, report ISO/IEC FDIS 9126-1:2001
(E), ISO, 2001.

[9] IEEE, “IEEE Standard for Software Maintenance”, IEEE Std.
1219, The Institute of Electrical and Electronics Engineers,
1998.

[10] P. Goodman, “Practical Implementation of Software
Metrics”, McGraw Hill, London, 1993.

[11] S. R. Chidamber and C. F. Kemerer ,“Towards a Metrics
Suite for Object Oriented design”. Proc. Conference on
Object-Oriented Programming: Systems, Languages and
Applications (OOPSLA’91), Published in SIGPLAN Notices,
vol 26 no. 11, 1991, pp.197-211.

[12] S. R. Chidamber and C. F. Kemerer, “A metrics suite for
object oriented design.” IEEE Trans. Software Eng., vol. 20,
no. 6, 1994, pp. 476–493.

[13] S. R. Chidamber, D. Darcy and C. F. Kemerer, “Managerial
use of Metrics for Object-Oriented Software: An Exploratory
Analysis”, IEEE Transactions on Software Engineering,
vol.24 no.8, 1998, pp. 629-639.

[14] T. J. McCabe, “A complexity measure.” IEEE Trans.
Software Eng., vol. 2, no. 4, 1976, pp. 308–320.

[15] M. H. Halstead, Elements of Software Science, ser.
Operating, and Programming Systems. New York, NY:
Elsevier, vol. 7, 1977.

[16] R. S. Pressman, Software engineering: a practitioner’s
approach, New York: McGraw-Hill, 1982.

[17] D. M. Coleman, D. Ash, B. Lowther, and P. W. Oman,
“Using metrics to evaluate software system maintainability.”
IEEE Computer, vol. 27, no. 8, 1994, pp. 44–49.

[18] P. W. Oman and J. R. Hagemeister, “Construction and testing
of polynomials predicting software maintainability.” Journal
of Systems and Software, vol. 24, no. 3, 1994, pp. 251–266.

[19] (IEEE 982.1-88) IEEE Std 982.1-1988, IEEE Standard
Dictionary of Measures to Produce Reliable Software, 1988.

[20] H. D. Rombach, “A controlled experiment on the impact of
software structure on maintainability”, Software Engineering,
IEEE Transactions on, SE-13(3):344–354, March 1987.

[21] R. E. Johnson and B. Foote Designing Reusable Classes.
Journal of Object-Oriented Programming. 1988, vol. 1, no. 2,
pp. 22-35.

[22] D. R. Moreau, “A Programming Environment Evaluation
Methodology for Object-Oriented Systems”, Ph.D.
Dissertation, University of Southwestern Louisiana, Sep.
1987.

[23] D. R Moreau and W. D. Dominick, “Object-Oriented
Graphical Information Systems: Research Plan and
Evaluation Metrics,” Journal of Systems and Software, vol.
10, 1989, pp. 23-28.

[24] D. R. Moreau and W. D. Dominick, “A programming
environment evaluation methodology for object oriented
systems: part I - the methodology,” Journal of Object-
Oriented Programming, vol. 3, May/Jun. 1990, pp. 38-52.

[25] D. Mancl and W. Havanas, “A Study of the Impact of C++ on
Software Maintenance”, Conference on Software
Maintenance, San Diego, CA, USA, IEEE Computer Society
Press, 1990.

[26] N. Wilde and R. Huitt, “Maintenance support for object-
oriented programs”, Software Engineering, IEEE
Transactions, vol 18, no. 12, 1992, pp. 1038 – 1044.

[27] W. Li and S. Henry, “Object-Oriented Metrics that Predict
Maintainability”, Journal of Systems and Software, vol 23,
no.2, 1993, pp.111-122.

[28] V. Basili, L. Briand and W. Melo, “A Validation of Object-
Oriented Design Metrics as Quality Indicators”, IEEE
Transactions on Software Engineering, vol. 22, no.10, 1996,
pp. 751-761.

[29] B. F. Abreu, and W.L. Melo “Evaluating the Impact of
Object-Oriented Design on Software Quality”, Third
International Software Metrics Symposium, Berlin,
Germany, March 1996.

[30] R. Harrison, L. Samaraweera, M. Dobie, P. Lewis, “An
Evaluation of Code Metrics for Object-Oriented Programs,”
Information and Software Technology, vol 38, 1996, pp.443-
450.

[31] Binkley and S. Schach, “Validation of the Coupling
Dependency Metric as a risk Predictor”, Proceedings in ICSE
98, 1998, pp. 452-455.

[32] M.H. Tang, M.H. Kao, and M.H. Chen, “An Empirical Study
on Object Oriented Metrics,” Proc. Sixth Int’l Software
Metrics Symp., 1999, pp. 242-249.

