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Abstract: This paper introduces uncertainty theory to deal with uncertain factors in decision making problems. The uncertain variable method (UVM) 
for generation weight vector, the definition of uncertain consistency and consistency theorem are proposed. An algorithm for checking whether or not 
an uncertainty comparison matrix is consistent is put forward. The final raking is indicated by uncertainty weight vector if it is acceptable; otherwise 
we rely on the ranks of expected weight vector instead. Three numerical examples are examined to illustrate the validity and practicality of the 
proposed method. 
 
Keywords: uncertainty theory; uncertain variable; uncertain measure; uncertainty distribution; uncertain variable method; AHP 
 

I. INTRODUCTION 

The Analytic Hierarchy Process (AHP) is a decision 
making technique founded by Saaty (1977, 1980), that 
integrates pairwise comparison ratios into a ratio scale. The 
reciprocal ratio scale which is used by experts to provide 
their subjective opinion concerning each pair of stimuli 
considered. However, in practical application, 
non-deterministic factors appear in AHP, which leads to 
new situations. Such as what is the ratio criterion 1 over 
criterion 2, whether or not it is 2 or 3 cannot be provided 
exactly by expert. If the each element is non-deterministic, 
the consistency of comparison matrices cannot be checked 
and ranks of alternatives cannot be obtained, either.  

This problem was first investigated by Vargas (1982). 
He considered such imprecise judgments as uncertainty in 
the stochastic or statistical context where the judgment ratio 

ijr  was viewed as a random variable. Subsequently, a 
number of techniques have been developed to use such a 
fuzzy or interval comparison matrix to generate weights. 
More details can be obtained in works [1-8]. 

Unfortunately, it is not suitable to regard every 
non-deterministic phenomenon as random phenomenon, 
especially when the uncertain phenomenon is caused by 
subjective judgment. In some works, fuzzy parameters are 
assumed to have known membership functions and 
credibility distributions. However, Atanu Sengupta and 
Tapan Kumar Pal [7] considered that in real-world to a 
decision maker (DM) it is difficult to specify the 
membership function or probability distribution in an 
ambiguous environment.  

As is well known, the non-deterministic phenomenon 
above is caused by subjective judgment. Let us name it 
“uncertainty”. In order to deal with these uncertainties, Liu 
[9] proposed uncertainty theory and refined it in 2010 [10]. 
This provides a motivation to introduce uncertainty theory 
into AHP. 

In this paper, uncertain variable instead of precise ratio is 
used to represent human judgments. Then uncertain measure 
is used to indicate the belief degree of an uncertain event. 
Subsequently uncertainty distribution is used to describe 
uncertain variables in an incomplete but easy-to-use way. 
Based on uncertainty comparison matrix, weights are 
derived by using inverse uncertainty distribution and 
ranking with uncertain measure 0α  is obtained. Finally, 
consistency of matrices is tested and the inconsistent 
matrices are modified by expert. After that the reliable 
weights can be obtained. We call this decision problem 
model uncertain AHP when uncertain variable is brought in. 
This paper is focused only on the generating uncertainty 
weights and consistency check. 

The remainder of this paper is organized as follows. 
Section 2 proposes uncertain variable method which 
includes constructing uncertainty comparison matrix and 
generating weight vector from both consistent and 
inconsistent uncertainty comparison matrices. Section 3 
presents definition of uncertain consistency and theorem for 
identification of consistency, then an algorithm for checking 
consistency is discussed.  In Section 4, three numerical 
examples are given to show the simplicity and practicality of 
the proposed the method. The paper is concluded in Section 
5. 
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II. UNCERTAIN VARIABLE METHOD (UVM) 

Uncertainty theory has become a branch of mathematics 
based on normality, self-duality, countable subadditivity, 
and product measure axioms. It is well developed in 
different fields. To explore the recent developments of 
uncertainty theory, readers may consult Liu [10]. In order to 
determine the uncertain AHP, we give the following 
fundamental concepts. 

