
Volume 3, No. 2, March-April 2012

International Journal of Advanced Research in Computer Science

RESEARCH PAPER

Available Online at www.ijarcs.info

© 2010, IJARCS All Rights Reserved 317

ISSN No. 0976-5697

Snort, BRO, NetSTAT, Emerald and SAX2 : A Comparison
Suchita Patil*

Computer Technology Department
VJTI Mumbai, India

suchitapatil26@gmail.com

Pallavi S.Kulkarni
Computer Technology Department

VJTI Mumbai, India
 pskulkarni77@gmail.com

Pradnya B. Rane

Computer Technology Department
VJTI Mumbai, India

pradnyarane@gmail.com

Dr.B.B.Meshram
Computer Technology Department

VJTI Mumbai, India
bbmeshram@vjti.org.in

Abstract: Intrusion detection is an important component in network security. Many current Intrusion Detection Systems are designed on rule-based,
which have a limitation of identifying the unknown attacks. Some IDS are designed on anomaly based detection technique which have advantage of
identifying known and unknown attacks. It has a disadvantage of learning and training the data set to identify the good and bad data. Some IDS are
designed on both signature based and anomaly based detection techniques. That are also referred to as hybrid IDS systems. There are many IDS
available in which some IDS are open source IDS and some IDS are commercial products used in enterprise network. This paper gives the detailed
comparative study of open source software SNORT, BRO, Net STAT also covers the commercial products like NFR, Emerald which is used as
research tool and SAX2.

Keywords: signature based system, anomaly detection system, Intrusion Detection system

I. INTRODUCTION

Intrusion Detection System [1]: An Intrusion Detection
System (abbreviated as IDS) is a defense system, which
detects hostile activities in a network. The key is then to detect
and possibly prevent activities that may compromise system
security, or a hacking attempt in progress including
reconnaissance/data collection phases that involve for
example, port scans. Intrusion detection is a process of
identifying and responding to malicious activity targeted at
computing and networking resources".

One key feature of intrusion detection systems is their
ability to provide a view of unusual activity and issue alerts
notifying administrators and/or block a suspected connection.

In addition, IDS tools are capable of distinguishing
between insider attacks originating from inside the
organization (coming from own employees or customers) and
external ones (attacks and the thread posed by hackers).

Intrusion – a series of concatenated activities that pose
threat to the safety of IT resources from unauthorized access
to a specific computer or address domain;

Incident – violation of the system security policy rules that
may be identified as a successful intrusion;

Attack – a failed attempt to enter the system (no violation
committed).

Modeling of intrusions – a time-based modeling of
activities that compose an intrusion.

The intruder starts his attack with an introductory action
followed by auxiliary ones (or evasions) to proceed to
successful access; in practice, any attempts undertaken during
the attack by any person, for example by the IT resource
manager can be identified as a threat.

An intrusion can be defined as “any set of actions that

attempt to compromise the integrity, confidentiality or
availability of a resource”, for example, illegally gaining
super user privileges, attacking and rendering a system out of
service (i.e., denial-of-service), etc.

 Intrusion prevention systems: IPS technologies are
differentiated from IDS technologies by one characteristic:
IPS technologies can respond to a detected threat by
attempting to prevent it from succeeding.

Intrusion prevention techniques, such as user
authentication (e.g. using passwords or biometrics), avoiding
programming errors, and information protection (e.g.,
encryption) have been used to protect computer systems as a
first line of defense.

This paper is organized as follows. Section I is
introduction which gives brief ides about Intrusion Detection
system. Section II focused on the Detection Capabilities and
Some of the Examples of Intrusion Detection Systems. Section
III discusses the problems or drawbacks associated with the
Intrusion Detection systems and variations for the same.
section IV is Conclusion.

II. RELATED WORK

To design any IDS/IPS three major techniques are used. As
specified in [1],[2],[5],[9].

There are three techniques used for detection
Misuse detection or Signature detection (knowledge based)
Anomaly detection (behavior based)
Misuse detection discovers attacks based on patterns

extracted from known intrusions. Anomaly detection identifies
attacks based on significant deviations from normal activities.

