
��������	�
����	�
�������������

������������������������������������ ����!����"��������
�������

�#
#��"$�%�%#��

������&�������������'''��(��� ������

© 2010, IJARCS All Rights Reserved 278

ISSN No. 0976-5697

DIDW: An Approach for Dynamic Updating in Intelligent Data Warehouse

N. Badal* and A. K. Agarwal
Department of Computer Science & Engineering,

Kamla Nehru Institute of Technology,

Sultanpur, KNIT, U.P, INDIA.

 n_badal@hotmail.com, abhay.knit08@gmail

Abstract: Transfer of information from source database into data warehouse i.e. data updating is one of the most important issue for discussion

and research. Organizations that are going through it are solving by deploying dynamic and intelligent data warehouse in real-time manner.

Overall strategy in dynamic and intelligent data warehouse relies on updates that are made to source database. These updates in source database

are then stored in some temporary storage device through which they are transferred to data warehouse. This paper proposes a Dynamic and

Intelligent Data Warehouse (DIDW) architecture with its implementation, using multi real-time data cache. Data cache stores updated data

retrieved by update data translator from expandable horizontally partition database. Thus it is analyzed and suggested that using this DIDW

architecture in real-time manner helps to the organizations.

Keywords: DIDW, UDT, EHPD, RTDC

I. INTRODUCTION

Now a day there is cut-throat competition among the

various organizations. Information which is nothing but

meaningful data plays a vital role for such organizations. Those

organizations will have an added advantage over the others that

are able to access meaningful data in a timely and efficient

manner. Sharing of data among the various departments of an

organization and moving of data to business partners [7] is

equally important.

Data warehouse is subject oriented, non-volatile,

integrated and time-variant collection of large data set.

Extraction Transformation and Load (ETL) tool is used to

replenish data warehouse from source databases termed as

informational data. This informational data is valuable for

Decision Support System (DSS). Operational data on the other

hand is detailed, non redundant and updateable [1]. Operational

data requires a dynamic and intelligent data warehouse for

which the necessity for data warehouse is to handle this data in

real time manner. Real-time data warehouse is the combination

of the real-time behavior and the data warehouse [6]. Many

researchers proposed Capture-Conversion-Flow process to

update data in real time data warehouse [9].

The related work is being given in the next section of

this paper followed by the warehouse problems. The DIDW

architecture with its implementation is being proposed in the

subsequent sections. Analysis and outcomes are given in the

last of this paper.

II. RELATED WORK

Much have been talked and lots of research been done

on data updating in real-time data warehouse. Many

researchers had proposed various architectures about the same.

Few of which being are discussed here. Joseph H. H. et.al. in

[4], used an auxiliary store between source database and data

warehouse so that, updated data in source database doesn’t

allowed to move directly to data warehouse. By doing so it

prevented the data warehouse not to go offline each time source

database is updated. When any query is fired for updated

data, the response of it is given by the auxiliary storage,

making the system fast.

 In one of the other works Youchan Zhu et.al. in

[10], proposed feasible real-time data warehouse

architecture based on SOA. In this work various changed

data was captured by the data capture web service. The

update strategy was based on web service. Multi-level

cache was used for real-time data storage which play role

to give response to real-time query. As various cache

were connected in series to one another, system will

crash if any of the cache gets unstable or crashes, this

was the biggest drawback of the proposed system.

III. DATA WAREHOUSE UPDATE PROBLEM

The basic approach in performing updates to a

data warehouse is to collect all the updated information

from the source database at some pre-calculated time,

most preferable will be during the least active period of

the day, transfers the information to the data warehouse,

and view updates immediately. Not only this method is

disruptive, but also the information stored in the data

warehouse system will always be somewhat out of date

with the data stored in the source database [5]. The more

conventional approach used in performing updates to

data warehouses has been to gather the necessary

information from the source database and immediately

replenish the data warehouse with updates. Once this data

has been replenished, the user’s views are updated and

the work of the data warehouse carries on [11].

Regardless of the method chosen to perform the data

warehouse update function, there is bound to be some

impact on the data warehouse users while the updates are

being executed. As source database changes at a very

rapid rate and data warehouse as a repository for huge

amount of diverse information, the correctness of these

query response provided by the warehouse is highly

dependent on the changes made to the source database.

N. Badal et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 278-281

© 2010, IJARCS All Rights Reserved 279

There are three traditional methods to obtain the updated data

required by the data warehouse.

• One of the simplest methods is the modification of the

source database applications to provide the updated data

set of interest to the data warehouse.