We consider treating elements in a comparison matrix as 
uncertain variables having uncertainty distributions. Then 
we get the definition of uncertainty comparison matrix. 

Definition 2.1 Let A  be an uncertainty comparison 
matrix of order n , whose entries are uncertainty 
distributions ( )1, 2, , 1; 1,ij i n j i nΦ = − = +   of 

uncertain variables ( )1, 2, , 1; 1,ij i n j i nξ = − = + 

representing the ratios criterion i  over criterion j , then 
the uncertainty comparison matrix is denoted by 
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The lower triangular uncertainty ratios can be obtained by 

 ( )
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Φ = = − = +

Φ
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where α  is the uncertain measure (confidence level) with 
[ ]0,1α ∈ . 

As we know the pairwise comparison ratios are supplied 
by decision maker in the conventional-AHP. Here in this 
paper, uncertain variable (Liu [9]) ijξ  can be obtained by 
Delphi method and has a linear uncertainty distribution (Liu 
[9]). The consultation process is as follows: 
Q1: What do you think is the minimum ratio criterion i  
over criterion j ? 

A1: a . (an expert’s experimental data ( ), 0a  is acquired) 
Q2: What do you think is the maximum ratio criterion i  
over criterion j ? 

A2: b . (an expert’s experimental data ( ),1b  is acquired) 

Where ( ) ( ), 0 , ,1a b  represents ( ) { }ija aξΦ = ≤M  

0,= ( ) { } 1ijb bξΦ = ≤ =M , respectively. So the 

uncertainty ratio ijξ  has an linear uncertainty distribution 

( ),ij a bL .  
Crawford and Williams [11] suggested for the Row 

Geometric Mean Method (RGMM), where the priorities 
(without the normalization factor) are given by 

     
1

1

1, 2, , ,
n

n

i ij
j

w a i n
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= =
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∏ 

    
     (3) 

where iw  is the priority of the thi  attribute. Liu [12] 
proposed the concept of strictly increasing function of 
uncertain variables. A real-valued function 
( )1 2, , , nf x x x  is said to be strictly increasing if  

( ) ( )1 2 1 2, , , , , ,n nf x x x f y y y≤   

whenever i ix y≤  for 1, 2, ,i n=  , and  

( ) ( )1 2 1 2, , , , , ,n nf x x x f y y y<   

whenever i ix y<  for 1, 2, ,i n=  . 
Eq. (3) can be expressed as  

( )
1

1 2
1

, , , , 0
n

n

n j j
j

f x x x x x
=

= >
 
 
 
∏  

then f  is a strictly increasing function.  
Proof  
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where ( )
1

n

j j
j

g y y
=

=∏  is a strictly increasing function and 

( ) 1 n
j jh x x=  is a strictly increasing function, so the 

composite function f  is a strictly increasing function of 
uncertain variables 1 2, , , nx x x . The proof is finished. 

In order to derive the weights from the uncertainty 
comparison matrices, the inverse uncertainty distributions 
are used. The reason is that ( )1

0α
−Φ  is a precise number. 

Here we introduce a theorem proposed by Liu. 
Theorem 2.1 (Liu [10]) Let 1 2, , , nξ ξ ξ  be 

independent uncertain variables with regular uncertainty 
distribution 1 2, , , nΦ Φ Φ , respectively. If f  is a 
strictly increasing function, then 

( )1 2, , , nfξ ξ ξ ξ=   
is an uncertain variable with inverse uncertainty distribution 

( ) ( ) ( ) ( )( )1 1 1 1
1 2, , , .nfα α α α− − − −Ψ = Φ Φ Φ  

By the Theorem 2.1, it is clear that 
( )1 2, , ,i i i inw f ξ ξ ξ=   is an uncertain variable with 

inverse uncertainty distribution 

 ( ) ( )
1 1

1 1

1 1

n n
n n
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 (4) 
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where [ ]0,1α ∈  is the uncertain measure (Liu [9]). iw  

is defined as uncertainty weight of the thi  attribute. For 
all 1, 2, ,i n=  , the uncertainty weight vector 