Suchita Patil et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 317-323

© 2010, IJARCS All Rights Reserved 318

Misuse detection has low false positive rate, but cannot
detect novel attacks. Anomaly detection can detect unknown
attacks, but usually has a high false positive rate. To combine
the advantages of both misuse and anomaly detection, many
hybrid approaches have been proposed. Data mining is the
analysis of large data sets to discover understandable patterns
or models. Data mining can efficiently extract patterns of
intrusions for misuse detection, identify profiles of normal
network activities for anomaly detection, and build classifiers
to detect attacks. Data-mining-based systems are more flexible
and deployable. The security experts only need to label audit
data to indicate intrusions instead of hand coding rules for
intrusions. There are many Data mining algorithms that can be
used in the Intrusion Detection techniques. There are many
papers based on the Probability based algorithm, Information
theory based algorithms(based on entropy), Random forest
based algorithm which can be used for prediction and
probability estimation. The random forests algorithm is an
ensemble classification and regression approach, which is one
of the most effective data mining techniques.

One of the challenges in IPS/IDS is the feature selection.
Feature selection is essential for improving detection rate. The
raw data format of network traffic is not suitable for detection.
IDSs must construct features from raw network traffic data,
and it involves a lot of computation. Thus, feature selection
can help reduce the computational cost for feature
construction by reducing the number of features. Another
challenge of intrusion detection is imbalanced intrusion. Some
intrusions such as denial of service (DoS) have much more
connections than others (e.g., user to root). Most of the data
mining algorithms try to minimize the overall error rate, but
this leads to increasing the error rate of minority intrusions.
However, in real-world network environments, minority
attacks are more dangerous than majority attacks.

As far as the data source is concerned, intrusion detection
can be classified into host-based and network-based
detections. [5], [7]
a. Host-based approaches detect intrusions utilizing audit

data that are collected from the target host machine. As
the information provided by the audit data can be
extremely comprehensive and elaborate, host-based
approaches can obtain high detection rates and low false-
alarm rates. However, there are disadvantages for host-
based approaches, which include the following.
Host-based approaches cannot easily prevent attacks:
when an intrusion is detected, the attack has partially
occurred.
Audit data may be altered by attackers, influencing the
reliability of audit data.

b. Network-based approaches detect intrusions using the IP
package information collected by the network hardware
such as switches and routers. Such information is not so
abundant as the audit data of the target host machine.
Nevertheless, there are advantages for network-based
approaches, which include the following.

Network-based approaches can detect the so-called
“distributed” intrusions over the whole network and thus
lighten the burden on each individual host machine for
detecting intrusions.

Network-based approaches can defend the machine against
attack, as detection occurs before the data arrive at the
machine.

III. DISCUSSION

This section discusses various Intrusion Detection systems
available.

Example of IDS are SNORT, BRO, NFR, Emerald, SAX2,
and NetSTAT. Architectures of these IDS are explained
below.

A. Snort [4], [9] [12]:
Snort runs within numerous parts of networks, gathering

data that can be collected at a single point. It also optimizes
the hit rate, while keeping the false alarm rate at a minimum.
Snort also offers easy-to-use reporting functions, real time
detection and alerts and packet capture capabilities in best
possible way.

Snort runs in three different modes: sniffer mode, packet
logger mode, and Intrusion detection mode.

Running Snort in sniffer mode allows you to dump data in
the header and body of each packet to the screen.

Packet logger mode is different from Sniffer mode in that
in the former, packet data and/or headers are written to the
hard drive of the host on which Snort runs. Sniffer or packet
logger modes are appropriate for bulk data capture, but sorting
through volumes of packet data to determine whether a
security breach has occurred is not practical.

Snort’s network intrusion detection mode does not record
packets but, rather, allows rules that you select to be applied.

Snort will apply rules defined only in its rule set.
Snort Components

When discussing the internals of Snort, Figure 1 often
helps to clarify the components at work and offers a high-level
view of the Snort process.

Figure 1 Snort Component Overview

Figure 2 Snort components

Suchita Patil et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 317-323

© 2010, IJARCS All Rights Reserved 319

The following are the four main components of Snort and
the Snort process:

Packet capture/decoder engine First, traffic is acquired
from the network link via the libpcap library. Packets are
passed through the decode engine that first fills out the packet
structure for the link-level protocols, which are then further
decoded for higher-level protocols such as TCP and UDP
ports.Preprocessor plug-ins Packets are then sent through a set
of preprocessors. Packets are examined and manipulated
before being handed to the detection engine. Each
preprocessor checks to see if this packet is something it should
look at, alert on, or modify.