[33] S. Muthanna, K. Kontogiannis, K. Ponnambalaml and B.
Stacey, “A Maintainability Model for Industrial Software

Yajnaseni Dash et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 207-213

© 2010, IJARCS All Rights Reserved 213

Systems Using Design Level Metrics”, In Working
Conference on Reverse Engineering (WCRE’00), 2000.

[34] M. Polo, M. Piattini and F. Ruiz, “Using code metrics to
predict maintenance of legacy programs: a case study”, 2001.

[35] M. Genero, M. Piattini, E. Manso, G. Cantone, “Building
UML class diagram maintainability prediction models based
on early metrics”, Proceedings 5th International Workshop on
Enterprise Networking and Computing in Healthcare
Industry, , IEEE, 2003, pp. 263-275.

[36] R. Subramanyam and M. S. Krishnan, “Empirical Analysis of
CK metricsfor Object Oriented Design Complexity:
Implications of Software defects” IEEE transactions on
Software Engineering, vol 29, no 4, 2003.

[37] J.H. Hayes, S.C. Patel and L. Zhao, “A Metrics-Based
Software Maintenance Effort Model,” Proc. 8th European
Conference on Software Maintenance and Reengineering
(CSMR'04), 24 – 26 Mar. 2004, IEEE Computer Society,
2004, pp. 254 – 258.

[38] M. Kiewkanya, N. Jindaswat and P. Muenchaisri, “A
Methodology for constructing Maintainability Model of
Object Oriented Design”, Proc. 4th International Conferences
on Quality Software”, IEEE Computer 8-9 Sept, Society,
2004, pp.206-213.

[39] Alain, J. H. Hayes, A. Abran and R. Dumke, “Software
Maintenance Maturity Model (SMmm)-The software
maintenance process model”, Journal of Software
Maintenance and Evolution Research and Practice, vol. 17,
no. 3, 2005, pp. 197-223.

[40] M. Bocco, D. Moody and M. Piattini, “Assesing the
capability of internal metrics as early indicators of
maintenance effort through experimentation”, Journal of
system maintenance and evolution, vol.17, 2005, pp. 225-
246.

[41] M. Genero, E. Manso, A. Visaggio, G. Canfora and M.
Piattini Building measure-based prediction models for UML
class diagram maintainability, Published online: Springer
Science, 21 March 2007

[42] K. M. Breesam, “Metrics for Object Oriented design focusing
on class Inheritance metrics”, 2nd International conference on
dependability of computer system IEEE, 2007.

[43] C. Neelamegan and M. Punithavalli, “A Survey- Object
Oriented quality metrics”, Global journal of Computer Sc.
And Technology, Vol 9, no 4, 2009.

[44] B.R. Sastry and M. V. V. Saradhi “Impact of software metrics
on Object Oriented Software Development life cycle”,
International Journal of Engineering Science and Technology,
Vol 2, no.2, 2010, pp. 67-76.

[45] Amjan Shaik, C. R. K. Reddy, A. Damodaram, “Statistical
Analysis for Object Oriented Design Software Security
Metrics” International Journal of Engineering Science and
Technology Vol. 2, no.5, 2010, pp. 1136-1142.

[46] S.W.A. Rizvi and R.A. Khan, “Maintainability Estimation
Model for Object-Oriented Software in Design Phase
(MEMOOD)”, Journal of Computing, Volume 2, Issue 4,
April 2010.

[47] M. P. Thapaliyal and G. Verma, “Software Defects and
Object Oriented Metrics–An Empirical Analysis”,
International Journal of Computer Applications Volume 9–
No.5, November 2010, pp. 0975 – 8887.

[48] S.K. Dubey and A. Rana, “A comprehensive assessment of
object oriented software system using metrics approach”,
International journal of computer science and engineering
(IJCSE), 2010, pp. 2726-2730.

[49] C. Gautam and S.S. kang, “Comparison and Implementation
of Compound MEMOOD MODEL and MEMOOD
MODEL”, International journal of computer science and
information technologies, 2011, pp. 2394-2398.

[50] R. Malhotra and A. Jain, “Software fault prediction for object
oriented System: A Literature Review”, ACM SIGSOFT
Software Engineering Notes, 2011.

[51] Shaik, H. Bhadriraju, K. Vikram, N. Shaik and S.V.A. Rao,
“A Suggestive evaluation of system test cases in OO system
trough carving and replaying differential unit test cases: A
Metric Approach”, International journal of Computer Science
and Technology, 201, pp. 1345-1353.

	INTRODUCTION
	SOFTWARE MAINTENANCE
	Maintenance:
	Maintenance Types:

	MAINTAINABILITY
	LITERATURE SURVEY OF MAINTAINABILITY AND OO SYSTEM
	CONCLUSION