( )1 2, , , nw w w w=   is obtained. The uncertainty weight 
vector is acceptable when the ranking order does not alter if 

0.5α ≥ . Otherwise experts will be required to supply new 
judgments. Without any modification or new information, 
we rely on the ranks of expected values of uncertainty 
weights instead. Liu and Ha [12] give the expected value 
[ ]E ξ  of monotone function of uncertain variables  

[ ] ( )
1

1 1

0
1

,
n

n

iij
j

E d wξ α α−

=

= Φ =
 
 
 
∏∫       (5) 

which is a precise number showing expected value of 
uncertain variable iw  (priority of thi  attribute) in 
formula (4). However, only the numerical solution of the 
expected value could be calculated by computer. Finally the 

expected weight vector ( )1 2, , , nw w w w=   is obtained. 

The uncertainty weight iw  is changed along with 
different uncertain measures. A certain group of weights 
will be used to check consistency of uncertainty comparison 
matrix and indicate the ranking if uncertainty weight vector 
is unacceptable. The expected value of weight plays an 
important role here. 

III. CONSISTENCY TEST AND RANKS OF WEIGHTS 

As is well known, only comparison matrices passing the 
test of satisfactory consistency can be used to derive reliable 
weights. We must check the consistency of comparison 
matrices in the process of generation weights. Since the 
complexity and uncertainty of real-world decision analysis 
problems and the subjectivity of expert judgments, it is 
inevitable to generate inconsistent comparisons. In previous 
works, the definition of fuzzy consistency [4] and 
consistency of interval comparison matrix [13] were 
proposed. In this paper, the definition of uncertain 
consistency and a theorem for identification of consistency 
are given.  

Definition 3.1 Let A  is an uncertainty comparison 
matrix defined by (1) with ( ) ( )1 10 1ij ij ijξ− −Φ ≤ ≤ Φ  and 

( ) ( )1 10 1 1ii ii iiξ − −= Φ = Φ =  for , 1, 2, ,i j n=  . If the 
convex feasible region 
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S w w w w w w

w w j n

− −

=

= = Φ ≤ ≤ Φ

= > =∑


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is nonempty, then A  is considered to be a consistent 
uncertainty comparison matrix. 

Theorem 3.1 A  is a consistent uncertainty 
comparison matrix if and only if it satisfies the following 
inequality constraints:

 
 

( ) ( )( ) ( ) ( )( )1 1 1 1max 0 0 min 1 1 .ik kj ik kj
− − − −Φ ⋅Φ ≤ Φ ⋅Φ  

for all 1, 2, ,k n=  .
               

  (6) 
Proof 

If A  is a consistent uncertainty comparison matrix, it 
means the convex feasible regsion wS  is nonempty and 
there is no contradiction among the following inequality 
constraints:                                                            

( ) ( )1 10 1 , 1, 2, , ,ik i k ikw w i k n− −Φ ≤ ≤ Φ =     (7)                                                      

( ) ( )1 10 1 , 1, 2, , .kj k j kjw w k j n− −Φ ≤ ≤ Φ =          (8) 
Multiplying (7) by (8) leads to the following inequalities 

( ) ( ) ( ) ( )1 1 1 10 0 1 1 , , , 1, 2, , .ik kj ik kj i j k n− − − −Φ ⋅Φ ≤ Φ ⋅Φ =                                                
(9) 

Since (9) holds for any 1, 2, ,k n=  , it follows that 

( ) ( )( ) ( ) ( )( )1 1 1 1max 0 0 min 1 1ik kj ik kj
− − − −Φ ⋅Φ ≤ Φ ⋅Φ  holds 

for all , , 1, 2, ,i j k n=  . 
Conversely, if (6) holds for all , ,i j k , then 

( ) ( )1 10 1ij i j ijw w− −Φ ≤ ≤ Φ  holds for any 

, 1, 2, ,i j n=  . So, wS  is nonempty and A  is a 
consistent uncertainty comparison matrix in the sense of 
Definition 3.1. 