• Obtaining access, and extracting the required information,

from the source database log or a specially constructed

‘delta’ file [3]. The advantage to this implementation is

that the updates necessary for the data warehouse can be

gathered without any impact to the source database.

• Maintaining a snapshot of the source database and

comparing it with the current contents of the source

database. Any changes that have been made in the source

database require the changed data to be extracted and

forwarded to the data warehouse. The archived snapshot of

the source database is then updated to show the data

warehouse’s current view of the source database [3, 5].The

advantage to this method is, the work of providing updated

information to the data warehouse can be done with no

impact to the activities of the source database. The

snapshot data then can be forwarded to the data warehouse

[8].

IV. DIDW ARCHITECTURE

Figure1 illustrate the multi-cache and a switch based

data warehouse architecture, having mainly ‘n’ Expandable

Horizontally Partitioned Database (EHPD), ‘n’ Update Data

Translator (UDT), ‘n’ multi Real-Time Data Cache (RTDC), a

Switch, a large Cache, Real-Time Data Integrator (RDI), Data

Warehouse, ETL, OLAP server and various applications.

Figure 1: DIDW Architecture

In proposed architecture for DIDW there are ‘n’

expandable horizontally partitioned database. Each of these

expandable horizontally partitioned database store equal

number of data set in it. Collectively it is called source

database. The stored data set in expandable horizontally

partitioned database goes to data warehouse through ETL. An

OLAP server is connected to data warehouse .The function of

OLAP server is analytical process of data in a data

warehouse which is used in various applications such as

decision support system.

When new data set comes they enter in random

fashion to various expandable horizontally partitioned

databases. The ‘n’ UDT are connected one to one with

‘n’ EHPD. The individual update data translator extracts

the update data set if available from respective EHPD.

The tasks of UDT are update data extraction, data

cleaning, data transformation, and loading [2]. The ‘n’

RTDC are connected one to one with ‘n’ update data

translators. The data set that was extracted by individual

update data translator moved and stored in respective

RTDC. Each RTDC generates the flag with value of

either 0 or 1. Flag value with ‘1’ signifies that there are

update data set in RTDC and flag value with ‘0’ there is

no update data set in RTDC.

Figure 2: Flow Chart for Dynamic Update

The flag with value ‘1’ will be passed by the

switch and flag with value ‘0’ will be blocked thus

updated data from various real-time data cache is passed

to larger cache and each such real-time data cache is

refreshed, this larger cache store all update data set

collectively. Whenever data warehouse is offline it gets

updated by data set in this cache. Otherwise the collective

data set is available for real-time query via real-time data

integrator. The data will remain in the larger cache and

continuously will be added in it until data warehouse is

updated by it or the cache is full by 90% at which data

warehouse is forced to get itself updated. Once data

warehouse gets updated the larger cache will be refreshed

and emptied. The flowchart for procedure and working of

architecture is shown in figure 2.

N. Badal et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 278-281

© 2010, IJARCS All Rights Reserved 280

V. WORKING PROCESS OF DIDW ARCHITECTURE

Figure 3 illustrate step-by-step description of the working

of the DIDW architecture process, starting from the entering of

updated data set in various EHPD. It transitioned by UDT,

moving to RTDC. Finaly, moved to the larger cache via a

switch, which remain ON for those RTDC having flag value as

‘1’ means updated data set in this RTDC.

Figure 3: Algorithm for Dynamic Updation in DIDW

VI. ANALYSIS AND OUTCOMES

The analysis and viewed outcomes of the proposed DIDW

architecture are being illustrated here.

1. The reliability of system is high as set of various

elements are connected in parallel, if in a set of

elements any of it fails system doesn’t crash.

2. The cache which store collective updated data set is

large in size the query load of cache will not increase

making system stable.

3. The architecture can be extended for distributed

system.

4. The architecture uses ‘n’ EHPD in which updated

data goes randomly. Those EHPD in which data was

moved involve in further processing and others are

ready to accept new updated data. Thus there is no

delay between two updating process.

VII. CONCLUSION AND FUTURE SCOPE

The various methods of data warehouse update

with there drawbacks are discussed in this paper. It is

also discussed about the conventional methods that how

to obtain the updated data set required by data

warehouse. The proposed DIDW architecture in real-time

manner allows the current data set to move to the data

warehouse. In this architecture there is facility for data

warehouse that when it can go offline it can fetch updated

current data from larger cache. Thus, using this DIDW in

real-time manner provides a good assistantship to the

organizations.

VIII. REFERENCES

[1] A. Berson, Stephen J. Smith, “Data Warehousing,

Data Mining, & OLAP” Fourth ed. Tata McGraw

Hill Publication, Page 14-15.