Detection engine Packets are then sent through the
detection engine. The detection engine checks each packet
against the various options listed in the Snort rules files by
performing single, simple tests on an aspect or field of the
packet.The detection plug-ins provide additional detection
functions on the packets. Each of the keyword options in the
rule is linked to a detection plug-in that can perform additional
tests.

Output plug-ins Snort then outputs the alerts from the
detection engine, preprocessors or the decode engine.

The Table 1 shows Components of NIDs and the functions
of every component.

Table 1 functions of components of NIDS (SNORT)

Name Description
Packet Decoder Prepares packets for processing.
Preprocessors or Input
Plugins

Plugins Used to normalize protocol
headers, detect anomalies, packet
reassembly and TCP stream re-assembly.

Detection Engine Applies rules to packets.
Logging and Alerting
System

Generates alert and log messages

Output Modules Process alerts and logs and generate final
output.

All Snort rules have two logical parts: rule header and rule

options. This is shown in following figure 3.

Figure 3 The basic structure of snort Rules

The rule header contains information about what action a
rule takes. It also contains criteria for matching a rule against
data packets. The options part usually contains an alert
message and information about which part of the packet
should be used to generate the alert message. The options part
contains additional criteria for matching a rule against data
packets. A rule may detect one type or multiple types of
intrusion activity. Intelligent rules should be able to apply to
multiple intrusion signatures.

The general structure of a Snort rule header is shown in
following Figure 4.

Figure 4 Structure of snort Rule header

The action part of the rule determines the type of action
taken when criteria are met and a rule is exactly matched
against a data packet. Typical actions are generating an alert or
log message or invoking another rule.

The protocol part is used to apply the rule on packets for a
particular protocol only. This is the first criterion mentioned in
the rule. Some examples of protocols used are IP, ICMP,
UDP, TCP etc.

The address parts define source and destination addresses.
Addresses may be a single host, multiple hosts or network
addresses. there are two address fields in the rule. Source and
destination addresses are determined based on direction field.
As an example, if the direction field is “->”, the Address on
the left side is source and the Address on the right side is
destination. In case of TCP or UDP protocol, the port parts
determine the source and destination ports of a packet on
which the rule is applied. In case of network layer protocols
like IP and ICMP, port numbers have no significance.

The direction part of the rule actually determines which
address and port number is used as source and which as
destination. For example, consider the following rule that
generates an alert message whenever it detects an ICMP1 ping
packet (ICMP ECHO REQUEST) with TTL equal to 100.
alert icmp any any -> any any (msg: "Ping with TTL=100"; ttl:
100;)

The part of the rule before the starting parenthesis is called
the rule header. The part of the rule that is enclosed by the
parentheses is the options part. The header contain the
following parts, in order:

A rule action. In this rule the action is “alert”, which
means that an alert will be generated when conditions are met.
Remember that packets are logged by default when an alert is
generated. Depending on the action field, the rule options part
may contain additional criteria for the rules.
The five rule actions created by default are:
a. Pass: The pass action simply ignores the packet, and then

analysis continue to execute on further captured packets.
b. Log: The log rule action allows you to log the packet in a

manner that you can specify during the configuration of
your Snort sensor.

c. Alert: The alert rule action logs the packet in the same
manner as the Log action, and then alerts the user in a
manner specified during configuration time. Alerts can be
powerful actions and should be used efficiently. An alert
log that is too large might prove be a nuisance or an
ineffective mechanism for protecting your network.

Suchita Patil et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 317-323

© 2010, IJARCS All Rights Reserved 320

d. Dynamic: The dynamic action is unique in that it remains
dormant until an Activate rule triggers it “on.” After it is
triggered, it then acts like a Log action rule.

e. Activate: The activate action is the most powerful rule
action created by default within Snort, because when
triggered, it generates an alert and then starts the specified
dynamic rule.These can be an excellent for catching
complex attacks, intruders using a variety of tools, or even
for categorizing data in a different manner.
In addition to these five rule options, you can create

custom rule types. These rule types determine how other
applications output the data to other types of output plug-ins.
The format is straightforward. First, designate the rule type,
and then the actions that you want to occur when the rule
action is specified. For example, the following rule provides
for the creation of a text file log when a defined hacker
anomaly is detected:
ruletype hacker_log
{
type log
log_tcpdump: hacker.txt
}

This rule is written to send an alert to two different logs
when the Gabriel virus is detected:
ruletype gabriel_virus
{
type alert output
alert_syslog: LOG_AUTH LOG_ALERT
log_tcpdump: gabriel_virus.log
}

Protocol. In this rule the protocol is ICMP, which means
that the rule will be applied only on ICMP-type packets. In the
Snort detection engine, if the protocol of a packet is not ICMP,
the rest of the rule is not considered in order to save CPU
time. The protocol part plays an important role when you want
to apply Snort rules only to packets of a particular type.