Certainly, the definition of consistency test for 
uncertainty comparison matrices can be used to check the 
consistency. It is clear that it computes inefficiently when 
the matrix order is large. Here we introduce an algorithm 
enlightened by R. Islam et al. [14], 

( )
1

1 1

n n

ij ij
i j i

a p p
−

= = +

′= +∑∑
           

  (10) 
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where 0, 0, 0ij ij ij ij ij ijn p n p p p′ ′ ′= = = , and iw  

( )1, 2, ,i n=   is the normalized expected weights.  

There must be a group of weights ( )1, 2, ,iw i n=   
taken into formula (10). Using the UVM, we consider the 
expected values of uncertainty weights as the estimations of 
weights ( )1, 2, ,iw i n=  . Note that ( )1, 2, ,iw i n=   
are normalized expected values. After that, the ratios 

i jw w  for all i  and j  may or may not belong to the 

interval ( ) ( )1 10 , 1ij ij
− −Φ Φ   . The ijp  or ijp′  reflects the 

deviation i jw w  exceeding the set ( ) ( )1 10 , 1ij ij
− −Φ Φ   .  

It is clear that the matrix is consistent if and only if 
0a = . The expert will be asked to modify the uncertainty 

comparison matrix if 0a > . 
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Because the expected weight vector or uncertainty 
weight vector (with uncertain measure 0α ) is an exact 
priority vector, the ranking is obvious. The whole process 
introduced for generating uncertainty weights and expected 
weights from uncertainty comparison matrices is 
summarized in Figure 1. 

 
Figure 1 Process for generating priorities from uncertainty comparison 

matrices. 

IV. NUMERICAL EXAMPLES 

In this section, we offer three numerical examples that 
are solved using the proposed UVM. The linear uncertainty 
distributions are obtained by Delphi method. 

Example 1 Consider the following uncertainty 
comparison matrix 

( ) ( ) ( )
( ) ( )

( )

12 13 14

23 24

34

2,5 2, 4 1,3
1,3 1, 2

1 2 ,1

1
1

.
1

1

=

 
 
 
 
 
 

L L L
L L

L
A  

As introduced in section 2, the uncertainty weights and 
expected weights are obtained by formulas (2), (4) and (5). 
The normalized expected weight vector is 
( )0.4514,0.2134,0.1388,0.1963 . Using the formula 

(10), 0a =  is obtained and A  is consistent uncertainty 
comparison matrix. Table 1 expresses the weights with 
different uncertain measures, from which it is clear that 
criterion 1 is the most important because its weight is 
greater than weights of all the other criteria holds for

[ ]0,1α ∈ . To provide a complete ranking order for the four 
uncertainty weights, a directed diagram is depicted in Figure 
2, from which it is quite clear that the ranking order is 
generated to be ( )1 2 4 3 if 0.4w w w w α> > > > , and the 
result is acceptable. Our ranking order provides the 
information about uncertain measure of preference, which 
reflects uncertain nature of the ranking. 

Table 1 Uncertainty weights in Example 1 

Criterion 
weights 

α  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Criterion 1 0.3047 0.3738 0.4032 0.4294 0.4530 0.4742 0.4936 0.5112 0.5274 0.5422 0.5560 

Criterion 2 0.2026 0.2073 0.2103 0.2120 0.2129 0.2132 0.2129 0.2123 0.2114 0.2103 0.2091 

Criterion 3 0.1703 0.1609 0.1525 0.1449 0.1380 0.1317 0.1260 0.1208 0.1159 0.1115 0.1073 

Criterion 4 0.2865 0.2580 0.2341 0.2137 0.1961 0.1809 0.1675 0.1558 0.1453 0.1360 0.1276 

 
Figure 2 Preference relations in Example 1 

 
Example 2 Consider the following decision analysis 

given by uncertainty comparison matrix, 
( ) ( ) ( )

( ) ( )
( )

12 13 14

23 24

34

1, 2 1, 2 2,3
3,5 4,5

6,

1

.