[2] A. K. Pujari, “Data Mining Techniques” Fourteenth

Impression 2008. Universities Press, Page-30.

[3] Hanson, Joseph H. An Alternative Data Warehouse

Structure for Performing Updates.December 1996,

UMI Press.

[4] Hanson Joseph H. Modeling a Faster Dara

Warehouse, IEEE Journal, April 1997, pages 260-

265.

[5] Inmon, W.H., Building the Data Warehouse. Second

ed. Vol. 1. 1996, New York: Wiley Computer

Publishing.pg. 401.

[6] J. Langseth. Real-Time Data Warehousing:

Challenges and Solutions. DSSResources.COM,

004.

[7] John Vandermay. Considerations for Building a

Real-time Data Warehouse. Data Mirror

Corporation. <http:// www.dmreview.com/>.

[8] Labio, W.J. and H. Garcia-Molina, Efficient

Snapshot Diferential Algorithms for Data

Warehousing, Technical Report. 1996, Stanford

Univ: Palo Alto.

[9] YANG Le. Design and Implementation of Real-time

data extraction Mechanism in data warehousing

[D].Beijing: Beijing University of Posts and

Telecommunications .2007.03.

Step 1: Process Starts

Step 2: Is there are new data set, and source

database to be updated.

2(a) If there’s no update there will be no change

in data warehouse.

2(b) If there are updates then updated data set

moved to any EHPD 1 to n randomly.

Step 3: Every EHPD 1 to n, will be checked to see,

whether a EHPD is updated with data set

or not.

3(a) If No there will be no data set for UDT to be

captured and transformed.

3(b) If Yes, Data Set is captured and transformed

by respective UDT.

Step 4: Data set that are transformed by UDT are

moved and stored to respective real-time

data cache.

Step 5: Now a condition will be applied to see

whether all EHPD are checked or not.

5(a) If No step 3 and step 4 will be repeated.

5(b) If Yes process will flow to check Real-time

data cache.

Step 6: Every Real-time data cache will be checked

for updates depending on the updates.

6(a) If No, Flag with value ‘0’ will be generated

means switch will be OFF for these caches.

6(b) If Yes, Flag with value ‘1’ will be generated

means switch will be ON for these caches.

Step 7: Updated data set from real-time cache with

flag value of ‘1’ will be passed via switch

and each such real-time data cache is

refreshed and emptied.

Step 8: Updated data set is moved and stored in

larger cache collectively.

Step 9: Can data warehouse goes offline and update

itself with the data set stored in larger

cache.

9(a) If Yes data warehouse is updated.

9(b) If No updated data set is available for real-

time query via RDI.

Step10: If larger cache is full by 90% with the

updated data set it will force the data

warehouse to becomes offline and update

itself via data set thus cache is refreshed

and emptied.

Step 11: Process Stop.

N. Badal et al, International Journal of Advanced Research in Computer Science, 1 (3), Sept –Oct, 2010, 278-281

© 2010, IJARCS All Rights Reserved 281

[10] Zhu Youchan, Lie An and Liu Shuangxi, Data Updating

and Real-time Data Warehouse System, IEEE Conference,

August 2008, pages 1295-1297.

[11] Zhuge, Y.H.G.-M., Jachim Hammer, Jennifer Widom,

View Maintenance in a Warehousing Environment

Technical Report. 1994. Stanford: Palo Alto.

AUTHORS

N. Badal is a Sr. Lecturer in the Department of

Computer Science & Engineering at Kamla Nehru Institute of

Technology (KNIT),Sultanpur (U.P), INDIA. He received B.E.

(1997) from Bundelkhand Institute of Technology (BIET),

Jhansi in Computer Science & Engineering, M.E. (2001) in

Communication, Control and Networking from Madhav

Institute of Technology and Science (MITS), Gwalior and PhD

(2009) in Computer Science & Engineering from Motilal

Nehru National Institute of Technology (MNNIT),

Allahabad. He is Chartered Engineer (CE) from

Institution of Engineers (IE), India. He is a Life Member

of IE, IETE, ISTE and CSI-India. He has published about

30 papers in International/National Journals, conferences

and seminars. His research interests are Distributed

System, Parallel Processing, GIS, Data Warehouse &

Data mining, Software engineering and Networking.

A. K. Agarwal is a Lecturer in

Computer Science & Engineering Department at KNIT,

Sultanpur. He received his B.Tech degree in 1999 from

BIET Jhansi in Electronics & Instrumentation Engg and

M.Tech in 2006 from Samrat Ashok Technology Institute

(SATI), Vidisa in Information Technology.