Protocol is the second part of a Snort rule. The protocol
part of a Snort rule shows on which type of packet the rule
will be applied. Currently Snort understands the following
protocols:

a) IP
b) ICMP
c) TCP
d) UDP

If the protocol is IP, Snort checks the link layer header to
determine the packet type. If any other type of protocol is
used, Snort uses the IP header to determine the protocol type.
The protocols only play a role in specifying criteria in the
header part of the rule. The options part of the rule can have
additional criteria unrelated to the specified protocol. For
example, consider the following rule where the protocol is
ICMP.

alert icmp any any -> any any (msg: "Ping with \
TTL=100"; ttl: 100;)

The options part checks the TTL (Time To Live) value,
which is not part of the ICMP header. TTL is part of IP
header instead. This means that the options part can check
parameters in other protocol fields as well. Snort Probably the

most-widely deployed NIDS. Snort is the de-facto standard
among open-source systems.

Source address and source port. In this example both of
them are set to “any”, which means that the rule will be
applied on all packets coming from any source. Of course port
numbers have no relevance to ICMP packets. Port numbers
are relevant only when protocol is either TCP or UDP.

Direction. In this case the direction is set from left to right
using the -> symbol. This shows that the address and port
number on the left hand side of the symbol are source and
those on the right hand side are destination. It also means that
the rule will be applied on packets traveling from source to
destination. You can also use a <- symbol to reverse the
meaning of source and destination address of the packet. Note
that a symbol <> can also be used to apply the rule on packets
going in either direction.

Destination address and port address. In this example both
are set to “any”, meaning the rule will be applied to all packets
irrespective of their destination address. The direction in this
rule does not play any role because the rule is applied to all
ICMP packets moving in either direction, due to the use of the
keyword “any” in both source and destination address parts.

The options part enclosed in parentheses shows that an
alert message will be generated containing the text string
“Ping with TTL=100” whenever the condition of TTL=100 is
met. Note that TTL or Time To Live is a field in the IP packet
header.
BRO an open source IDS[11,2]

Bro is a very flexible open-source research system. It
provides the starting point for much of our work. Bro is one of
the most flexible open-source NIDSs. It is designed and
primarily developed by Vern Paxson. In contrast to most
NIDSs, it is fundamentally neither an anomaly-based system
nor a misuse-based system. Rather, its core is policy-neutral.
Bro is written in C++ and covered by a BSD-style license.
Bro's primary design goals were (i) separation of mechanism
and policy, (ii) efficient operation suitable for high-volume
network monitoring, and (iii) resistance to attacks directed at
itself.
Architecture of BRO

To this end, Bro's architecture consists of three layers:
packet filtering, event generation, and policy script execution.

Figure 5 Architecture of BRO

Suchita Patil et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 317-323

© 2010, IJARCS All Rights Reserved 321

There are three main layers in Bro:
a. Packet Capture Unit- This unit can be thought as detection

unit. It uses libpcap to capture packets from the network.
The use of libpcap isolates Bro from the underlying
network technology and makes it portable.

b. Event Engine- It analyzes packet streams captured by the
Package Capture Unit, verifies their integration and sends
them to the appropriate handler. Handlers are provided by
the policy script interpreter.

c. Policy Script Interpreter- Policy Script Interpreter runs
scripts written in Bro language and associated with a
handler. Whenever an event arrives, it executes related
handler script. This script may execute other arbitrary
commands to log events, modify state or record a data.
As Bro is designed to deal with attacks against itself, it

defends itself against 3 kinds of different attacks. The first
one, overload attack tries to overload the IDS monitor by
sending so many packets that exceeds the processing capacity
of the IDS.