1
8

1
1

=

 
 
 
 
 
 

L L L
L L

L
A  

The problem of weight determination from A  is 
calculated expected weight vector is
( )0.3150,0.3922,0.2226,0.0701 , respectively, with

0.6973a = . Then the comparison matrix is inconsistent. 
Only comparison matrices passing the test of satisfactory 
consistency can be used to derive reliable weights. 
Unreliable weights and ranking orders for alternatives may 
be caused by high inconsistency. So the uncertainty 
comparison matrix A  should be modified by expert until 
it becomes consistent. 

Acceptable ?
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Example 3 The problem is about a government agency’s 
goal (G) to rank chemicals A1, A2, A3 in terms of their level 
of harm to the environment. The goal is affected by three 
criteria with criterion C1: Air, C2: Water, and C3: Soil, see 
Figure 3. 

 
Figure 3 Hierarchy Structure in Example 3. 

The uncertainty comparison matrices for the three criteria 
as well and for the three alternatives are summarized in Table 
2. Both the local and global expected weights are showed in 
Table 3, from which our uncertainty comparison matrices all 
turn out to be consistent. It is can be seen that the expected 
weights indicate the ranking 1 3 2A A A  . Based on the 
consistent matrices, the UVM are used to generate the global 
uncertainty weights and plotted in Figure 4. It can be seen 
from Figure 4 that the ranking given by uncertainty weights 
is unacceptable, because the ranking alters with 0.5α > . It 
is clear that A1 is preferred over A2 and A3, but whether A3 is 
preferred over A2 is ambiguous. Perhaps the reason is that the 
consistent matrices include contradictory information. M. 
Kwiesielewicz and E. Van Uden [15] expressed that the 
consistency test is performed to ensure that judgments are 
neither random nor illogical. They proposed that even if a 
matrix will pass a consistency test successfully, it can be 
contradictory. Maybe the judgments for A3 have been given 
carelessly. Without any new information, we take the ranking 

1 3 2A A A   given by expected weights as the final ranks 
of alternatives. 

Table 2 Uncertainty comparison matrices in Example 3. 
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Table 3 Local expected weights and global expected weights 
in Example 3. 

Chemicals C1 C2 C3 Global 
weights 0.4260 0.2870 0.2870 

A1 0.1597 0.5361 0.4619 0.3545 
A2 0.3421 0.2320 0.3627 0.3164 
A3 0.4982 0.2320 0.1725 0.3283 

 
Figure 4 Preference relations in Example 3. 

V. CONCLUSION 

In order to deal with subjective uncertainty in decision 
making, this paper introduced uncertainty theory into 
analytic hierarchy process (AHP). Uncertain variable method 
(UVM), a new approach to consistency and inconsistency of 
uncertainty comparison matrices was proposed to generate 
uncertainty weights. The definition of uncertain consistency 
and a theorem for identification of consistency were provided 
and a simple yet pragmatic approach for testing whether or 
not an uncertainty comparison matrix is consistent was put 
forward without solving any optimization model. Both the 
uncertainty weight vector and expected weight vector 
indicated the ranks of alternatives. We considered the 
uncertainty weight vector as the final ranking if it was 
acceptable. Otherwise the ranks of expected weight vector 
would be adopted. Three numerical examples illustrated the 
simplicity and wide applicability of the proposed methods. 
Because interval comparison matrices can be transformed 
into uncertainty comparison matrices, the proposed method is 
applicable to interval comparison matrices. We can find that 
uncertainty comparison matrices with zigzag uncertainty 
distributions can be applied to the fuzzy comparison matrices 
with triangular membership functions. Therefore they can be 
widely used to deal with decision analysis problems.  
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