With increasing layer, the volume of processed data
decreases, thereby enabling more expensive processing.
Packet filtering is done using a static BPF expression
,leveraging libpcap like Snort. The event engine generates
events which in the sense NIDSs often do not make their
decisions based on individual network packets but on events
which are (policy-neutral) abstractions of network activity.
Typical events include the establishment of a connection or
the download of a file. If an event (or a sequence of events)
violates a site policy, the NIDS should trigger an alert.
represent policy-neutral abstractions of network activity at
different semantic levels. For example, there are events for
attempted/established/terminated/rejected connections, the
requests and replies for a number of applications, and
successful and unsuccessful user authentication. The user
writes policy scripts using a specialized, richly-typed high-
level language. These scripts contain event handlers which are
executed when the corresponding event is raised. Event
handlers codify the actions the NIDS should take:
Updating data structures describing the activity seen on the
network, sending out real-time alerts,
Recording activity transcripts to files, and
Executing programs as a means of reactive response.

Bro's main unit of analysis is a connection. While for TCP
the definition of a connection is straight-forward, the system
also fits UDP and ICMP into its connection model by using a
flow-like definition. Connection semantics are interpreted by
analyzers which follow the endpoint's communication,
extracting basic semantic protocol elements and generating
corresponding events. Usually, an analyzer consists of two
components:

One inside the event engine which performs policy-neutral
analysis and generates events; and
a second component in the form of a policy script containing
(predefined yet customizable) policy-specific actions.

Analyzers are available for a wide range of transport- and
application-layer protocols, including TCP, HTTP, FTP,
SMTP, SSL, and DNS. Moreover, protocol-independent
analyzers detect scanners, stepping stones, backdoors etc. A
generic connection analyzer generates one-line ASCII

summaries of any connection the system sees. To reduce the
processing load, Bro examines only packets requested by at
least one of the analyzers; others are filtered at the lowest
layer by installing a suitable filter. For instance, the
connection analyzer requests only TCP control packets (i.e.,
SYNs/FINs/RESETs) rather than all TCP packets; these are
sufficient to deduce basic connection characteristics such as
duration and size of the transferred payload. As noted above,
Bro was designed to resist attacks against itself. One
consequence of this design guideline is the need to avoid
predictability; e.g., while the systems needs to expire old state,
an adversary should not be able to predict when it does it. To
achieve this, Bro's design assumes that an attacker is not aware
of the system's concrete parameterization. Therefore, the user
needs to adapt the default policy scripts shipped with Bro
before using them. This is a variant of Kirchhoff’s principle:
while the detection mechanisms are public (Bro is open-
source), their parameterizations are not. In general, during
Bro's development, attack resilience always had priority. In
the past, Bro has been a non-distributed NIDS.
In summary, Bro is a policy-neutral research system which
provides a large degree of flexibility to experiment with
different approaches to network intrusion detection.

B. Emerald [11]:
Emerald is an intrusion detection framework developed by

SRI International. Its primary target environment is a large-
scale heterogeneous enterprise network, consisting of several
independent sub-units with di_ering trust relationships.
Emerald is not freely available. Emerald is a highly-distributed
system that uses a 3-layer architecture:
The service analysis layer
The domain-wide analysis layer
The enterprise-wide analysis layer

The service analysis layer monitors individual hosts and
network components,

The domain-wide analysis layer correlates results across a
sub-unit's service layer, and

The enterprise-wide analysis layer coordinates several sub-
units.

On all three layers, monitors make up the basic building
blocks. Each monitor contains modules for data acquisition,
detection, and correlation. All monitors are built from the
same code-base; resource objects encapsulate input specifics.
On the service layer, a monitor acquires its input from the
monitored components. On higher layers, it communicates
with other monitors. The communication between monitors
uses a subscription-based scheme to exchange asynchronous
messages. The communication model provides both \push"
and \pull" semantics. Inside a monitor, several detection
components can be used which include an anomaly detector,
and a misuse detector (based on the expert system).

In general, an Emerald set-up may include both host-based
and network-based service-level monitors. So Emerald is
Hybrid IDS (HIDS and NIDS).

C. STAT Open Source IDS (Net STAT) [2]:
STAT is an open source IDS. An attack scenario consists

of states and transitions. The states represent snapshots of a

Suchita Patil et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 317-323

© 2010, IJARCS All Rights Reserved 322

system's security relevant characteristics. Transitions from one
state to another are triggered by actions which represent steps
of an attack. If there is a series of transitions leading from an
initial starting state to a “compromised" ending state, a
successful attack has been detected. Initially, this state-
transition approach was used independently for host- and
network-based Detection. The NetSTAT is a real
time,distributed network based intrusion detection system.
Unlike other network based intrusion detection systems that
monitor a single subnetwork for patterns representing
malicious activity, NetSTAT is oriented towards the detection
of attacks in complex networks composed of several
subnetworks. It detects intrusions in real time and monitors
events where they are observable. network-based module of
STAT, NetSTAT, consists of four types of components:

The network fact base stores all security relevant network
information;

The scenario database contains state transition diagrams;
Probes are installed at points of interest across the network

to detect attacks; and an analyzer pre-calculates the probes
configurations. The network fact base component stores and
manages the security relevant information about a network.
The fact base is a stand-alone application that is used by the
Network Security Officer to construct, insert, and browse the
data about the network being protected. It contains
information about the network topology and the network
services provided.

The state transition scenario database is the component that
manages the set of state transition representations of the
intrusion scenarios to be detected. The state transition scenario
database can be executed as a stand-alone application that
allows the Network Security Officer to browse and edit state
transition diagrams using a user friendly graphic interface.

The probes are the active intrusion detection components.
They monitor the network traffic in specific parts of the
network, following the configuration they receive at startup
from the analyzer. Probes are general purpose intrusion
detection systems that can be configured remotely and
dynamically following any changes in the modelled attacks or
in the implemented security policy.

The analyzer is a stand-alone application used by the
Network Security Officer to analyze and instrument a network
for the detection of a number of selected attacks. It takes as
input the network fact base and the state transition scenario
database and determines, which events have to be monitored,
where the events need to be monitored, what information must
be maintained about the state of the network in order to be
able to verify state assertions, etc.

Figure 6 NetSTAT architecture

D. NFR Security [11]:
The NFR software differs from most other products, as it

provides analysis of data starting at the packet level as a
sniffer would, and then it provides stateful packet inspection,
misuse detection and protocol anomaly detection using a
scriptable open source language called N-Code. NFR can
operate as a true IDS hybrid solution, inspecting everything in
the OSI reference model from layer 2 protocols up to layer 7
applications.

NFR Methodology does not believe that examining TCP
header information will provide sufficient information to
successfully detect an attack. In fact, it is necessary to buffer
the entire connection, including the headers and bodies of the
messages transmitted, to truly identify what is happening in a
connection, and most IDS products fail in that respect.
Solutions that do not guarantee that data is reassembled
correctly have an almost impossible time ensuring the
correctness of the originating data.

Figure 7 NFR Detection mechanism

NFR’s methodology is focused on achieving data
correctness during the capture and

decoding of packets. NFR provides a two-layer detection
mechanism, shown in Figure 2. The lower layer is a high-
speed engine with advanced buffering techniques that ensures
proper state is maintained in packet transactions, data is
correctly defragmented, and entire message bodies are
recorded and reassembled in sequence for accurate detection
and analysis. The upper layer provides a scriptable detection
language. N-Code is a unique detection language that provides
a rapid signature-development platform for intrusion
detection.

IV. CONCLUSION

When the computer is connected to network, there has to be
more security provided to it. There are many tools available
now a day’s using which many attacks can happen easily. So to
detect the attacks it requires and counter measures of these
attacks. There are Intrusion detection system designed to detect
the attack and also to store the new attack signatures in to the
log file. Snort is the De-facto standard for IDS. And It is open
source software. So it is used for research work. Snort is rule-
based Intrusion detection system. It is single layer system. The
Snort is de-facto standard for IDS and It is open source
software. Snort is light weighted Single layer architecture. It is
rule based system. All rules specifies what action to be

Suchita Patil et al, International Journal of Advanced Research in Computer Science, 3 (2), March –April, 2012, 317-323

© 2010, IJARCS All Rights Reserved 323

performed and when to be performed. NFR is distributed
Inspector IDS. It is Hybrid because it operates in both
signature based and anomaly based methods. It is best suited
for small network. Emerald is also distributed anomaly based
IDS system. It is also operating in both signature and anomaly
detection methods, so it is referred to as hybrid system. This
IDS is best suited for complex and large network. NetSTAT is
realtime multilayer network Intrusion detection system. This
NIDS operates on event State transitions. The events state
transition are stored. It uses DFA to represent state transitions.

This NIDS is best suitable for Large and complex network.
BRO is multilayer Intrusion detection system. It is core
policy-neutral. It supports customize policy script. It is best
suitable for small and medium network. SAX-2[1] is single
layer real-time network intrusion detection and prevention
system. It is also hybrid IDS. It is best for both IT
professionals and novice users.

The following table shows the comparison of open source
IDS as well as the Emerald and SAX2 which is not open
source IDS systems.

Table I Comparison Table for Architectural differences between different IDS

 SNORT NFR Emerald NetSTAT[2] BRO SAX2[2]
Architecture Single layer Distributed Distributed Multi layer Multi layer Single layer

Framework Light weighted
NIDS

Inspector based
IDS

Distributed
anomaly-based

intrusion detection
system

real time,distributed
network based intrusion

detection system

BRO is fundamentally
neither an anomaly-based
system nor a misuse-based
system. Rather, its core is

policy-neutral.

Real-time Network
Intrusion detection

and prevention
system

Detection
capabilities

Rule based/
Signature based

Hybrid
(Signature and

Anomaly based)

Hybrid (Signature
and

Anomaly based)
Event state-transition

approach

events which are (policy-
neutral) abstractions of

network activity

Rule
based/Signature

based
Scalability and

flexibility Not much yes yes yes Yes Not much

Database
required

Signature
database is
large and
regular

updating

Large and
regular updating

Depends on third
party

products

The set of state transition
is stored in state transition

scenario database

recording activity
transcripts to files, and
writing policy script.

Signature database
is large and

constantly updating

Regular
updates Required Required Not required Not required required Required

Best for
Small and
medium
network

Small and
medium network Large network complex networks Small and medium network both IT professionals

and novice users

Support Open source
product

Commercial
product Research product Open source product Research product Commercial tool

V. REFERENCES

[1] Intrusion Deection System using Sax 2.0 and wireshark 1.2.2

[2] Nong Ye, Senior Member, IEEE, Syed Masum Emran, Qiang
Chen, and Sean Vilbert(2002),“Multivariate Statistical Analysis
of Audit Trails for Host-Based Intrusion Detection”, IEEE
Transactions on Computers, Vol. 51, No. 7, July 2002.

[3] George Lawton, “Open Source Security: Opportunity or
Oxymoron?” March 2002.

[4] K. Salah A. Kahtani (2009), “Improving Snort performance
under Linux”, IET Commun., 2009, Vol. 3, Iss. 12.

[5] Fang Yu, T. V. Lakshman, Randy H. Katz (2006), “Efficient
Multimatch Packet Classification for Network Security
Applications”, IEEE Journal on Selected Areas in
Communications, Vol. 24, NO. 10, October 2006.

[6] Jianchao Han, Mohsen Beheshti, Kazimierz Kowalski, Joel
Ortiz, Johnly TomeldenComponent-based Software
Architecture Design for Network Intrusion Detection and
Prevention System, 2009 IEEE Computer society Sixth
International Conference on Information Technology: New
Generations 2009.

[7] David J., Chaboya, Richard A. Raines, Rusty O. Aldwin, and
Barry E. Mullins,”Network ntrusion etection Automated and
Manual Methods Prone to Attack and Evasion”, PUBLISHED
by the IEEE Computer Society, 2006.

[8] Hui Li, Dihua Liu, “Research on Intelligent Intrusion
Prevention System Based on Snort”, International Conference
on Computer, Mechatronics, Control and Electronic
Engineering (CMCE) 2010.

[9] Snort Manual and Whitepapers on Rule Optimization,
Detection, High-performance multi rule detection engine,
Protocol Flow analyzer. All available at the Snort homepage:
http://www.sourcefire.com/products/library.html

[10] Jiong Zhang, Mohammad Zulkernine, and Anwar Haque(2008),
“Random-Forests-Based Network Intrusion Detection
Systems”, IEEE Transactions on Systems, man, and
Cybernetics—Part C: Applications and Reviews, Vol. 38, NO.
5, September 2008

[11] Raghuram Ponnaganti “Comparative study of three IDS system
(NFR, Emerald, Snort)”

[12] SNORT R Users Manual 2.9.1

http://www.sourcefire.com/products/library.html�

	INTRODUCTION
	RELATED WORK
	DISCUSSION
	CONCLUSION
	REFERENCES

